CSE 322: Introduction to Formal Models in Computer Science
Assignment \#1
October 3, 2005
due: Monday, October 10

In the assignments, all references to the textbook refer to the Second Edition. I will try to also give the corresponding reference to the First Edition, when it exists, in square brackets as follows: "[1st Ed: ...]". You are responsible for making sure you do the correct problem!

1. Give the formal description (i.e., the 5 -tuple) of the DFA M_{4} from Example 1.11 [1st Ed.: Example 1.4] on page 38. Use a 5×2 table to describe δ.
2. Exercise 1.6(a) [1st Ed: Exercise 1.4(a)].
3. Give the state diagram for a DFA that accepts those strings over the alphabet $\{0,1\}$ that do not contain the substring 101.
4. Give the state diagram for a DFA that accepts the language of Exercise 1.7(e) [1st Ed: Exercise 1.5(e)], using as many states as you need.
5. Exercise 1.7, parts c, e, g [1st Ed: Exercise 1.5, parts c, e, f].
6. Problem 1.33 [1st Ed: Problem 1.26].
7. (a) Give the state diagram for a DFA M that accepts the language

$$
L=\left\{w \in\{0,1\}^{*} \mid w \text { is the binary representation of a multiple of } 5\right\}
$$

For the purposes of this problem, assume that ε represents the integer 0 , and that leading 0's are o.k. For instance, $\varepsilon, 11001$, and 00101 are all in L, but 110 and 00001 are not.
Hint: Let the state set be $\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\}$, and maintain the property that w takes M from q_{0} to q_{i} if and only if $w^{\prime} \bmod 5=i$, where w^{\prime} is the integer with binary representation w. Now think, for example, about what the remainder mod 5 of (the integer with binary representation) $w 1$ would be, if you know that the remainder mod 5 of (the integer with binary representation) w is 3 .
(b) Problem 1.37 [1st Ed: Problem 1.30]. Just specify the 5-tuple; you do not have to prove that it is correct.
Hint: Take the state set to be $\left\{q_{0}, q_{1}, \ldots, q_{n-1}\right\}$, generalizing the hint above. The key part of the construction is to state, for $\sigma \in\{0,1\}$, what $\delta\left(q_{i}, \sigma\right)$ would be.

