CSE 311 Section MR

Midterm Review




Administrivia




Announcements & Reminders

e HWS5 (BOTH PARTS)
o BOTH PARTS were due Wednesday 2/7 @ 11:59pm
o We will release solutions to HW5 on Ed over the weekend.
o Homework 5 PT2 feedback/grades are not guaranteed before Monday for late
submissions
e HWG will be released later after the midterm
e Midterm is Coming Next Week!!!
o Monday 2/12 @ 6:30-8 pm in BAG 131
o If you cannot make it, please let us know ASAP and we will schedule you for a
makeup (makeup form is on Ed)
e Review Session

o Covering last quarter midterm!
o Saturday, 2/10 1-3:00pm in CSE2 G20

e Midterm Logistics on Exams Page



https://courses.cs.washington.edu/courses/cse311/24wi/exams/

Proof By Contradiction




How Proof By Contradiction Works:

We learned in lecture that you can prove propositions by assuming their logical
opposite and then showing that this leads to a contradiction. Here’s how that

works mechanically...
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How Proof By Contradiction Works:

We learned in lecture that you can prove propositions by assuming their logical
opposite and then showing that this leads to a contradiction. Here's how that works
mechanically...

Let p := proposition we're trying to prove
Let s := a subsequent fact related to p
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showing that this leads to a contradiction. Here’s how that works mechanically...

Let p := proposition we're trying to prove
Let s := a subsequent fact related to p
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How Proof By Contradiction Works:

We learned in lecture that you can prove propositions by assuming their logical opposite and then showing
that this leads to a contradiction. Here's how that works mechanically...

Let p := proposition we're trying to prove
Let s := a subsequent fact related to p

We begin our proof by supposing, “for the sake of contradiction,” —p is true.
Then, as a consequence of —p, we find that both s A =s must be true

This gives us an expression of the form:
—p = (S A=s)
-p = F by Negation
T —>p by Contrapositive
p by Modus Ponens



Proof By Contradiction and Quantifiers

Oftentimes we will need to prove statements of the form:

VxP(x)
These can be good candidates for proof by contradiction because we can very
cleanly negate the statement with its quantifier to get:

dx—P(x)
All we have to do to complete this proof via contradiction is suppose the existence
of an x that makes —P(x) true, and then show that this leads to a contradiction!



Problem 6 - Wait, That Doesn't Add Up

Write a proof by contradiction for the following proposition: There exist no integers
x and y such that 18x + 6y = 1.

In predicate logic this could be expressed as VxVy(18x + 6y # 1).HINT: Try
negating this statement before writing your proof.
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18x + 6y = 1.
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Problem 6 - Wait, That Doesn't Add Up

Write a proof by contradiction for the following proposition: There exist no integers x and y such
that 18x + 6y = 1.

Assume, for the sake of contradiction, that there exists integers x and y such that 18x + 6y = 1.

This gives us:
18x +6y =1

3x+y=

[ R

Dividing by 6

But wait, this is a contradiction! Integers are closed under multiplication and addition, and so 3x +

y can’t be equal to%! This means there can be no integers x and y such that 18x + 6y = 1.
Therefore, the original claim holds via proof by contradiction.



Problem 1: Translation




Problem 1 - Translation

Let your domain of discourse be all coffee drinks. You should use the following
predicates:

* soy(x) is true iff x contains soy milk. * decaf(x) is true iff x is not caffeinated.
* whole(x) is true iff x contains whole milk. ¢ vegan(x) is true iff x is vegan.
* sugar(x) is true iff x contains sugar * RobbielLikes(x) is true iff Robbie likes the drink x.

Translate each of the following statements into predicate logic. You may use
quantifiers, the predicates above, and usual math connectors like = and #.

a) Coffee drinks with whole milk are not vegan
b) Robbie only likes one coffee drink, and that drink is not vegan

c) There is a drink that has both sugar and soy milk.

Work on this problem with the people around you.
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a)

soy(x) is true iff x contains soy milk

whole(x) is true iff x contains whole milk
sugar(x) is true iff x contains sugar

decaf(x) is true iff x is not caffeinate

vegan(x)is true iff x is vegan

RobbieLikes(x) is true iff Robbie likes the drink x

Coffee drinks with whole milk are not vegan

Vx(whole(x) = —wvegan(x))

Robbie only likes one coffee drink, and that drink is not vegan

dxVy(RobbieLikes(x) A - Vegan(x) A [RobbieLikes(y) —» x = y])
Or 3x(RobbieLikes(x) A = Vegan(x) A Vy[RobbieLikes(y) —» x = y])

There is a drink that has both sugar and soy milk.



soy(x) is true iff x contains soy milk

whole(x) is true iff x contains whole milk
sugar(x) is true iff x contains sugar

decaf(x) is true iff x is not caffeinate

vegan(x)is true iff x is vegan

RobbieLikes(x) is true iff Robbie likes the drink x

Problem 1 - Translation

a) Coffee drinks with whole milk are not vegan

Vx(whole(x) = —wvegan(x))

a) Robbie only likes one coffee drink, and that drink is not vegan

dxVy(RobbieLikes(x) A - Vegan(x) A [RobbieLikes(y) —» x = y])
Or 3x(RobbieLikes(x) A = Vegan(x) A Vy[RobbieLikes(y) —» x = y])

a) There is a drink that has both sugar and soy milk.

Elx(sugar(x) A soy(x))



Problem 1 - Translation

Let your domain of discourse be all coffee drinks. You should use the following
predicates:

* soy(x) is true iff x contains soy milk. * decaf(x) is true iff x is not caffeinated.
* whole(x) is true iff x contains whole milk. ¢ vegan(x) is true iff x is vegan.
* sugar(x) is true iff x contains sugar * RobbieLikes(x) is true iff Robbie likes the drink x.

Translate the following symbolic logic statementinto a (natural) English sentence.
Take advantage of domain restriction.

Vx([decaf(x) A RobbieLikes(x)] — sugar(x))

Work on this problem with the people around you.
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decaf(x) is true iff x is not caffeinate
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sugar(x) is true iff x contains sugar
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soy(x) is true iff x contains soy milk

whole(x) is true iff x contains whole milk
sugar(x) is true iff x contains sugar

decaf(x) is true iff x is not caffeinate

vegan(x)is true iff x is vegan

RobbieLikes(x) is true iff Robbie likes the drink x

Problem 1 - Translation

Vx([decaf(x) A RobbieLikes(x)] — sugar(x))

Every decaf drink that Robbie likes has sugar.

Statements like “For every decaf drink, if Robbie likes it then it has sugar” are
equivalent,but only partially take advantage of domain restriction.



Problem 2: English Proof




Problem 2- Even Steven

Prove that for all integers k, k(k +3) is even.
Recall that Even(x) := 3 k(x = 2k) and Odd(x) := Ik(x =2k + 1)

(a) Let your domain be integers. Write the predicate logic of this claim.
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Problem 2- Even Steven

Prove that for all integers k, k(k +3) is even.
Recall that Even(x) := 3 k(x = 2k) and Odd(x) := Ik(x =2k + 1)

(a) Let your domain be integers. Write the predicate logic of this claim.
V k( Even(k(k+3)) )

What kind of proof technique might we need?
This looks like a proof by cases!



Problem 2- Even Steven
(b) Write an English proof for this claim.
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Write an English proof for this claim.

Let k be an arbitrary integer

Case 1: k is even

By the definition of even, k = 2j for some integer j
So substituting for k into k(k + 3):



Problem 2- Even Steven
(b) Write an English proof for this claim.

Let k be an arbitrary integer
Case 1: k is even
By the definition of even, k = 2j for some integer j

So substituting for k into k(k + 3):

k(k+3) = (2))(2j+3) = 2(2j* +3])



Problem 2- Even Steven
(b) Write an English proof for this claim.

Let k be an arbitrary integer

Case 1: k is even

By the definition of even, k = 2j for some integer j
So substituting for k into k(k + 3):

k(k+3) = (2))(2j+3) = 2(2j* +3])

k(k + 3) = 2n, where n = (2j% + 3j) and n is an integer since j is an integer and integers
are closed under addition and multiplication.

So, by definition of even, k(k + 3) is even.



Problem 2- Even Steven

(b) Write an English proof for this claim.
Case 2: k is odd



Problem 2- Even Steven

(b) Write an English proof for this claim.

Case 2: k is odd
By the definition of odd, k = 2j + 1 for some integer j
So substituting for k into k(k + 3):



Problem 2- Even Steven

(b) Write an English proof for this claim.

Case 2: k is odd
By the definition of odd, k = 2j + 1 for some integer j
So substituting for k into k(k + 3):

k(k+3) = (2+1)(2j+1+3) = (2j+1)(2j+4) = 4% +10j+4 = 2(2j* +5]+2) = 2(2j+1)(j+2)



Problem 2- Even Steven

(b) Write an English proof for this claim.
Case 2: k is odd

By the definition of odd, k = 2j + 1 for some integer j

So substituting for k into k(k + 3):

k(k+3) = (2j+1)(2j+1+3) = (2j+1)(2j+4) = 4j* +10j+4 = 2(2j* +5}+2) = 2(2j+1)(j+2)
k(k + 3) = 2n, where n = (2j + 1)(j + 2) and n is an integer since j is an integer and

integers are closed under addition and multiplication.

So, by definition of even, k(k + 3) is even.



Problem 2- Even Steven
(b) Write an English proof for this claim.

Let k be an arbitrary integer

Case 1: k is even
By the definition of even, k = 2j for some integer j
So substituting for k into k(k + 3):
k(k+3) = (2))(2j+3) = 2(2j* +3))
k(k + 3) = 2n, where n = (2j2 + 3j) and n is an integer since j is an integer and integers are closed under addition and multiplication.
So, by definition of even, k(k + 3) is even.

Case 2: k is odd
By the definition of odd, k = 2j + 1 for some integer j
So substituting for k into k(k + 3):
k(k+3) = (2j+1)(2j+1+3) = (2j+1)(2j+4) = 4j2 +10j+4 = 2(2j* +5j+2) = 2(2j+1)(j+2)
k(k + 3) = 2n, where n = (2j + 1)(j + 2) and n is an integer since j is an integer and integers are closed under addition and multiplication.
So, by definition of even, k(k + 3) is even.

These cases are exhaustive, so the claim that k(k + 3) is even must hold.
Since k was arbitrary, the claim holds for all k.



Problem 4: Induction




Problem 4 - Induction

Foranyn € N, define S, to be the sum of the squares of the first n positive integers, or
S, =1%+2%+ -+ n?
Provethatforalln € N, S, = -n(n+1)(2n+1).

Work on this problem with the people around you.



Sp =12 4+2%+ -+ n?

Problem 4 - Induction
Prove thatforalln € N, S,, = Zn(n+1)(2n+1).

Let P(n) be “”. We show P(n) holds for (some) n by induction onn.

Base Case: P(b):
Inductive Hypothesis: Suppose P (k) holds for an arbitrary k > b.
Inductive Step: Goal: Show P(k + 1):

Conclusion: Therefore, P(n) holds for (some) n by the principle of induction.
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Inductive Hypothesis: Suppose P (k) holds foran arbitrary k > b
Inductive Step: Goal: Show P(k + 1):

Conclusion: Therefore, P(n) holds forall n € N by the principle of induction.




Sp =12 4+2%+ -+ n?

Prove thatforalln € N, S,, = Zn(n+1)(2n+1).

Problem 4 - Induction

Let P(n) be “S,, = zn(n + 1)(2n + 1)”. We show P(n) holds foralln € N by induction on n.
Base Case: P(0): When n = 0, the sum of the squares of the first n positive integers is the sum of no
terms, so we have a sum of 0. Thus, S, = 0. Since 2(0)(0 + 1)(2 - 0 + 1), we know that P(0) is true.

Inductive Hypothesis: Suppose P (k) holds foran arbitrary k = b
Inductive Step: Goal: Show P(k + 1):

Conclusion: Therefore, P(n) holds forall n € N by the principle of induction.




Sp =12 4+2%+ -+ n?

Prove thatforalln € N, S,, = Zn(n+1)(2n+1).

Problem 4 - Induction

Let P(n) be “S,, = zn(n + 1)(2n + 1)”. We show P(n) holds foralln € N by induction on n.

Base Case: P(0): When n = 0, the sum of the squares of the first n positive integers is the sum of no
terms, so we have a sum of 0. Thus, S, = 0. Since 2(0)(0 + 1)(2 - 0 + 1), we know that P(0) is true.

Inductive Hypothesis: Suppose P (k) holds for an arbitrary k > 0,i.e. S, = zk(k + 1)(2k + 1)
Inductive Step: Goal: Show P(k + 1):

Conclusion: Therefore, P(n) holds forall n € N by the principle of induction.




Sp =12 4+2%+ -+ n?

Problem 4 - Induction 1
Provethatforalln € N, 5, = -n(n+1)(2n+1).

Let P(n) be “S,, = zn(n + 1)(2n + 1)”. We show P(n) holds foralln € N by induction on n.

Base Case: P(0): When n = 0, the sum of the squares of the first n positive integers is the sum of no
terms, so we have a sum of 0. Thus, S, = 0. Since 2(0)(0 + 1)(2 - 0 + 1), we know that P(0) is true.

Inductive Hypothesis: Suppose P (k) holds for an arbitrary k > 0,i.e. S, = zk(k + 1)(2k + 1)
Inductive Step: Goal: Show P(k + 1): 541 = c(k + 1)((k + 1)+ 1)(2(k + 1) + 1)

Conclusion: Therefore, P(n) holds forall n € N by the principle of induction.




Sp =12 4+2%+ -+ n?

Problem 4 - Induction 1
Provethatforalln € N, 5, = -n(n+1)(2n+1).

Let P(n) be “S,, = zn(n + 1)(2n + 1)”. We show P(n) holds foralln € N by induction on n.

Base Case: P(0): When n = 0, the sum of the squares of the first n positive integers is the sum of no
terms, so we have a sum of 0. Thus, S, = 0. Since 2(0)(0 + 1)(2 - 0 + 1), we know that P(0) is true.
Inductive Hypothesis: Suppose P (k) holds for an arbitrary k > 0,i.e. S, = zk(k + 1)(2k + 1)
Inductive Step: Goal: Show P(k + 1): 541 = c(k + 1)((k + 1)+ 1)(2(k + 1) + 1)

Sk+1 =

=(k+D((k+D+1DRK+1)+1)
Conclusion: Therefore, P(n) holds forall n € N by the principle of induction.




S, =12 +2% + .-+ n?,

Problem 4 - Induction 1
Provethatforalln € N, 5, = -n(n+1)(2n+1).

Let P(n) be “S,, = zn(n + 1)(2n + 1)”. We show P(n) holds foralln € N by induction on n.
Base Case: P(0): When n = 0, the sum of the squares of the first n positive integers is the sum of no
terms, so we have a sum of 0. Thus, S, = 0. Since 2(0)(0 + 1)(2 - 0 + 1), we know that P(0) is true.
Inductive Hypothesis: Suppose P (k) holds for an arbitrary k > 0,i.e. S, = zk(k + 1)(2k + 1)
Inductive Step: Goal: Show P(k + 1): 541 = c(k + 1)((k+ 1)+ 1)(2(k + 1) + 1)

Ske1 =12+ 22+ -+ k? + (k + 1)? by definition of S,,

=(k+D((k+D+1DRK+1)+1)
Conclusion: Therefore, P(n) holds forall n € N by the principle of induction.




S, =12 +2% + .-+ n?,

Prove thatforalln € N, S,, = Zn(n+1)(2n+1).

Problem 4 - Induction

Let P(n) be “S,, = zn(n + 1)(2n + 1)”. We show P(n) holds foralln € N by induction on n.
Base Case: P(0): When n = 0, the sum of the squares of the first n positive integers is the sum of no
terms, so we have a sum of 0. Thus, S, = 0. Since 2(0)(0 + 1)(2 - 0 + 1), we know that P(0) is true.
Inductive Hypothesis: Suppose P (k) holds for an arbitrary k > 0,i.e. S, = zk(k + 1)(2k + 1)
Inductive Step: Goal: Show P(k + 1): 541 = c(k + 1)((k+ 1)+ 1)(2(k + 1) + 1)
Ske1 =12+ 22+ -+ k? + (k + 1)? by definition of S,,
= 1%+ 22+ -+ k*) + (k+1)*

=(k+D((k+D+1DRK+1)+1)
Conclusion: Therefore, P(n) holds forall n € N by the principle of induction.




S, =12 +2% + .-+ n?,

Problem 4 - Induction 1
Provethatforalln € N, 5, = -n(n+1)(2n+1).

Let P(n) be “S,, = zn(n + 1)(2n + 1)”. We show P(n) holds foralln € N by induction on n.

Base Case: P(0): When n = 0, the sum of the squares of the first n positive integers is the sum of no
terms, so we have a sum of 0. Thus, S, = 0. Since 2(0)(0 + 1)(2 - 0 + 1), we know that P(0) is true.
Inductive Hypothesis: Suppose P (k) holds for an arbitrary k > 0,i.e. S, = zk(k + 1)(2k + 1)
Inductive Step: Goal: Show P(k + 1): 541 = c(k + 1)((k+ 1)+ 1)(2(k + 1) + 1)

Ske1 =12+ 22+ -+ k? + (k + 1)? by definition of S,,
= 1%+ 22+ -+ k*) + (k+1)*
=S, + (k + 1)? by definition of S,,

=(k+D((k+D+1D2K+1)+1)
Conclusion: Therefore, P(n) holds for all n € N by the principle of induction.




S, =12 +2% + .-+ n?,

Problem 4 - Induction 1
Provethatforalln € N, 5, = -n(n+1)(2n+1).

Let P(n) be “S,, = zn(n + 1)(2n + 1)”. We show P(n) holds foralln € N by induction on n.

Base Case: P(0): When n = 0, the sum of the squares of the first n positive integers is the sum of no
terms, so we have a sum of 0. Thus, S, = 0. Since 2(0)(0 + 1)(2 - 0 + 1), we know that P(0) is true.
Inductive Hypothesis: Suppose P (k) holds for an arbitrary k > 0,i.e. S, = zk(k + 1)(2k + 1)
Inductive Step: Goal: Show P(k + 1): 541 = c(k + 1)((k+ 1)+ 1)(2(k + 1) + 1)

Ske1 =12+ 22+ -+ k? + (k + 1)? by definition of S,,
=(1%24+2°+ -+ k»)+ (k+1)°
=S, + (k + 1)? by definition of S,,
= Ye(k + 1) (2k + 1) + (k + 1)? by I.H.

=(k+D((k+D+1D2K+1)+1)
Conclusion: Therefore, P(n) holds for all n € N by the principle of induction.




S, =12 +2% + .-+ n?,

Prove thatforalln € N, S,, = Zn(n+1)(2n+1).

Problem 4 - Induction

Let P(n) be “S,, = zn(n + 1)(2n + 1)”. We show P(n) holds foralln € N by induction on n.

Base Case: P(0): When n = 0, the sum of the squares of the first n positive integers is the sum of no
terms, so we have a sum of 0. Thus, S, = 0. Since 2(0)(0 + 1)(2 - 0 + 1), we know that P(0) is true.
Inductive Hypothesis: Suppose P (k) holds for an arbitrary k > 0,i.e. S, = zk(k + 1)(2k + 1)
Inductive Step: Goal: Show P(k + 1): 541 = c(k + 1)((k+ 1)+ 1)(2(k + 1) + 1)

Ske1 =12+ 22+ -+ k? + (k + 1)? by definition of S,,
=(1%24+2°+ -+ k»)+ (k+1)°
=S, + (k + 1)? by definition of S,
= Ye(k + 1) (2k + 1) + (k + 1)? by I.H.

= (k+1DCkQRk+ 1)+ (k+ 1))

=(k+D((k+ D+ 12K +1)+1)
Conclusion: Therefore, P(n) holds for all n € N by the principle of induction.




S, =12 +2% + .-+ n?,

Prove thatforalln € N, S,, = Zn(n+1)(2n+1).

Problem 4 - Induction

Let P(n) be “S,, = zn(n + 1)(2n + 1)”. We show P(n) holds foralln € N by induction on n.
Base Case: P(0): When n = 0, the sum of the squares of the first n positive integers is the sum of no
terms, so we have a sum of 0. Thus, S, = 0. Since 2(0)(0 + 1)(2 - 0 + 1), we know that P(0) is true.

Inductive Hypothesis: Suppose P (k) holds for an arbitrary k > 0,i.e. S, = zk(k + 1)(2k + 1)
Inductive Step: Goal: Show P(k + 1): 541 = c(k + 1)((k+ 1)+ 1)(2(k + 1) + 1)

Ske1 =12+ 22+ -+ k? + (k + 1)? by definition of S,,
=(1%24+2°+ -+ k»)+ (k+1)°
=S, + (k + 1)? by definition of S,
= Ye(k + 1) (2k + 1) + (k + 1)? by I.H.

=(k+1DCkQRk+ 1)+ (k+ 1))
=2(k+1)(kQ2k + 1) + 6(k + 1))

- ;.(.k +D(k+D+DEE+D +1)

6
Conclusion: Therefore, P(n) holds forall n € N by the principle of induction.




S, =12 +2% + .-+ n?,

Prove thatforalln € N, S,, = Zn(n+1)(2n+1).

Problem 4 - Induction

Let P(n) be “S,, = zn(n + 1)(2n + 1)”. We show P(n) holds foralln € N by induction on n.

Base Case: P(0): When n = 0, the sum of the squares of the first n positive integers is the sum of no
terms, so we have a sum of 0. Thus, S, = 0. Since 2(0)(0 + 1)(2 - 0 + 1), we know that P(0) is true.
Inductive Hypothesis: Suppose P (k) holds for an arbitrary k > 0,i.e. S, = zk(k + 1)(2k + 1)
Inductive Step: Goal: Show P(k + 1): 541 = c(k + 1)((k+ 1)+ 1)(2(k + 1) + 1)

Ske1 =12+ 22+ -+ k? + (k + 1)? by definition of S,,
=(1%24+2°+ -+ k»)+ (k+1)°
=S, + (k + 1)? by definition of S,
= Ye(k + 1) (2k + 1) + (k + 1)? by I.H.

=(k+1DCkQRk+ 1)+ (k+ 1))
=2(k +1)(kQ2k + 1) + 6(k + 1))
= 2(k 4+ 1)(2k* + k + 6k + 6)

=k +D((k+D+1DR2K+1)+1)
Conclusion: Therefore, P(n) holds forall n € N by the principle of induction.



S, =12 +2% + .-+ n?,

Prove thatforalln € N, S,, = Zn(n+1)(2n+1).

Problem 4 - Induction

Let P(n) be “S,, = zn(n + 1)(2n + 1)”. We show P(n) holds foralln € N by induction on n.

Base Case: P(0): When n = 0, the sum of the squares of the first n positive integers is the sum of no
terms, so we have a sum of 0. Thus, S, = 0. Since 2(0)(0 + 1)(2 - 0 + 1), we know that P(0) is true.
Inductive Hypothesis: Suppose P (k) holds for an arbitrary k > 0,i.e. S, = zk(k + 1)(2k + 1)
Inductive Step: Goal: Show P(k + 1): 541 = c(k + 1)((k+ 1)+ 1)(2(k + 1) + 1)

Ske1 =12+ 22+ -+ k? + (k + 1)? by definition of S,,
=(1%24+2°+ -+ k»)+ (k+1)°
=S, + (k + 1)? by definition of S,
= Ye(k + 1) (2k + 1) + (k + 1)? by I.H.

=(k+1DCkQRk+ 1)+ (k+ 1))
=2(k+ 1) (k(2k + 1) + 6(k + 1))
= 2(k 4+ 1)(2k* + k + 6k + 6)

= 2(k + 1)(2k* + 7k + 6)

Sl DK+ D+ DU+ D + 1)

6
Conclusion: Therefore, P(n) holds forall n € N by the principle of induction.



S, =12 +2% + .-+ n?,

Prove thatforalln € N, S,, = Zn(n+1)(2n+1).

Problem 4 - Induction

Let P(n) be “S,, = zn(n + 1)(2n + 1)”. We show P(n) holds foralln € N by induction on n.

Base Case: P(0): When n = 0, the sum of the squares of the first n positive integers is the sum of no
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Problem 3 - Number Theory

Let p be a prime number at least 3 and let x be an integer such that x?%p = 1.
a) Showthatif aninteger y satisfiesy = 1 (mod p), theny? = 1 (mod p).

b) Repeatpart (a), butdon’tuse any theorems fromthe Number Theory Reference
Sheet. That is, show the claim directly from the definitions.

c) From part (a), we can see that x%p can equal 1. Show that for any integer x, if
x%2 =1 (mod p), thenx = 1 (mod p) orx = —1 (mod p). Thatis, show that the
only value x%p can take otherthanlisp — 1.
Hint: Supposeyou have an x such that x> = 1 (mod p) and use the fact that
x2—=1=(x - D+ 1)
Hint: You may the following theorem without proof:if p is prime and p | (ab) then
plaorp|b.

Work on this problem with the people around you.
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let x be an integer such that x?%p = 1
a) Showthatif anintegery satisfiesy = 1 (mod p), theny? = 1 (mod p).

Claim in predicate logic: Vy[(y = 1 (mod p)) = (¥? = 1 (mod p))]
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Let p be a prime number at least 3 and
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C) From part (a), we can see that x%p can equal 1. Show that for any integer x, if x> = 1 (mod p),
then x = 1 (mod p) orx = —1 (mod p). That is, show that the only value x%p can take other

thanlisp — 1.
Hint: Suppose you have an x such that x? = 1 (mod p) and use the fact that

x2—1=(x - D + 1)
Hint: You may the following theorem without proof: if p is prime and p | (ab) thenp | a orp | b.
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That's All, Folks!

Thanks for coming to section this week!
Any questions?




