
1

CSE 326: Data Structures

Asymptotic Analysis 
(Continued)

2

Review Solving Recurrences

1. Determine the recurrence relation.  What is the base case(s)?

2. “Expand” the original relation to find an equivalent general 
expression in terms of the number of expansions.

3. Find a closed-form expression by setting the number of 
expansionsto a value which reduces the problem to a base case

3

Asymptotic Analysis
• Eliminate low order terms

– 4n + 5 �

– 0.5 n log n + 2n + 7 �

– n3 + 2n + 3n �

• Eliminate coefficients
– 4n �

– 0.5 n log n �

– n log n2 =>

4

Order Notation: Intuition

Although not yet apparent, as n gets “sufficiently 
large”, f(n) will be “greater than or equal to”g(n)

f(n) = n3 + 2n2

g(n) = 100n2 + 1000

5

Definition of Order Notation
• Upper bound:T(n)  = O(f(n)) Big-O

Exist constants c and n’ such that 

T(n) ≤ c f(n) for all n ≥ n’

• Lower bound:T(n)  = Ω(g(n)) Omega
Exist constants c and n’ such that

T(n) ≥ c g(n) for all n ≥ n’

• Tight bound: T(n)  = 
�
(f(n)) Theta

When both hold:

T(n)  =  O(f(n))

T(n)  =  Ω(f(n))

6

Order Notation: Definition
O( f(n) ) :  a set or class of functions

g(n) ∈ O( f(n) ) iff there exist constsc and n0 such that: 

g(n) ≤ c f(n) for all n ≥ n0

Example:  g(n) =1000n vs. f(n) = n2

Is g(n) ∈ O( f(n) ) ?
Pick: n0 = 1000, c = 1



2

7

Notation Notes
Note: Sometimes, you’ll see the notation:

g(n) = O(f(n)).  

This is equivalent to:

g(n) ∈ O(f(n)).

However: The notation 

O(f(n)) = g(n) is meaningless!

(in other words big-O is not symmetric)

8

Order Notation: Example

100n2 + 1000 ≤ 5 (n3 + 2n2) for all n ≥ 19

So f(n) ∈ O( g(n) )

9

Big-O: Common Names

– constant: O(1)

– logarithmic: O(log n) (logkn, log n2 ∈ O(log n))

– linear: O(n)

– log-linear: O(n log n)

– quadratic: O(n2)

– cubic: O(n3)

– polynomial: O(nk) (k is a constant)

– exponential: O(cn) (c is a constant > 1)

10

Meet the Family
• O( f(n) ) is the set of all functions asymptotically 

less than or equalto f(n)
– o( f(n) ) is the set of all functions asymptotically 

strictly less than f(n)

• Ω( f(n) ) is the set of all functions asymptotically 
greater than or equalto f(n)
– ω( f(n) ) is the set of all functions asymptotically 

strictly greater than f(n)

• θ( f(n) ) is the set of all functions asymptotically 
equalto f(n)

11

Meet the Family, Formally 

• g(n) ∈ O( f(n) ) iff
There exist c and n0 such that g(n) ≤≤≤≤ c f(n) for all n ≥ n0
– g(n) ∈ o( f(n) ) iff

There exists a n0 such that g(n) < c f(n) for all c and n ≥ n0

• g(n) ∈ Ω( f(n) ) iff
There exist c and n0 such that g(n) ≥≥≥≥ c f(n) for all n ≥ n0
– g(n) ∈ ω( f(n) ) iff

There exists a n0 such that g(n) > c f(n) for all c and n ≥ n0

• g(n) ∈ θ( f(n) ) iff
g(n) ∈ O( f(n) ) and g(n) ∈ Ω( f(n) )

Equivalent to: limn→∞ g(n)/f(n) = 0

Equivalent to: limn→∞ g(n)/f(n) = ∞

12

Big-Omega et al. Intuitively

>ω
<o

=θ

≥Ω
≤O

Mathematics RelationAsymptotic Notation



3

13

Kinds of Analysis

• Running time may depend on actual data input, not 
just length of input

• Distinguish
– worst case

• your worst enemy is choosing input

– best case
– average case

• assumes some probabilistic distribution of inputs

– amortized
• average time over many operations

14

Types of Analysis

Two orthogonalaxes:

– bound flavor
• upper bound (O, o)

• lower bound (Ω, ω)

• asymptotically tight (θ)

– analysis case
• worst case (adversary)

• average case

• best case

• “amortized”

15

Algorithm Analysis Examples
• Consider the following 

program segment:
x:= 0;

for i = 1 to N do

for j = 1 to i do

x := x + 1;

• What is the value of x at 
the end? 

16

Analyzing the Loop

• Total number of times x is incremented is 
executed =

• Congratulations - You’ve just analyzed your first 
program!
– Running time of the program is proportional to 

N(N+1)/2 for all N
– Big-O ??

�
=

+==+++
N

1i 2
1)N(N

i...321

17

Which Function Grows Faster?

n3 + 2n2 100n2 + 1000

18

Which Function Grows Faster?

n3 + 2n2 100n2 + 1000



4

19

Which Function Grows Faster?

n0.1 log n

20

Which Function Grows Faster?

n0.1 log n

21

Which Function Grows Faster?

5n5 n!

22

Which Function Grows Faster?

5n5 n!

23

Nested Loops
for i = 1 to n do

for j = 1 to n do

if (cond) {

do_stuff(sum)

} else {

for k  = 1 to n*n

sum += 1

24

• Eliminate low 
order terms

• Eliminate 
constant 
coefficients

3 2 2
8

3 2
8

3 2
8

3 2
8 8

3 3 2
8 8

3 2
8

3
8

3
8

3
8

3

16 log (10 ) 100

16 log (10 )

log (10 )

log (10) log ( )

log (10) log ( )

log ( )

2log ( )

log ( )

log (2) log( )

log( )

n n n

n n

n n

n n

n n n

n n

n n

n n

n n

n n

+

�

�

� �� +� �

� +

�

�

�

�

�

3 2 2 3
816 log (10 ) 100 ( log( ))n n n O n n+ =


