CSE 326: Data Structures

Asymptotic Analysis
(Continued)

ReviewSolving Recurrences

1. Determine the recurrence relation. What is theelcase(s)?

2. “Expand” the original relation to find an equivaiegeneral
expressionn terms of the number of expansions

3. Find a closed-form expression by settihg number of

expansionso a value which reduces the problem to a base cdse

Asymptotic Analysis

¢ Eliminate low order terms
—4n + 5=
—05nlogn+2n+%
- m+2"+3n=>
 Eliminate coefficients
- 4n=
—05nlog =
— nlog #=>

Order Notation: Intuition
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Although not yet apparent, agets “sufficiently
large”, f(n) will be “greater than or equal t@{(n) ,

Definition of Order Notation

* Upper bound:T(n) = O(f(n)) Big-O
Exist constants andn’ such that
T(n)<cf(n) foralln=>n’
¢ Lower bound:T(n) = 2(g(n)) Omega
Exist constants andn’ such that
T(n)=cg(n) foralln=>n’
e Tight bound: T(n) =6(f(n)) Theta
When both hold:
T(n) = O(f(n))
T(n) = f(n)

Order Notation: Definition

O(f(n)): aset or class of functions

9(n) D O(f(n))

g(n) < cf(n) foralln=n,

iff there exist consts andn, such that:

Example: g(n) =100 vs. f(n) = n?
Isg(n) O O(f(n)) ?
Pick: n0 =1000,c=1




Notation Notes

Note: Sometimes, you'll see the notation:

g(n) = O(f(n).
This is equivalent to:

g(n) 0 O(f().

However: The notation
O(f(n)) = g(n) is meaningless!

(in other words big-O is not symmetric)

Order Notation: Example
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100n2 + 1000 <5 (n® + 2n?) for alln = 19
Sof(n) 0 O(g(n)) 8

Big-O: Common Names

— constant: 0(1)

— logarithmic:  O(log n) (logn, log r# 00 O(log n))
— linear: O(n)

— log-linear: O(n log n)

— quadratic: o

— cubic: o)

— polynomial:  O(H) (k is a constant)

— exponential:  O® (cis a constant > 1)

Meet the Family

e O(f(n))is the set of all functions asymptotically
less than or equad f(n)

— o( f(n) ) is the set of all functions asymptotically
strictly less thari(n)

e Q(f(n))is the set of all functions asymptotically
greater than or equ#d f(n)

— w( f(n) ) is the set of all functions asymptotically
strictly greater thaf(n)

* B(f(n))is the set of all functions asymptotically
equalto f(n)
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Meet the Family, Formally

« g(n) O O(f(n) ) iff
There exist andn, such that gf) < cf(n) for alln=n,
— g(n) O o( f(n) ) iff
There exists a, such that gf) < cf(n) for allcandn=n,
Equivalent to: li n)/f(n) =0
« g(n) 0 Q(f(n))iff ! . GO
There exist andn, such that gf) = c f(n) for alln=n,
— g() O w(f(n)) iff
There exists a, such that gf) > c f(n) for allcandn=n,
Equivalent to: lim ., g(n)/f(n) =«
« g(n) O 8(f(n))iff
g(n) D O(f(n)) and gg) D Q(f(n))
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Big-Omega et al. Intuitively

Asymptotic Notation Mathematics Relation
(e} <
Q >
0 =
o <
w >
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Kinds of Analysis

* Running time may depend awctual data inpynot
justlength of input
Distinguish
— worst case
 your worst enemy is choosing input
— best case
— average case
« assumes some probabilistic distribution of inputs
— amortized
 average time over many operations
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Types of Analysis

Two orthogonabxes:

— bound flavor
« upper bound (O, o)
« lower bound @, w)
« asymptotically tightg)

— analysis case
« worst case (adversary)
« average case
« best case
« “amortized”

14

Algorithm Analysis Examples

Consider the following
program segment:
x:= 0;
for i =1 to Ndo

for j =1toi do

X 1= x + 1;

* What is the value of x at
the end?
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Analyzing the Loop

» Total number of times x is incremented is
executed =

N
1+2+3+_,_:Zi:w
i=1

e Congratulations - You've just analyzed your first
program!

— Running time of the program is proportional to
N(N+1)/2 for all N

— Big-0 ??
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Which Function Grows Faster?

n3 + 2n2 vs. 100n2 + 1000
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Which Function Grows Faster?
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Which Function Grows Faster?

no-1 VS. log n
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Which Function Grows Faster?

5n° VS. n!
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Nested Loops

for i =1 to n do
for j =1 to n do
if (cond) {
do_stuff(sum
} else {
for k =1 to n*n
sum += 1
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¢ Eliminate low

¢ Eliminate

16n° log, (L0n* *+ 1007 = O ¢* logh)

16n° log, (1% )+ 1007
=16n’ log, (100°)
= n®log, (10n?)

constant =n’ [Iog8 (10)+ log, (@ )}
coefficients

order terms

= n’log, (10)+ n® log, (°)
= n’log, (%)

= n*2log; (n)

= n’log, (n)

= n’log, (2)log(n)

3
= n’log(n) ”s




