CSE 322
Intro to Formal Models in CS
Homework #4 (rev. e)
Due: Friday, 29 Jan

W. L. Ruzzo 22 Jan 10

Reminder: Midterm, Wednesday 2/3/10, and consequent Modified Late Policy: this assignment will not be
accepted after 5:00PM Monday, 2/1.

Again three separate, stapled, turn-in bundles, with your name on each please: Problem(s) 1-4 in one,
problem(s) 5-6 in another and problem(s) 7-8 in the third. Text problems below are on pages 83-93 of
Sipser, US second edition; see online scanned versions if you don’t have it.

1.
2.

Give regular expressions for each of the languages in exercise 1.6 a-f .

1.19
1.20
1.22

1.21.

For definiteness and ease of grading, eliminate states in decreasing order of state number. Give

the full (unoptimized) expressions that arise during intermediate steps. If desired, you may show
optimized versions and carry them forward into subsequent steps, but clearly label these changes, and
I recommend you use only the simplest optimizations. E.g., “simplifying ) U a to a we have...”

Give two finite sets L having the property that L = L?. (L? = L o L, i.e., language concatenation.)
Extra Credit: Give a third, or prove that no others exist. What can you say about finite languages
satisfying L = L*?

1.51

Suppose L is regular and M is a DFA recognizing L.

(a)

(b)

(©)

(d)

Following the definition in 1.51, show that if two strings x and y are distinguishable by L, then
the state reached my M after reading x must be different from the state reached after reading y

Prove: if there are k strings {1, ..., x} every pair of which are distinguishable with respect to
L, then M has at least k states. [Hint: pigeon hole principle.]

The point of the above is that it sometimes gives us a way to prove impossibility results — since
the statements above apply to any DFA for L, they might allow is to prove that it is impossible
for a DFA with a small number of states to recognize L. Use these ideas to prove that any
DFA recognizing the language in Example 1.30 (3rd letter from the right end is 1) must have
at least 8 states. Thus the machine in Fig. 1.32 is optimal. (Note that it is not sufficient to
argue that various potential “optimizations” to fig 1.32 don’t succeed in reducing its number of
states, since in principle the best machine might look radically different, and “tweaking” 1.32
isn’t guaranteed to find it.)

Extra Credit. Generalize part (c) to show that the “powerset construction” is nearly optimal, in
the sense that for each n > 3, there is a language recognized by an n + 1 state NFA, but by no
DFA with fewer than 2" states.



