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Induction Proofs for Recursively Defined Sets

These notes are intended to supplement the text by giving a definition of inductive proofs for
recursively defined sets. A recursive definition of a set has three parts:
A basistelling what elements are in the set initially;
therecursive or constructor part: which tells how to add elements to the set given that a list of
certain elements already are in the set;
and anextremal clausewhich is the legal fine print saying that all elements in the set follow
from the basis and the recursive part.

Induction Proof Format

A typical recursive definition of a setS is of the following form:
Basisa1; a2; : : : ; ar are all members ofS.
Constructors: If x1; x2; : : : ; xs are all members ofS thenf1(x1; : : : ; xs) 2 S, f2(x1; : : : ; xs) 2

S, : : :, fk(x1; : : : ; xs) 2 S.
Extremal ClauseNothing else is inS but what follows from the basis and constructors.

Suppose that want to prove that a predicateP (x) holds for allx 2 S. The standard form of the
induction proof of this is as follows:

Proof. By induction:
1. State whatP (x) is.
2. BasisShow thatP (a1); : : : ; P (ar) are all true.
3. Inductive HypothesisAssume thatP (x1); : : : ; P (xs) are all true for some arbitrary members
x1; : : : ; xs 2 S.
4. Inductive Step Prove that it follows thatP is true for f1(x1; : : : ; xs), f2(x1; : : : ; xs),: : :,
fk(x1; : : : ; xs), (i.e.P (f1(x1; : : : ; xs)), etc. are all true.)
5. Conclusion: For allx in S, P (x) is true.

That is, one first shows thatP is true for the basis elements, and then shows that each constructor
preserves the truth ofP .

1



To illustrate a recursive proof, consider the setS defined as follows:
Basis:4 2 S, 10 2 S

Constructors: If x 2 S andy 2 S thenx� y 2 S. If x 2 S andy 2 S thenx+ y 2 S.
Extremal ClauseNothing else is inS but what follows from the basis and constructors.

Suppose we want to show all of the elements ofS are divisible by 2.

Proof. By induction.
We letP (x) be the predicate which is true ifx is even.

Base case:4 and 10 are both even.

Inductive hypothesis: Assume thatP (x) andP (y) are true for some elementsx andy in S.
That is, we assume thatx andy are both inS and even.

Inductive Step: We want to show thatP (x+ y) andP (x� y) are both true.

To do this we can use the definition of evenness to prove that the sum of two even numbers is
always even and the difference of two even numbers is also always even. (This part is an ordinary
proof of “x even andy even impliesx + y is even andx� y is even”. I omit the details.)

Therefore we have shown thatP (x+ y) andP (x� y) are both true.

Conclusion: We have proved by induction thatP (x) is true for allx 2 S.

Note that what we've actually proved taking the inductive hypothesis and the inductive step
together is that8x 2 S8y 2 S((P (x) ^ P (y))! (P (x+ y) ^ P (x� y)))

Ordinary Induction Ordinary induction can be viewed as a special case of this. The set of
positive integersN can be defined recursively:
Basis1 2 N

Constructor If n 2 N thenn + 1 2 N .
Extremal ClauseThe usual

A recursive proof with respect to this definition ofN consists of provingP (1) and that for any
n 2 N if P (n) is true thenP (n + 1) must be true, i.e.8n 2 N:(P (n) ! P (n+ 1)) and this is
exactly what we do for ordinary induction.

(Another piece of intuition as to why recursive proofs work is to think of the set

SP = fx 2 S j P (x) is trueg:

The above proof shows that 4 and 10 are inSP and that for anyx andy in SP , bothx + y and
x� y are inSP . ThusSP satisfies essentially the same recursive definition asS does. Therefore
SP = S.)
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Another example: Here we prove something about the functions defined on elements of a re-
cursively defined setS.

We can define the setB of all binary trees by the following two rules:

BASIS: “�” is a binary tree

CONSTRUCTOR: If T1 andT2 are binary trees then so is:
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We can define a couple of functions on binary trees:

Defineheight() by: height(�) = 1 andheight(T ) = max(height(T1); height(T2)) + 1 and de-
fine size() by: size(�) = 1 andsize(T ) = size(T1) + size(T2) + 1 whereT is the tree:
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Now we want to prove that for allT 2 B, size(T ) � 2height(T ) � 1.

Proof. 1. LetP (T ) besize(T ) � 2height(T ) � 1.

2. Basis:size(�) = 1 = 21 � 1 = 2height(�) � 1

3. Ind. Hypothesis: Assume thatP (T1) andP (T2) are true for some binary treesT1 andT2.

4. Ind. Step: We want to prove thatP (T ) follows whereT is the tree:
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It is most convenient to break things up into two cases:

Case (a):height(T1) � height(T2): In this caseheight(T ) = height(T2) + 1 and thus

size(T ) = size(T1) + size(T2) + 1

� (2height(T1) � 1) + (2height(T2) � 1) + 1 by Ind: Hyp:

� (2height(T2) � 1) + (2height(T2) � 1) + 1
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= 2height(T2)+1 � 1

= 2height(T ) � 1

Case(b):height(T2) � height(T1): This is just like the proof of case (a) withT2 andT1 reversed.

ThereforeP (T ) follows and the claim is proved for allT 2 B.
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