
1

CSE 326: Data Structures

Asymptotic Analysis

Larry Snyder

Autumn 2006

2

Today’s Outline

• Admin: Office hours, etc.

• Asymptotic analysis

3

Office Hours, etc.

Larry Snyder Wed 4:30-5:20, CSE 584
Paul Pham Thur 2:30-3:30, CSE 002
Brian Ngo Tues 2:30-3:30, CSE 002
Or by appointment.

TODO : Important!
1. Subscribe to mailing lists if you haven’t
2. Get started on the Project 1

4

Project 1 – Sound Blaster!
Play your favorite song in reverse!

Aim:

1. Implement stack ADT two different ways

2. Use to reverse a sound file

Due: Wed October 11,

Electronic: before lecture

Hardcopy: in lecture

5

Analysis of Algorithms

• Efficiency measure
– how long the program runs time complexity

– how much memory it uses space complexity
• For today, we’ll focus on time complexity only

• Why analyze at all?

6

Asymptotic Analysis

• Complexity as a function of input size n
T(n) = 4n + 5

T(n) = 0.5 n log n - 2n + 7

T(n) = 2n + n3 + 3n

• What happens as n grows?

2

7

Why Asymptotic Analysis?
• Most algorithms are fast for small n

– Time difference too small to be noticeable

– External things dominate (OS, disk I/O, …)

• BUT n is often large in practice
– Databases, internet, graphics, …

• Time difference really shows up as n grows!

8

Big-O: Common Names

– constant: O(1)

– logarithmic: O(log n)

– linear: O(n)

– quadratic: O(n2)

– cubic: O(n3)

– polynomial: O(nk) (k is a constant)

– exponential: O(cn) (c is a constant > 1)

9

Exercise

bool ArrayFind(int array[], int n, int
key)

{
// Insert your algorithm here

2 3 5 16 37 50 73 75 126

What algorithm would you choose
to implement this code snippet? 10

Analyzing Code

Basic Java operations
Consecutive statements

Conditionals
Loops

Function calls
Recursive functions

Constant time

Sum of times

Larger branch plus test

Sum of iterations

Cost of function body

Solve recurrence relation

Analyze your code!

11

Linear Search Analysis
bool LinearArrayFind(int array[],

int n,

int key) {

for(int i = 0; i < n; i++) {
if(array[i] == key)

// Found it!

return true;

}

return false;

}

Best Case:

Worst Case:

12

Binary Search Analysis

bool BinArrayFind(int array[], int low,

int high, int key) {

// The subarray is empty
if(low > high) return false;

// Search this subarray recursively
int mid = (high + low) / 2;

if(key == array[mid]) {

return true;

} else if(key < array[mid]) {

return BinArrayFind(array, low,

mid-1, key);

} else {

return BinArrayFind(array, mid+1,

high, key);

}

Best case:

Worst case:

3

13

Solving Recurrence Relations

1. Determine the recurrence relation. What is the base case(s)?

2. “Expand” the original relation to find an equivalent general
expression in terms of the number of expansions.

3. Find a closed-form expression by setting the number of
expansionsto a value which reduces the problem to a base case

14

Linear Search vs Binary Search

Worst Case

Best Case

Binary SearchLinear Search

So … which algorithm is better?
What tradeoffs can you make?

