CSE 322

Exam Reviews

Basic Concepts

- · Formal Languages
 - Alphabet (Σ)
 - String (Σ^*)
 - Length (|x|)
 - Empty String (ε)
 - Empty Language (∅)
- Language/String Operations
- "Regular" Operations:
 - Union (∪)
 - · Concatenation (•)
 - (Kleene) Star (*)
- Other:
 - · Intersection
 - · Complement
 - Reversal
 - ...

Finite Defns of Infinite Languages

- English, mathematical
- DFAs
 - States
 - Start states
 - Accept states
 - Transitions (δ function)
 - M accepts w ∈ Σ *
 - M recognizes L ⊆ Σ*

- Nondeterminism
- NFAs
 - Transitions (δ relation)
 - · Missing out-edges
 - ε-moves
 - · Multiple out-edges
 - N accepts w ∈ Σ *
 - N recognizes L ⊆ Σ*
- Regular Expressions
 - $-\varnothing$, $a\in\Sigma$, \cup , •, *, ()
- GNFAs

Key Results, Constructions, Methods

- · L is regular iff it is:
 - Recognized by a DFA
 - Recognized by a NFA

 - Recognized by a GNFA
 - Defined by a Regular Expr

Proofs:

GNFA → Reg Expr

(Kleene/Floyd/Warshall: $R_{ii} R_{ii}^* R_{ik}$)

Reg Expr → NFA

(join NFAs w/ ε-moves

NFA \rightarrow DFA

(subset construction)

- · The class of regular languages is closed under:
 - Regular ops: union, concatenation, star
 - Also: intersection, complementation, (& reversal, prefix, no-prefix, ...)
- NOT closed under ⊆, ⊇
- · Also: Cross-product construction (union, ...)

Non-Regular Languages

 Key idea: once M is in some state q, it doesn't remember how it got there.

E.g. "hybrids": if $xy \in L(M)$ and x, x' both go to q, then $x'y \in L(M)$ too.

E.g. "loops": if $xyz \in L(M)$ and x, xy both go to q, then $xy^iz \in L(M)$ for all $i \ge 0$.

- Cor: Pumping Lemma
- Important examples:

```
\begin{split} & L_1 = \{ \, a^n b^n \mid n > 0 \, \} \\ & L_2 = \{ \, w \mid \#_a(w) = \#_b(w) \, \} \\ & L_3 = \{ \, ww \mid w \in \Sigma^* \, \} \\ & L_4 = \{ \, ww^R \mid w \in \Sigma^* \, \} \\ & L_5 = \{ \, balanced \, parens \, \} \end{split}
```

 Also: closure under ∩, complementation sometimes useful:

- L_1 = L_2 ∩ a*b*

PS: don't say "Irregular"

Applications

- · "globbing"
 - Ipr *.txt
- pattern-match searching:
 - grep "Ruzzo.*terrific" *.txt
- Compilers:
 - Id ::= letter (letter|digit)*
 - Int ::= digit digit*
 - Float ::=
 - d d* . d* (ε | E d d*)
 - (but not, e.g. expressions with nested, balanced parens, or variable names matched to declarations)
- Finite state models of circuits, control systems, network protocols, API's, etc., etc.

Context-Free Grammars

- · Terminals, Variables/Non-Terminals
- · Start Symbol S
- Rules →
- Derivations ⇒, ⇒*
- · Left/right-most derivations
- Derivation trees/parse trees
- · Ambiguity, Inherent ambiguity
- · A key feature: recursion/nesting/matching, e.g.

Pushdown Automata

- States, Start state, Final states, stack
- Terminals (Σ), Stack alphabet (Γ)
- Configurations, Moves, |--, |--*, push/pop

Main Results

- Closure: union, dot, *, (Reversal)
 - every regular language is CFL
- Non-Closure: Intersection, complementation
- Equivalence of CFG & PDA
 - CFG ⊂ PDA : top-down(match/expand), bottom-up (shift/reduce)
 - PDA \subseteq CFG: A_{pq}
- Pumping Lemma & non-CFL's
- Deterministic PDA != Nondeterministic PDA

Applications

- · Programming languages and compilers
- · Parsing other complex input languages
 - html, sql, ...
- · Natural language processing/ Computational linguistics
 - Requires handling ambiguous grammars
- · Computational biology (RNA)

Important Examples

- · Some Context-Free Languages:
 - $\{a^nb^n | n > 0\}$
 - $\{ w \mid \#_a(w) = \#_b(w) \}$
 - $\{ ww^{R} \mid w \in \{a,b\}^{*} \}$
 - balanced parentheses
 - "C", Java, etc.
- · Some Non-Context-Free Languages:

```
- \{a^nb^nc^n \mid n > 0\}
```

- Curiously, their $- \{ w \mid \#_a(w) = \#_b(w) = \#_c(w) \}$ complements
- $\{ ww \mid w \in \{a,b\}^* \}$
- "C", Java, etc.

The big picture

Ability to specify and reason about abstract formal models of computational systems is an important life skill. Practice it.