Reading Assignment: Lecture notes on pattern matching, Myhill-Nerode, and DFA Minimization. Sipser 2.1

Problems:

- 1. Use the pumping lemma to prove that the following languages are not regular:
 - (a) $L_1 = \{www|w \in \{a,b\}^*\}.$
 - (b) $L_2 = \{0^n 1^m 0^n | m, n \ge 0\}.$
 - (c) $L_3 = \{0^p | p \text{ is a prime number}\}.$
- 2. Use the method from the Myhill-Nerode (see lecture notes) to prove that the following languages are not regular:
 - (a) $L_4 = \{wwww|w \in \{a,b\}^*\}.$
 - (b) $L_5 = \{0^n 1^m 0^n | m, n \ge 0\}.$
 - (c) $L_6 = \{w | w \neq w^R, w \in \{0, 1\}^*\}$. Recall w^R is the reversal of the string w. So this is the language of strings which are not palindromes.
- 3. Show that the language

$$L_7 = \{a^i b^j c^k | i, j, k \ge 0 \text{ and if } i = 1 \text{ then } j = k\}$$

satisfies the conditions of the pumping lemma and therefore cannot be proven non-regular by the pumping lemma. Then use Myhill-Nerode (see lecture notes) to prove that the language is not regular.

- 4. Consider the language A of strings in $\{a,b\}^*$ that start and end in different symbols. Describe the equivalence classes of this language under the equivalence relation of the language. Recall that two strings x and y are equivalent under A (which we write as $x \equiv_A y$) if for all strings $z \in \Sigma^*$ the proposition " $xz \in A$ if and only if $yz \in A$ " holds. Here $\Sigma = \{a, b\}$.
- 5. Extra Credit Do it for the glory, not for the points! Let $C_k = \Sigma^* a \Sigma^{k-1}$ where $\Sigma = \{a, b\}$. Prove that a DFA which recognizes C_k must have 2^k states.