CSE 322: Introduction to Formal Models in Computer Science
Assignment \#1
September 29, 2006
due: Friday, October 6

In the assignments, all references to the textbook refer to the Second Edition. I will try to also give the corresponding reference to the First Edition, when it exists, in square brackets as follows: "[1st Ed: ...]". You are responsible for making sure you do the correct problem!

1. (a) Give the formal description (i.e., the 5 -tuple) of the DFA M_{4} from Example 1.11 [1st Ed.: Example 1.4] on page 38. Use a 5×2 table to describe δ.
(b) Show the sequence of configurations through which M_{4} goes in its computation on the input bbabaa, using the $\vdash_{M_{4}}$ notation from lecture. Does M_{4} accept the input bbabaa? Why or why not?
(c) Show the sequence of configurations through which M_{4} goes in its computation on the input ε, using the $\vdash_{M_{4}}$ notation from lecture. Does M_{4} accept the input ε ? Why or why not?
2. Exercise 1.6 [1st Ed: Exercise 1.4], parts a, f, i.
3. Give the state diagram for a DFA that accepts the language $0^{*} 1^{*} 0^{+}$of Exercise $1.7(\mathrm{e})$, using as many states as you need.
4. Problem 1.32 [1st Ed: Problem 1.25].
5. (a) Give the state diagram for a DFA M that accepts the language

$$
L=\left\{w \in\{0,1\}^{*} \mid w \text { is the binary representation of a multiple of } 5\right\} .
$$

For the purposes of this problem, assume that ε represents the integer 0 , and that leading 0 's are o.k. For instance, $\varepsilon, 11001$, and 00101 are all in L, but 110 and 00001 are not. Hint: Let the state set be $\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\}$, and maintain the property that $\left(q_{0}, w\right) \vdash_{M}^{*}\left(q_{i}, \varepsilon\right)$ (that is, w takes M from q_{0} to $\left.q_{i}\right)$ if and only if $w^{\prime} \bmod 5=i$, where w^{\prime} is the integer with binary representation w. Now think, for example, about what the remainder $\bmod 5$ of (the integer with binary representation) $w 1$ would be, if you know that the remainder mod 5 of (the integer with binary representation) w is 3 .
(b) Problem 1.37 [1st Ed: Problem 1.30]. Just specify the 5 -tuple; you do not have to prove that it is correct.
Hint: Take the state set to be $\left\{q_{0}, q_{1}, \ldots, q_{n-1}\right\}$, generalizing the hint above. The key part of the construction is to state, for $\sigma \in\{0,1\}$, what $\delta\left(q_{i}, \sigma\right)$ would be.

