
Homework 3 

Disjoint Sets, Sorting and Graphs 
 

Due: Wednesday, December 6, beginning of class 
 
This assignment is designed to give you practice with union-find, sorting techniques and 
graph algorithms discussed in the class, along with some simple applications. 
 
Note: Please review the collaboration policy on the course web page. You must mention 
the names of fellow students who you worked with on this assignment. 
 
Total: 90 points. 10 points for each problem. 
 
   1. [Union-find] Suppose you start with elements a through l with each in its own set, 
and perform the following operations (Showing your intermediate steps may allow partial 
credit): [corrected] 
 
      find(d), union(d,a), union(b, c), union(h,j), find(c), union(h,b), find(j), union(b,a). 
 
         a. Without union-by-size or path compression, and choosing the root of a union by 
selecting the alphabetically smaller node, show the final uptree forest that results from the 
above operations. At what depth does node j end up in the final forest? 
         b. Repeat part a) but this time with union-by-size. Break any ties by giving 
preference to the alphabetically smaller node. 
         c. Repeat part b) but now add path compression as well. 
 
   2. [Sorting] Problem 7.17, page 286.  For part (c) give an average-case analysis. 
(runtimes for merge-sort) 
   3. [Sorting] Problem 7.20, page 286.  For part (c) give an average-case analysis. 
(runtimes for quicksort) 
   4. [Sorting] Sort an array containing the hex: 3, 1, 4, 8, 5, 9, 2, 6, 0, 7, A, using 
quicksort with median-of-three partitioning.  Use the code in the book for this and a 
cutoff value of 3 (pages 269 and 270).  Show what the recursive calls are and what the 
pivot and array are at the beginning of each step.  Be clear about when the cutoff kicks in 
and insertion sort is used. 
   5.  [Sorting] (5 points each part) 
         a. Problem 7.3, page 285 (inversions) 
         2. Problem 7.41, page 288 (comparison sorting 4 elements) 
   6. [Graphs] Suppose you are given a graph that has negative-cost edges but no 
negative-cost cycles. Why does the following strategy fail to find shortest paths: 
uniformly add a constant k to the cost of every edge so that all costs become non-
negative, run Dijkstra's algorithm, return the result with edge costs reverted back to the 



original costs (i.e. with k subtracted). Give an argument as well as a small example where 
it fails. 
   7. [Graphs] Problem 9.1, page 373 (topological sort) 
   8. [Graphs] Problem 9. 5, page 374. Be sure to give the path AND its length. (weighted 
and unweighted shortest path) 
   9. [Graphs] Problem 9. 15, page 376. Start Prim’s algorithm with node D. (MST) 
 


