
1CSE 322
Intro to Formal Models in CS

Shift/Reduce Parsing
Notes on an Alternate Proof of Lemma 2.21

W. L. Ruzzo 26 Feb 10

In this handout I’ll sketch an alternate “bottom-up” proof of Lemma 2.21. This method forms the basis
for so-called “shift/reduce” parsers, used in many compilers and other text-processing applications.

The book’s proof of Lemma 2.21 creates a “top-down” parser: build a parse tree for a given input w by
starting from the root, S, of the tree and working downward, nondeterministically guessing which rules to
apply at each step. One slightly tricky bit is that the tree traversal order and data structure need to be carefully
chosen so that the PDA’s pushdown is sufficient. It turns out that a pre-order tree traversal, corresponding
to a leftmost derivation of w, suffices. The bottom-up construction below instead builds the tree from the
leaves up to the root, again liberally using nondeterminism to choose the right rules to use. Again, some
care is needed to do all this on a PDA, and it turns out that the right choice is a post-order traversal, which
corresponds to a rightmost derivation of w (but in reverse order; see the example below).

Lemma 2.21: If a language is context-free, then some PDA recognizes it.
SHORTHAND: It’s convenient to assume the PDA can have transitions where the “stack” part looks like

bcd → E, meaning “if bcd are the top three symbols on the stack, d topmost, pop them and push E.” It’s
straightforward to simulate such a move by the standard model by adding a few intermediate states, similar
to figure 2.23, popping one symbol at a time.

CONSTRUCTION: Let G = (V,Σ, R, S) be a CFG generating the language. Construct a PDA M =
(Q,Σ,Γ, δ, q0, F) as follows. Q has 3 states {q0, q, qa} (plus the intermediate states implied by the short-
hand defined above). F = {qa}. Γ = V ∪ Σ ∪ {$}. And δ is:

����
q0- ����

q

-
shift

- reduce

�
������
qa-ε, ε → $ -ε, $S → ε

where “shift” is the set of transitions δ(q, a, ε) = (q, a) for all a ∈ Σ, (“a, ε → a” in the diagrams) and
“reduce” is the set of transitions δ(q, ε, β) = (q, A) for all rules A → β in G (“ε, β → A”). In words, M
can shift any input letter onto its stack, and whenever it has the right-hand-side of some rule on the top of
its stack, it can “reduce” it to (i.e., replace it by) the variable on the left-hand-side of that rule.

NOTATION: For any q ∈ Q, γ ∈ Γ∗, and w ∈ Σ∗, let [q, γ, w] denote a configuration of the PDA,
i.e., a specification of its current state, stack contents, and the remaining (unread) input. Note that the
stack is the middle component of the triple, and the top of stack is the rightmost symbol of γ. Furthermore,
[s, γ, w] `k [s′, γ′, w′] means the PDA can move from the first configuration to the second in exactly k steps.
(Assume k = 1 if omitted.) Finally, for α, β ∈ (V ∪Σ)∗, the notation α⇒R β (α⇒k

R β) means that β can
be derived from α in G by a one-step (or k-step, respectively) rightmost derivation, i.e., one in which the
rightmost variable is rewritten at each step.

With this notation, the correctness of the construction is captured by the following assertion:
CLAIM: For all γ ∈ (V ∪ Σ)∗ and all w ∈ Σ∗,

γ ⇒k
R w if and only if [q, ε, w] `k+|w| [q, γ, ε].

2Before proving the claim, note that as a corollary,

S ⇒k
R w if and only if [q, ε, w] `k+|w| [q, S, ε],

from which it’s easy to see that L(M) = L(G).
Proof of Claim: First, note that if the PDA moves from q to q reading w, then it must make exactly |w|

“shift” moves, since they’re the only ones that read inputs; all other moves are “reduce” moves.
We prove the “only if” direction, by induction on k.
For the basis case, k = 0, we simply note that γ ⇒0

R w only if γ = w, which implies that [q, ε, w] `|w| [q, γ, ε],
via |w| consecutive shift moves.

For the induction step, suppose the claim is true for some k ≥ 0, and suppose that γ ⇒k+1
R w.

This derivation must have a first step, say using rule A → β. So, there must be some α ∈ (V ∪ Σ)∗

and some x, y ∈ Σ∗ such that γ = αAy ⇒R αβy ⇒k
R xy = w. So αA ⇒R αβ ⇒k

R x, and so
by the induction hypothesis, [q, ε, x] `k+|x| [q, αβ, ε] and [q, αβ, ε] ` [q, αA, ε] by one “reduce” move, so
[q, ε, xy] `k+|x| [q, αβ, y] `1 [q, αA, y] `|y| [q, αAy, ε]. Thus [q, ε, w] `k+1+|w| [q, γ, ε] as desired.

Proof of the converse direction (showing that [q, ε, w] `k+1+|w| [q, γ, ε] implies γ ⇒k+1
R w) is similar,

and is left as an exercise. Hint: consider the last “reduce” step in the PDA’s computation.
QED.
Example: (Note the correspondence between the postorder numbering of the internal nodes of the tree

and the like-numbered steps in the derivation and the reduce moves in the PDA computation.)
G:

S → a S
S → if b then S
S → if b then S else S
S → ε

A Rightmost derivation:

S ⇒R a S (7)
⇒R a if b then S else S (6)
⇒R a if b then S else a S (5)
⇒R a if b then S else a (4)
⇒R a if b then if b then S else a (3)
⇒R a if b then if b then a S else a (2)
⇒R a if b then if b then a else a (1)

S

S

S

S

S

S

S

a a abb εεifif then then else

7

3

6

2

1

5

4

3Accepting PDA Computation:

[q0, ε, a if b then if b then a else a] `
[q, $, a if b then if b then a else a] `
[q, $ a, if b then if b then a else a] `
[q, $ a if, b then if b then a else a] `

... 6 more shifts

[q, $ a if b then if b then a, else a] ` (1)
[q, $ a if b then if b then a S, else a] ` (2)
[q, $ a if b then if b then S, else a] ` (3)
[q, $ a if b then S, else a] `
[q, $ a if b then S else, a] `
[q, $ a if b then S else a, ε] ` (4)
[q, $ a if b then S else a S, ε] ` (5)
[q, $ a if b then S else S, ε] ` (6)
[q, $ a S, ε] ` (7)
[q, $ S, ε] `
[qa, ε, ε]

Exercise: The grammar above is ambiguous (the famous “dangling else” ambiguity) and the exam-
ple string has another rightmost derivation and corresponding parse tree, postorder numbering, and PDA
computation. Find them.

Remarks: Note that the PDA built above is fundamentally nondeterministic: a shift move is always
possible as long as there is any remaining input, and one or more reduce moves may also be possible in
many circumstances. With a carefully designed grammar, and by being able to “peek” ahead at the next
input symbol, it is often possible to tell deterministically which action to take. The CFG’s for which this is
possible are called LR(1) grammars, and are important for programming language design. Every language
accepted by a deterministic PDA has an LR(1) grammar, but not all grammars for a given language are
LR(1), and for some CFL’s no grammar is LR(1).

