

Review Solving Recurrences

1. Determine the recurrence relation. What is the base case(s)?
2. "Expand" the original relation to find an equivalent general expression in terms of the number of expansions.
3. Find a closed-form expression by setting the number of expansions to a value which reduces the problem to a base case

Asymptotic Analysis

- Eliminate low order terms
$-4 n+5 \Rightarrow$
$-0.5 n \log n+2 n+7 \Rightarrow$
$-n^{3}+2^{n}+3 n \Rightarrow$
- Eliminate coefficients
$-4 n \Rightarrow$
$-0.5 \mathrm{n} \log \mathrm{n} \Rightarrow$
$-\mathrm{n} \log \mathrm{n}^{2}=>$

Order Notation: Intuition

$\mathrm{f}(n)=n^{3}+2 n^{2}$
$\mathrm{g}(n)=100 n^{2}+1000$

Although not yet apparent, as n gets "sufficiently large", $\mathrm{f}(n)$ will be "greater than or equal to" $\mathrm{g}(n)_{4}$

Definition of Order Notation

- Upper bound: $T(n)=O(f(n)) \quad$ Big-O

Exist constants c and n ' such that $T(n) \leq c f(n)$ for all $n \geq n$,

- Lower bound: $T(n)=\Omega(g(n)) \quad$ Omega Exist constants c and n ' such that $T(n) \geq c g(n)$ for all $n \geq n$,
- Tight bound: $T(n)=\theta(f(n)) \quad$ Theta When both hold:

$$
\begin{aligned}
& T(n)=O(f(n)) \\
& T(n)=\Omega(f(n))
\end{aligned}
$$

Order Notation: Definition

$\mathbf{O}(\mathbf{f}(n))$: a set or class of functions
$\mathrm{g}(n) \in \mathrm{O}(\mathrm{f}(n)) \quad$ iff there exist consts c and n_{0} such that: $\mathrm{g}(n) \leq c \mathrm{f}(n)$ for all $n \geq n_{0}$

Example: $\mathrm{g}(n)=1000 n$ vs. $\mathrm{f}(n)=n^{2}$
Is $\mathrm{g}(n) \in \mathrm{O}(\mathrm{f}(n))$?
Pick: $\mathrm{n} 0=1000, \mathrm{c}=1$

Notation Notes

Note: Sometimes, you'll see the notation:

$$
\mathrm{g}(n)=\mathrm{O}(\mathrm{f}(n))
$$

This is equivalent to:

$$
\mathrm{g}(n) \in \mathrm{O}(\mathrm{f}(n))
$$

However: The notation

$$
\mathrm{O}(\mathrm{f}(n))=\mathrm{g}(n) \quad \text { is meaningless! }
$$

(in other words big-O is not symmetric)

Big-O: Common Names

- constant:	$\mathrm{O}(1)$	
- logarithmic:	$\mathrm{O}(\log \mathrm{n})$	$\left(\log _{\mathrm{k}} \mathrm{n}, \log \mathrm{n}^{2} \in \mathrm{O}(\log \mathrm{n})\right)$
- linear:	$\mathrm{O}(\mathrm{n})$	
- log-linear:	$\mathrm{O}(\mathrm{n} \log \mathrm{n})$	
- quadratic:	$\mathrm{O}\left(\mathrm{n}^{2}\right)$	
- cubic:	$\mathrm{O}\left(\mathrm{n}^{3}\right)$	
- polynomial:	$\mathrm{O}\left(\mathrm{n}^{\mathrm{k}}\right)$	$(\mathrm{k}$ is a constant)
- exponential:	$\mathrm{O}\left(\mathrm{c}^{\mathrm{n}}\right)$	$(\mathrm{c}$ is a constant $>1)$

Meet the Family, Formally

- $\mathrm{g}(n) \in \mathrm{O}(\mathrm{f}(n))$ iff

There exist c and n_{0} such that $\mathrm{g}(n) \leq c \mathrm{f}(n)$ for all $n \geq n_{0}$ $-\mathrm{g}(n) \in \mathrm{o}(\mathrm{f}(n))$ iff
There exists a n_{0} such that $\mathrm{g}(n)<c \mathrm{f}(n)$ for all c and $n \geq n_{0}$

- $\mathrm{g}(n) \in \Omega(\mathrm{f}(n))$ iff

Equivalent to: $\lim _{n \rightarrow \infty} \mathrm{~g}(n) / \mathrm{f}(n)=0$
There exist c and n_{0} such that $\mathrm{g}(n) \geq c \mathrm{f}(n)$ for all $n \geq n_{0}$ $-\mathrm{g}(n) \in \omega(\mathrm{f}(n))$ iff
There exists a n_{0} such that $\mathrm{g}(n)>c \mathrm{f}(n)$ for all c and $n \geq n_{0}$
Equivalent to: $\lim _{n \rightarrow \infty} \mathrm{~g}(n) / \mathrm{f}(n)=\infty$

- $\mathrm{g}(n) \in \theta(\mathrm{f}(n))$ iff
$\mathrm{g}(n) \in \mathrm{O}(\mathrm{f}(n))$ and $\mathrm{g}(n) \in \Omega(\mathrm{f}(n))$

Meet the Family

- $\mathrm{O}(\mathrm{f}(n))$ is the set of all functions asymptotically less than or equal to $\mathrm{f}(n)$
- $\mathrm{o}(\mathrm{f}(n))$ is the set of all functions asymptotically strictly less than $\mathrm{f}(n)$
- $\Omega(\mathrm{f}(n))$ is the set of all functions asymptotically greater than or equal to $\mathrm{f}(n)$
- $\omega(\mathrm{f}(n))$ is the set of all functions asymptotically strictly greater than $\mathrm{f}(n)$
- $\theta(\mathrm{f}(n))$ is the set of all functions asymptotically equal to $\mathrm{f}(n)$

Big-Omega et al. Intuitively

Asymptotic Notation	Mathematics Relation
O	\leq
Ω	\geq
θ	$=$
o	$<$
ω	$>$

Kinds of Analysis

- Running time may depend on actual data input, not just length of input
- Distinguish
- worst case
- your worst enemy is choosing input
- best case
- average case
- assumes some probabilistic distribution of inputs
- amortized
- average time over many operations

Types of Analysis

Two orthogonal axes:

- bound flavor
- upper bound (O, o)
- lower bound (Ω, ω)
- asymptotically tight (θ)
- analysis case
- worst case (adversary)
- average case
- best case
" "amortized"

Algorithm Analysis Examples

- Consider the following
program segment:
x:= 0;
for $\mathrm{i}=1$ to N do
for $\mathrm{j}=1$ to i do
$\mathrm{x}:=\mathrm{x}+1$;
- What is the value of x at the end?

Analyzing the Loop

- Total number of times x is incremented is executed $=$

$$
1+2+3+\ldots=\sum_{i=1}^{N} i=\frac{N(N+1)}{2}
$$

- Congratulations - You've just analyzed your first program!
- Running time of the program is proportional to $\mathrm{N}(\mathrm{N}+1) / 2$ for all N
- Big-O ??

Which Function Grows Faster?
$n^{3}+2 n^{2}$
vs. $100 n^{2}+1000$

Which Function Grows Faster?
$n^{3}+2 n^{2} \quad$ vs. $100 n^{2}+1000$

Which Function Grows Faster?
$\mathbf{n}^{0.1}$
vs. $\quad \log n$

Which Function Grows Faster?

Which Function Grows Faster?
$5 n^{5}$
vs.
n!
Which Function Grows Faster?

$$
16 n^{3} \log _{8}\left(10 n^{2}\right)+100 n^{2}=O\left(n^{3} \log (n)\right)
$$

```
for i = 1 to n do
    for j = 1 to n do
        if (cond) {
            do_stuff(sum)
        } else {
                for k = 1 to n*n
                sum += 1
```

- Eliminate low $16 n^{3} \log _{8}\left(10 n^{2}\right)+100 n^{2}$
order terms $\quad \Rightarrow 16 n^{3} \log _{8}\left(10 n^{2}\right)$
- Eliminate $\quad \Rightarrow n^{3} \log _{8}\left(10 n^{2}\right)$
constant $\quad \Rightarrow n^{3}\left[\log _{8}(10)+\log _{8}\left(n^{2}\right)\right]$
coefficients $\quad \Rightarrow n^{3} \log _{8}(10)+n^{3} \log _{8}\left(n^{2}\right)$
$\Rightarrow n^{3} \log _{8}\left(n^{2}\right)$
$\Rightarrow n^{3} 2 \log _{8}(n)$
$\Rightarrow n^{3} \log _{8}(n)$
$\Rightarrow n^{3} \log _{8}(2) \log (n)$
$\Rightarrow n^{3} \log (n)$

