- 0.2 Write formal descriptions of the following sets.
 - a. The set containing the numbers 1, 10, and 100.
 - **b.** The set containing all integers that are greater than 5.
 - c. The set containing all natural numbers that are less than 5.
 - d. The set containing the string aba.
 - e. The set containing the empty string.
 - f. The set containing nothing at all.
- **0.3** Let A be the set $\{x, y, z\}$, and B be the set $\{x, y\}$.
 - a. Is A a subset of B?
 - **b.** Is B a subset of A?
 - **c.** What is $A \cup B$?
 - **d.** What is $A \cap B$?
 - e. What is $A \times B$?
 - f. What is the power set of B?
- **0.4** If A has a elements and B has b elements, how many elements are in $A \times B$? Explain your answer.
- **0.5** If C is a set with c elements, how many elements are in the power set of C? Explain your answer.
- **0.6** Let X be the set $\{1, 2, 3, 4, 5\}$ and Y be the set $\{6, 7, 8, 9, 10\}$. The unary function $f: X \longrightarrow Y$ and the binary function $g: X \times Y \longrightarrow Y$ are described in the following tables.

71.	f(n)	g	6	7	8	9	10
1	6	ï	10	10	10	10	10
2	7		7				
3	6	3	7 9	7	8	8	9
4	7						
5	6 7 6 7 6	5	6	6	6	6	6

- **a.** What is the value of f(2)?
- **b.** What are the range and domain of f?
- **c.** What is the value of g(2, 10)?
- **d.** What are the range and domain of g?
- **e.** What is the value of g(4, f(4))?
- 0.7 For each part, give a relation that satisfies the condition.
 - a. Reflexive and symmetric but not transitive
 - b. Reflexive and transitive but not symmetric
 - c. Symmetric and transitive but not reflexive
- 0.8 Consider the undirected graph G = (V, E) where V, the set of nodes, is $\{1, 2, 3, 4\}$ and E, the set of edges, is $\{\{1, 2\}, \{2, 3\}, \{1, 3\}, \{2, 4\}, \{1, 4\}\}\}$. Draw the graph G. What is the degree of node 1? of node 3? Indicate a path from node 3 to node 4 on your drawing of G.

0.9 Write a formal description of the following graph.

PROBLEMS

0.10 Find the error in the following proof that 1 = 2.

Consider the equation a = b. Multiply both sides by a to obtain $a^2 = ab$. Subtract b^2 from both sides to get $a^2 - b^2 = ab + b^2$. Now factor each side, (a + b)(a - b) = b(a - b), and divide each side by (a - b), to get a + b = b. Finally, let a and b equal 1, which shows that 2 = 1.

0.11 Find the error in the following proof that all horses are the same color.

CLAIM: In any set of h horses, all horses are the same color.

PROOF: By induction on h.

Basis: For h = 1. In any set containing just one horse, all horses clearly are the same color.

Induction step: For $k \ge 1$ assume that the claim is true for h = k and prove that it is true for h = k + 1. Take any set H of k + 1 horses. We show that all the horses in this set are the same color. Remove one horse from this set to obtain the set H_1 with just k horses. By the induction hypothesis, all the horses in H_1 are the same color. Now replace the removed horse and remove a different one to obtain the set H_2 . By the same argument, all the horses in H_2 are the same color. Therefore all the horses in H must be the same color, and the proof is complete.

- *0.12 Ramsey's theorem. Let G be a graph. A clique in G is a subgraph in which every two nodes are connected by an edge. An anti-clique, also called an independent set, is a subgraph in which every two nodes are not connected by an edge. Show that every graph with n nodes contains either a clique or an anti-clique with at least $\frac{1}{2} \log_2 n$ nodes.
- **0.13** Use Theorem 0.15 to derive a formula for calculating the size of the monthly payment for a mortgage in terms of the principal P, interest rate I, and the number of payments t. Assume that, after t payments have been made, the loan amount is reduced to 0. Use the formula to calculate the dollar amount of each monthly payment for a 30-year mortgage with 360 monthly payments on an initial loan amount of \$100,000 with an 8% annual interest rate.

conditions of the pumping lemma. By condition 3, y consists only of 0s. Let's examine the string xyyz to see whether it can be in E. Adding an extra copy of y increases the number of 0s. But, E contains all strings in 0^*1^* that have more 0s than 1s, so increasing the number of 0s will still give a string in E. No contradiction occurs. We need to try something else.

The pumping lemma states that $xy^iz \in E$ even when i = 0, so let's consider the string $xy^0z = xz$. Removing string y decreases the number of 0s in s. Recall that s has just one more 0 than 1. Therefore xz cannot not have more 0s than 1s, so it cannot be a member of E. Thus we obtain a contradiction.

3 3

EXERCISES

1.1 The following are the state diagrams of two DFAs, M_1 and M_2 . Answer the following questions about these machines.

- **a.** What is the start state of M_1 ?
- **b.** What is the set of accept states of M_1 ?
- **c.** What is the start state of M_2 ?
- **d.** What is the set of accept states of M_2 ?
- **c.** What sequence of states does M_1 go through on input aabb?
- **f.** Does M_1 accept the string aabb?
- g. Does M_2 accept the string ε ?
- **1.2** Give the formal description of the machines M_1 and M_2 pictured in Exercise 1.1.

1.3 The formal description of a DFA M is $(\{q_1,q_2,q_3,q_4,q_5\},\{\mathbf{u},\mathbf{d}\},\delta,q_3,\{q_3\})$, where δ is given by the following table. Give the state diagram of this machine.

	u	d
q_1	q_1	q_2
q_2	q_1	q_3
q_3	q_2	q_4
q_4	q_3	q_5
q_5	q_4	q_5

- 1.4 Give state diagrams of DFAs recognizing the following languages. In all cases the alphabet is {0,1}.
 - **a.** $\{w | w \text{ begins with a 1 and ends with a 0}\}.$
 - **b.** $\{w | w \text{ contains at least three 1s} \}$.
 - **c.** $\{w | w \text{ contains the substring 0101, i.e., } w = x0101y \text{ for some } x \text{ and } y\}.$
 - **d.** $\{w | w \text{ has length at least 3 and its third symbol is a 0}.$
 - **e.** $\{w | w \text{ starts with 0 and has odd length, or starts with 1 and has even length}\}.$
 - f. $\{w | w \text{ doesn't contain the substring 110}\}.$
 - **g.** $\{w | \text{ the length of } w \text{ is at most } 5\}.$
 - **h.** $\{w | w \text{ is any string except 11 and 111}\}$,
 - i. $\{w | \text{ every odd position of } w \text{ is a 1} \}$.
 - j. $\{w|w \text{ contains at least two 0s and at most one 1}\}.$
 - k. $\{\varepsilon, 0\}$.
 - 1. $\{w | w \text{ contains an even number of 0s, or exactly two 1s}\}.$
 - m. The empty set.
 - All strings except the empty string.
- 1.5 Give NFAs with the specified number of states recognizing each the following languages.
 - a. The language $\{w|\ w \ {\rm ends} \ {\rm with} \ {\rm 00}\}$ with three states.
 - b. The language of Exercise 1.4c with five states.
 - c. The language of Exercise 1.4l with six states.
 - d. The language {0} with two states.
 - e. The language 0*1*0*0 with three states.
 - **f.** The language $\{\varepsilon\}$ with one state.
 - g. The language 0* with one state.
- 1.6 Use the construction given in the proof of Theorem 1.22 to give the state diagrams of NFAs recognizing the union of the languages described in
 - a. Exercises 1.4a and 1.4b.
 - b. Exercises 1.4c and 1.4f.
- 1.7 Use the construction given in the proof of Theorem 1.23 to give the state diagrams of NFAs recognizing the concatenation of the languages described in
 - a. Exercises 1.4g and 1.4i.
 - b. Exercises 1.4b and 1.4m.