Normal Forms for Context-Free Grammars

CSE 322: Introduction to Formal Models in Computer Science November 2, 2005

1 Putting a Context-Free Grammar in Normal Form

Definition: A context-free grammar $G = (V, \Sigma, R, S)$ is in *normal form* if and only if R contains no rules of the form

- 1. $A \to \varepsilon$, for any $A \in V$, or
- 2. $A \to B$, for any $A, B \in V$.

Here is a procedure for converting a grammar G into a grammar G' such that G' is in normal form, and $L(G') = L(G) - \{\varepsilon\}$. Throughout the procedure, A and B are arbitrary elements of V, and u and v are arbitrary strings in $(V \cup \Sigma)^*$.

- 1. (a) For every pair of rules $A \to \varepsilon$ and $B \to uAv$, add a new rule $B \to uv$. Continue doing this until no new rule can be added by this procedure.
 - (b) Remove all rules $A \to \varepsilon$. ¹
- 2. (a) For every pair of rules $A \to B$ and $B \to u$, add a new rule $A \to u$. Continue doing this until no new rule can be added by this procedure.
 - (b) Remove all rules $A \to B$.

2 Example

Put $G = (V, \Sigma, R, S)$ in normal form, where

$$V = \{S, A, B\},\$$

$$\Sigma = \{a, b\}, \text{ and }$$

$$R \ = \ \{S \to A, \ A \to SB, \ A \to B, \ B \to aAbB, \ B \to \varepsilon\}.$$

(Since $\varepsilon \in L(G)$, the resulting normal form grammar will generate $L(G) - \{\varepsilon\}$.)

1. (a) Add $A \to S$, $A \to \varepsilon$, $B \to aAb$. Add $S \to \varepsilon$, $B \to abB$, $B \to ab$.

If $S \to \varepsilon$ is removed in this step, then $L(G) - L(G') = \{\varepsilon\}$; otherwise, L(G) = L(G').

(b) Remove $A \to \varepsilon$, $B \to \varepsilon$, $S \to \varepsilon$.

At this point, the set of rules is

$$\begin{cases} S \rightarrow A, \\ A \rightarrow SB, \ A \rightarrow S, \ A \rightarrow B, \\ B \rightarrow aAbB, \ B \rightarrow aAb, \ B \rightarrow abB, \ B \rightarrow ab \end{cases} .$$

- 2. (a) Add $S \to SB$, $S \to S$, $S \to B$, $A \to A$, $A \to aAbB$, $A \to aAb$, $A \to abB$, $A \to ab$. Add $S \to aAbB$, $S \to aAb$, $S \to abB$, $S \to ab$.
 - (b) Remove $S \to S, \ S \to A, \ S \to B, \ A \to S, \ A \to A, \ A \to B.$

The final set of rules is

$$\{S \rightarrow SB, \ S \rightarrow aAbB, \ S \rightarrow aAb, \ S \rightarrow abB, \ S \rightarrow ab, \\ A \rightarrow SB, \ A \rightarrow aAbB, \ A \rightarrow aAb, \ A \rightarrow abB, \ A \rightarrow ab, \\ B \rightarrow aAbB, \ B \rightarrow aAb, \ B \rightarrow abB, \ B \rightarrow ab \}.$$

This is simulated in the normal form grammar by the following derivation of the same terminal string: $S \Rightarrow aAbB \Rightarrow aSBbB \Rightarrow aabBbB \Rightarrow aababbB \Rightarrow aababbab$.

3 Putting a Context-Free Grammar in Chomsky Normal Form

Definition: A context-free grammar $G = (V, \Sigma, R, S)$ is in *Chomsky normal form* if and only if every rule in R is of one of the following forms:

- 1. $A \to a$, for $A \in V$ and $a \in \Sigma$, or
- 2. $A \to BC$, for $A, B, C \in V$.

Here is a procedure for putting a normal form grammar in Chomsky normal form, without changing the language generated by the grammar. Throughout the procedure, A and B_1, B_2, \ldots, B_m are variables, and $X_1, X_2, \ldots X_m$ are arbitrary elements in $V \cup \Sigma$.

- 1. For each terminal symbol a, add a new variable C_a and a new rule $C_a \to a$.
- 2. Let $A \to X_1 X_2 \cdots X_m$ be a rule, with $m \ge 2$. For each $1 \le i \le m$, if X_i is a terminal symbol a, replace X_i in the right hand side of the original rule by C_a .
- 3. Let $A \to B_1 B_2 \cdots B_m$ be a rule, with $m \geq 3$. Add new variables $D_1, D_2, \ldots, D_{m-2}$, and replace the rule $A \to B_1 B_2 \cdots B_m$ by the rules

$$A \to B_1D_1, \ D_1 \to B_2D_2, \ \dots, D_{m-3} \to B_{m-2}D_{m-2}, \ D_{m-2} \to B_{m-1}B_m.$$

4 Example

Put $G = (V, \Sigma, R, S)$ in Chomsky normal form, where

$$\begin{array}{lcl} V & = & \{S,A\}, \\ \\ \Sigma & = & \{a,b\}, \text{ and} \\ \\ R & = & \{S \rightarrow aAb, \ A \rightarrow aAbS, \ A \rightarrow b\}. \end{array}$$

Notice that G is already in normal form.

The result of steps 1 and 2 is $G' = (V', \Sigma, R', S)$, where

$$V' = \{S, A, C_a, C_b\},$$

 $\Sigma = \{a, b\}, \text{ and}$
 $R' = \{S \to C_a A C_b, A \to C_a A C_b S, A \to b, C_a \to a, C_b \to b\}.$

The result of step 3 is $G'' = (V'', \Sigma, R'', S)$, where

$$\begin{array}{lcl} V'' & = & \{S,A,C_a,C_b,D_1,E_1,E_2\}, \\ \\ \Sigma & = & \{a,b\}, \text{ and} \\ \\ R'' & = & \{S \to C_aD_1,\ D_1 \to AC_b,\ A \to C_aE_1,\ E_1 \to AE_2,\ E_2 \to C_bS, \\ & & A \to b,\ C_a \to a,\ C_b \to b\}. \end{array}$$

G'' is in Chomsky normal form.