Normal Forms for Context-Free Grammars

CSE 322: Introduction to Formal Models in Computer Science October 27, 2006

1 Putting a Context-Free Grammar in Normal Form

Definition: A context-free grammar $G = (V, \Sigma, R, S)$ is in *normal form* if and only if R contains no rules of the form

- 1. $A \to \varepsilon$, for any $A \in V$, or
- 2. $A \rightarrow B$, for any $A, B \in V$.

Here is a procedure for converting a grammar G into a grammar G' such that G' is in normal form, and $L(G') = L(G) - \{\varepsilon\}$. Throughout the procedure, A and B are arbitrary elements of V, and u and v are arbitrary strings in $(V \cup \Sigma)^*$.

- 1. (a) For every pair of rules $A \to \varepsilon$ and $B \to uAv$, add a new rule $B \to uv$. Continue doing this until no new rule can be added by this procedure.
 - (b) Remove all rules $A \to \varepsilon$.¹
- 2. (a) For every pair of rules $A \to B$ and $B \to u$, add a new rule $A \to u$. Continue doing this until no new rule can be added by this procedure.
 - (b) Remove all rules $A \to B$.

2 Example

Put $G = (V, \Sigma, R, S)$ in normal form, where

$$V = \{S, A, B\},$$

$$\Sigma = \{a, b\}, \text{ and}$$

$$R = \{S \to A, A \to SB, A \to B, B \to aAbB, B \to \varepsilon\}.$$

(Since $\varepsilon \in L(G)$, the resulting normal form grammar will generate $L(G) - \{\varepsilon\}$.)

1. (a) Add $A \to S$, $A \to \varepsilon$, $B \to aAb$. Add $S \to \varepsilon$, $B \to abB$, $B \to ab$.

¹If $S \to \varepsilon$ is removed in this step, then $L(G) - L(G') = \{\varepsilon\}$; otherwise, L(G) = L(G').

(b) Remove $A \to \varepsilon, B \to \varepsilon, S \to \varepsilon$.

At this point, the set of rules is

$$\{S \to A, \\ A \to SB, \ A \to S, \ A \to B, \\ B \to aAbB, \ B \to aAb, \ B \to abB, \ B \to ab\}.$$

2. (a) Add
$$S \to SB, S \to S, S \to B,$$

 $A \to A, A \to aAbB, A \to aAb, A \to abB, A \to ab.$
Add $S \to aAbB, S \to aAb, S \to abB, S \to ab.$

(b) Remove $S \to S, S \to A, S \to B, A \to S, A \to A, A \to B$.

The final set of rules is

$$\{S \to SB, S \to aAbB, S \to aAb, S \to abB, S \to ab, A \to SB, A \to aAbB, A \to aAbB, A \to aAbB, A \to abB, A \to ab, B \to aAbB, B \to aAb, B \to abB, B \to ab\}.$$

This is simulated in the normal form grammar by the following derivation of the same terminal string: $S \Rightarrow aAbB \Rightarrow aSBbB \Rightarrow aabBbB \Rightarrow aababbaB \Rightarrow aababbab.$

3 Putting a Context-Free Grammar in Chomsky Normal Form

Definition: A context-free grammar $G = (V, \Sigma, R, S)$ is in *Chomsky normal form* if and only if every rule in R is of one of the following forms:

- 1. $A \to a$, for $A \in V$ and $a \in \Sigma$, or
- 2. $A \rightarrow BC$, for $A, B, C \in V$.

Here is a procedure for putting a normal form grammar in Chomsky normal form, without changing the language generated by the grammar. Throughout the procedure, A and B_1, B_2, \ldots, B_m are variables, and X_1, X_2, \ldots, X_m are arbitrary elements in $V \cup \Sigma$.

- 1. For each terminal symbol a, add a new variable C_a and a new rule $C_a \rightarrow a$.
- 2. Let $A \to X_1 X_2 \cdots X_m$ be a rule, with $m \ge 2$. For each $1 \le i \le m$, if X_i is a terminal symbol a, replace X_i in the right hand side of the original rule by C_a .
- 3. Let $A \to B_1 B_2 \cdots B_m$ be a rule, with $m \ge 3$. Add new variables $D_1, D_2, \ldots, D_{m-2}$, and replace the rule $A \to B_1 B_2 \cdots B_m$ by the rules

$$A \to B_1 D_1, \ D_1 \to B_2 D_2, \ \dots, D_{m-3} \to B_{m-2} D_{m-2}, \ D_{m-2} \to B_{m-1} B_m$$

4 Example

Put $G = (V, \Sigma, R, S)$ in Chomsky normal form, where

$$V = \{S, A\},$$

$$\Sigma = \{a, b\}, \text{ and}$$

$$R = \{S \to aAb, A \to aAbS, A \to b\}.$$

Notice that G is already in normal form.

The result of steps 1 and 2 is $G' = (V', \Sigma, R', S)$, where

$$V' = \{S, A, C_a, C_b\},$$

$$\Sigma = \{a, b\}, \text{ and}$$

$$R' = \{S \to C_a A C_b, A \to C_a A C_b S, A \to b, C_a \to a, C_b \to b\}.$$

The result of step 3 is $G'' = (V'', \Sigma, R'', S)$, where

$$V'' = \{S, A, C_a, C_b, D_1, E_1, E_2\},$$

$$\Sigma = \{a, b\}, \text{ and}$$

$$R'' = \{S \to C_a D_1, D_1 \to A C_b, A \to C_a E_1, E_1 \to A E_2, E_2 \to C_b S,$$

$$A \to b, C_a \to a, C_b \to b\}.$$

G'' is in Chomsky normal form.