
CSE 311 Section 08

Induction, Regular Expressions, CFGs

Administrivia

Announcements & Reminders
● Homework 6 was due Wednesday (2/21)
● Midterm grades have been released!

○ Regrade requests are open
○ Concerns about grades: Read Robbie’s post on Ed!

● Check your section participation grade on gradescope
○ If it different than what you expect, let your TA know

Recursively Defined Sets

Recursive Definition of Sets
Define a set 𝑆 as follows:

Basis Step:
Describe the basic starting elements in your set
ex: 0 ∈ 𝑆

Recursive Step:
Describe how to derive new elements of the set from previous elements
ex: If 𝑥 ∈ 𝑆 then 𝑥 + 2 ∈ 𝑆.

Exclusion Rule: Every element of 𝑆 is in 𝑆 from the basis step (alone) or a
finite number of recursive steps starting from a basis step.

Problem 3 – Recursively Defined Sets
For each of the following, write a recursive definition of the sets satisfying the
following properties. Briefly justify that your solution is correct.

a) Binary strings of even length.

a) Binary strings not containing 10.

a) Binary strings not containing 10 as a substring and having at least as many 1s
as 0s.

a) Binary strings containing at most two 0s and at most two 1s.

Work on this problem with the people around you.

Problem 3 – Recursively Defined Sets
For each of the following, write a recursive definition of the sets satisfying the
following properties. Briefly justify that your solution is correct.

a) Binary strings of even length.

Generate accepted and rejected strings first!

Problem 3 – Recursively Defined Sets
For each of the following, write a recursive definition of the sets satisfying the
following properties. Briefly justify that your solution is correct.

a) Binary strings of even length.

Generate accepted and rejected strings first!

Step 1: Write out basic cases and more intricate cases

Problem 3 – Recursively Defined Sets
For each of the following, write a recursive definition of the sets satisfying the
following properties. Briefly justify that your solution is correct.

a) Binary strings of even length.

Generate accepted and rejected strings first!

Accepted Strings Rejected Strings

ε 0

11 1

10101010 1010101

10101011 010101011

Step 1: Write out basic cases and more intricate cases

Problem 3 – Recursively Defined Sets
For each of the following, write a recursive definition of the sets satisfying the
following properties. Briefly justify that your solution is correct.

a) Binary strings of even length.

Generate accepted and rejected strings first!

Accepted Strings Rejected Strings

ε 0

11 1

10101010 1010101

10101011 010101011

Step 2: Find a pattern! Step 1: Write out basic cases and more intricate cases

Problem 3 – Recursively Defined Sets
For each of the following, write a recursive definition of the sets satisfying the
following properties. Briefly justify that your solution is correct.

a) Binary strings of even length.

Generate accepted and rejected strings first!

Accepted Strings Rejected Strings

ε 0

11 1

10101010 1010101

10101011 010101011

Step 2: Find a pattern! Step 1: Write out basic cases and more intricate cases

All even-length strings can be
generated from a series of
substrings of length 2!

All possible substrings of
length 2 are:
10, 01, 11, 00

Problem 3 – Recursively Defined Sets
For each of the following, write a recursive definition of the sets satisfying the
following properties. Briefly justify that your solution is correct.

a) Binary strings of even length.
Step 3: Write out Basis and Recursive step

Problem 3 – Recursively Defined Sets
For each of the following, write a recursive definition of the sets satisfying the
following properties. Briefly justify that your solution is correct.

a) Binary strings of even length.

Step 3: Write out Basis and Recursive step

Problem 3 – Recursively Defined Sets
For each of the following, write a recursive definition of the sets satisfying the
following properties. Briefly justify that your solution is correct.

a) Binary strings of even length.

Step 3: Write out Basis and Recursive step
Step 4: check that you cannot build the
rejected strings and only build accepted
strings with the recursive step

Problem 3 – Recursively Defined Sets
For each of the following, write a recursive definition of the sets satisfying the
following properties. Briefly justify that your solution is correct.

a) Binary strings of even length.

Accepted Strings Rejected Strings

ε 0

11 1

10101010 1010101

10101011 010101011

Step 3: Write out Basis and Recursive step
Step 4: check that you cannot build the
rejected strings and only build accepted
strings with the recursive step

Problem 3 – Recursively Defined Sets
For each of the following, write a recursive definition of the sets satisfying the
following properties. Briefly justify that your solution is correct.

b) Binary strings not containing 10.

Problem 3 – Recursively Defined Sets
For each of the following, write a recursive definition of the sets satisfying the
following properties. Briefly justify that your solution is correct.

b) Binary strings not containing 10.

Step 1: Write out basic cases and more intricate cases

Problem 3 – Recursively Defined Sets
For each of the following, write a recursive definition of the sets satisfying the
following properties. Briefly justify that your solution is correct.

b) Binary strings not containing 10.

Accepted Strings Rejected Strings

1 010

0 10

ε 100

111

00001

1110

100001

Step 1: Write out basic cases and more intricate cases

Problem 3 – Recursively Defined Sets
For each of the following, write a recursive definition of the sets satisfying the
following properties. Briefly justify that your solution is correct.

b) Binary strings not containing 10.

Accepted Strings Rejected Strings

1 010

0 10

ε 100

111

00001

1110

100001

Step 1: Write out basic cases and more intricate cases Step 2: Find a pattern!

Problem 3 – Recursively Defined Sets
For each of the following, write a recursive definition of the sets satisfying the
following properties. Briefly justify that your solution is correct.

b) Binary strings not containing 10.

Accepted Strings Rejected Strings

1 010

0 10

ε 100

111

00001

1110

100001

Step 1: Write out basic cases and more intricate cases Step 2: Find a pattern!

0’s and 1’s cannot be in the same string
unless 0’s come first and 1’s come
second

0’s should be built from the left (0x)
1’s should be built from the right (x1)

such strings that have 1’s and 0’s can
only look like: 000…1111

Problem 3 – Recursively Defined Sets
For each of the following, write a recursive definition of the sets satisfying the
following properties. Briefly justify that your solution is correct.

b) Binary strings not containing 10.
Step 3: Write out Basis and Recursive step

Problem 3 – Recursively Defined Sets
For each of the following, write a recursive definition of the sets satisfying the
following properties. Briefly justify that your solution is correct.

b) Binary strings not containing 10.

Step 3: Write out Basis and Recursive step

Step 4: check that you cannot build the
rejected strings and only build accepted
strings with the recursive step :)

Problem 3 – Recursively Defined Sets
For each of the following, write a recursive definition of the sets satisfying the
following properties. Briefly justify that your solution is correct.

c) Binary strings not containing 10 as a substring and having at least as many 1s
as 0s.

Problem 3 – Recursively Defined Sets
For each of the following, write a recursive definition of the sets satisfying the
following properties. Briefly justify that your solution is correct.

c) Binary strings not containing 10 as a substring and having at least as many 1s
as 0s.

Step 1: Write out basic cases and more intricate cases

Problem 3 – Recursively Defined Sets
For each of the following, write a recursive definition of the sets satisfying the
following properties. Briefly justify that your solution is correct.

c) Binary strings not containing 10 as a substring and having at least as many 1s
as 0s.

Step 1: Write out basic cases and more intricate cases

Accepted Strings Rejected Strings

1 010

01 0

ε 100

111

00001111

1110

00001

Problem 3 – Recursively Defined Sets
For each of the following, write a recursive definition of the sets satisfying the
following properties. Briefly justify that your solution is correct.

c) Binary strings not containing 10 as a substring and having at least as many 1s
as 0s.

Step 1: Write out basic cases and more intricate cases

Accepted Strings Rejected Strings

1 010

01 0

ε 100

111

00001111

1110

00001

Step 2: Find a pattern!

Problem 3 – Recursively Defined Sets
For each of the following, write a recursive definition of the sets satisfying the
following properties. Briefly justify that your solution is correct.

c) Binary strings not containing 10 as a substring and having at least as many 1s
as 0s.

Step 1: Write out basic cases and more intricate cases

Accepted Strings Rejected Strings

1 010

01 0

ε 100

111

00001111

1110

00001

Step 2: Find a pattern!

From part (b) we know:
0’s should be built from the left (0x)
1’s should be built from the right (x1)

New restriction for adding a 0:
for every 0 we add, there must be at
least an additional 1 accompanying it so
we always have # 1’s ≥ # 0’s

So lets change: 0x to 0x1

Problem 3 – Recursively Defined Sets
For each of the following, write a recursive definition of the sets satisfying the
following properties. Briefly justify that your solution is correct.

c) Binary strings not containing 10 as a substring and having at least as many 1s
as 0s.
Step 3: Write out Basis and Recursive step

Problem 3 – Recursively Defined Sets
For each of the following, write a recursive definition of the sets satisfying the
following properties. Briefly justify that your solution is correct.

c) Binary strings not containing 10 as a substring and having at least as many 1s
as 0s.

Step 3: Write out Basis and Recursive step

Step 4: check that you cannot build the
rejected strings and only build accepted
strings with the recursive step :)

Regular Expressions

Regular Expressions
Basis:
• 𝜀 is a regular expression. The empty string itself matches the pattern

(and nothing else does).
• ∅ is a regular expression. No strings match this pattern.
• 𝑎 is a regular expression, for any 𝑎 ∈ Σ (i.e. any character). The

character itself matching this pattern.
Recursive:
• If 𝐴, 𝐵 are regular expressions then (𝐴 ∪ 𝐵) is a regular expression.

matched by any string that matches 𝐴 or that matches 𝐵 [or both]).
• If 𝐴, 𝐵 are regular expressions then 𝐴𝐵 is a regular expression.

matched by any string 𝑥 such that 𝑥 = 𝑦𝑧, 𝑦 matches 𝐴 and 𝑧 matches 𝐵.
• If 𝐴 is a regular expression, then 𝐴∗ is a regular expression. matched

by any string that can be divided into 0 or more strings that match 𝐴.

Regular Expressions
A regular expression is a recursively defined set of strings that form a
language.

A regular expression will generate all strings in a language, and won’t
generate any strings that ARE NOT in the language

Hints:
• Come up with a few examples of strings that ARE and ARE NOT in

your language
• Then, after you write your regex, check to make sure that it CAN

generate all of your examples that are in the language, and it CAN’T
generate those that are not

Problem 1 – Regular Expressions

Work on this problem with the people around you.

Problem 1 – Regular Expressions
a) Write a regular expression that matches base 10 numbers (e.g., there should

be no leading zeroes).

base-10 numbers:
Our everyday numbers!
Notice we have 10 symbols
(0-9) to represent numbers.

256: (2 * 102) + (5 * 101) + (6 * 100)

base-2 numbers: (binary)

10: (1 * 21) + (0 * 20)

Problem 1 – Regular Expressions
a) Write a regular expression that matches base 10 numbers (e.g., there should

be no leading zeroes).

Representing numbers all possible strings using numbers 0-9:

Problem 1 – Regular Expressions
a) Write a regular expression that matches base 10 numbers (e.g., there should

be no leading zeroes).

Representing numbers all possible strings using numbers 0-9:
(0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)∗

Problem 1 – Regular Expressions
a) Write a regular expression that matches base 10 numbers (e.g., there should

be no leading zeroes).

Representing numbers all possible strings using numbers 0-9:
(0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)∗
⚠ “0101” or “091” are not Base-10 numbers

Problem 1 – Regular Expressions
a) Write a regular expression that matches base 10 numbers (e.g., there should

be no leading zeroes).

Representing numbers all possible strings using numbers 0-9:
(0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)∗
⚠ “0101” or “091” are not Base-10 numbers

All possible strings using numbers 0-9 that never start with 0

Problem 1 – Regular Expressions
a) Write a regular expression that matches base 10 numbers (e.g., there should

be no leading zeroes).

Representing numbers all possible strings using numbers 0-9:
(0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)∗
⚠ “0101” or “091” are not Base-10 numbers

All possible strings using numbers 0-9 that never start with 0
(1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)(0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7

∪ 8 ∪ 9)∗

Problem 1 – Regular Expressions
a) Write a regular expression that matches base 10 numbers (e.g., there should

be no leading zeroes).

Representing numbers all possible strings using numbers 0-9:
(0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)∗
⚠ “0101” or “091” are not Base-10 numbers

All possible strings using numbers 0-9 that never start with 0
(1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)(0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7

∪ 8 ∪ 9)∗
⚠ “0” is a Base-10 number not considered

Problem 1 – Regular Expressions
a) Write a regular expression that matches base 10 numbers (e.g., there should

be no leading zeroes).

Representing numbers all possible strings using numbers 0-9:
(0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)∗
⚠ “0101” or “091” are not Base-10 numbers

All possible strings using numbers 0-9 that never start with 0
(1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)(0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7

∪ 8 ∪ 9)∗
⚠ “0” is a Base-10 number not considered

All possible strings using numbers 0-9 that never start with 0 or is 0

Problem 1 – Regular Expressions
a) Write a regular expression that matches base 10 numbers (e.g., there should

be no leading zeroes).

Representing numbers all possible strings using numbers 0-9:
(0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)∗
⚠ “0101” or “091” are not Base-10 numbers

All possible strings using numbers 0-9 that never start with 0
(1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)(0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7

∪ 8 ∪ 9)∗
⚠ “0” is a Base-10 number not considered

All possible strings using numbers 0-9 that never start with 0 or is 0

0 ∪ ((1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)(0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7
∪ 8 ∪ 9)∗)

Problem 1 – Regular Expressions
a) Write a regular expression that matches base 10 numbers (e.g., there should

be no leading zeroes).

Representing numbers all possible strings using numbers 0-9:
(0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)∗
⚠ “0101” or “091” are not Base-10 numbers

All possible strings using numbers 0-9 that never start with 0
(1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)(0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7

∪ 8 ∪ 9)∗
⚠ “0” is a Base-10 number not considered

All possible strings using numbers 0-9 that never start with 0 or is 0

0 ∪ ((1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)(0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7
∪ 8 ∪ 9)∗)

✅Generates only all possible Base-10 numbers

Problem 1 – Regular Expressions
b) Write a regular expression that matches all base-3 numbers that are divisible

by 3.

Problem 1 – Regular Expressions
b) Write a regular expression that matches all base-3 numbers that are divisible

by 3.

Write a regular expression that matches all base-3 numbers

Problem 1 – Regular Expressions
b) Write a regular expression that matches all base-3 numbers that are divisible

by 3.

Write a regular expression that matches all base-3 numbers

0 ∪ ((1 ∪ 2)(0 ∪ 1 ∪ 2)∗)
✅Generates only all possible Base-3 numbers

Problem 1 – Regular Expressions
b) Write a regular expression that matches all base-3 numbers that are divisible

by 3.

Write a regular expression that matches all base-3 numbers

0 ∪ ((1 ∪ 2)(0 ∪ 1 ∪ 2)∗)
Generates only all possible Base-3 numbers

…divisible by 3

Problem 1 – Regular Expressions
b) Write a regular expression that matches all base-3 numbers that are divisible

by 3.

Write a regular expression that matches all base-3 numbers

0 ∪ ((1 ∪ 2)(0 ∪ 1 ∪ 2)∗)
Generates only all possible Base-3 numbers

…divisible by 3

Hint: you know that Base-10 numbers are divisible by 10 when they end in 0 (10, 20, 30, 40…)

Problem 1 – Regular Expressions
b) Write a regular expression that matches all base-3 numbers that are divisible

by 3.

Write a regular expression that matches all base-3 numbers

0 ∪ ((1 ∪ 2)(0 ∪ 1 ∪ 2)∗)
Generates only all possible Base-3 numbers

…divisible by 3

Hint: you know that Base-10 numbers are divisible by 10 when they end in 0 (10, 20, 30, 40…)

0 ∪ ((1 ∪ 2)(0 ∪ 1 ∪ 2)∗0)
✅all possible Base-3 numbers divisible by 3

Problem 1 – Regular Expressions
c) Write a regular expression that matches all binary strings that contain the

substring “111”, but not the substring “000”.

Problem 1 – Regular Expressions
c) Write a regular expression that matches all binary strings that contain the

substring “111”, but not the substring “000”.

all binary strings that contain the substring “111”

Problem 1 – Regular Expressions
c) Write a regular expression that matches all binary strings that contain the

substring “111”, but not the substring “000”.

all binary strings that contain the substring “111”

(0 ∪ 1)* 111 (0 ∪ 1)* ⚠ The Kleene-star has us generating any number of 0’s

Problem 1 – Regular Expressions
c) Write a regular expression that matches all binary strings that contain the

substring “111”, but not the substring “000”.

all binary strings that contain the substring “111”

(0 ∪ 1)* 111 (0 ∪ 1)* ⚠ The Kleene-star has us generating any number of 0’s

…without the substring “000”

Use careful case-work to modify this and produce only 0,1,or two 0’s

Problem 1 – Regular Expressions
c) Write a regular expression that matches all binary strings that contain the

substring “111”, but not the substring “000”.

all binary strings that contain the substring “111”

(0 ∪ 1)* 111 (0 ∪ 1)* ⚠ The Kleene-star has us generating any number of 0’s

…without the substring “000”

Use careful case-work to modify this and produce only 0,1,or two 0’s

(0 ∪ 00 ∪ ε) (1)* 111 (0 ∪ 00 ∪ ε) (1)*

Problem 1 – Regular Expressions
c) Write a regular expression that matches all binary strings that contain the

substring “111”, but not the substring “000”.

all binary strings that contain the substring “111”

(0 ∪ 1)* 111 (0 ∪ 1)* ⚠ The Kleene-star has us generating any number of 0’s

…without the substring “000”

Use careful case-work to modify this and produce only 0,1,or two 0’s

(0 ∪ 00 ∪ ε) (1)* 111 (0 ∪ 00 ∪ ε) (1)* ⚠ Cannot produce 1’s with “0” or “00” like “1011101”

Problem 1 – Regular Expressions
c) Write a regular expression that matches all binary strings that contain the

substring “111”, but not the substring “000”.

all binary strings that contain the substring “111”

(0 ∪ 1)* 111 (0 ∪ 1)* ⚠ The Kleene-star has us generating any number of 0’s

…without the substring “000”

Use careful case-work to modify this and produce only 0,1,or two 0’s

(0 ∪ 00 ∪ ε) (1)* 111 (0 ∪ 00 ∪ ε) (1)* ⚠ Cannot produce 1’s with “0” or “00” like “1011101”

(0 ∪ 00 ∪ ε) (01 ∪ 001 ∪ 1)* 111 (0 ∪ 00 ∪ ε) (01 ∪ 001 ∪ 1)*

Problem 1 – Regular Expressions
c) Write a regular expression that matches all binary strings that contain the

substring “111”, but not the substring “000”.

all binary strings that contain the substring “111”

(0 ∪ 1)* 111 (0 ∪ 1)* ⚠ The Kleene-star has us generating any number of 0’s

…without the substring “000”

Use careful case-work to modify this and produce only 0,1,or two 0’s

(0 ∪ 00 ∪ ε) (1)* 111 (0 ∪ 00 ∪ ε) (1)* ⚠ Cannot produce 1’s with “0” or “00” like “1011101”

(0 ∪ 00 ∪ ε) (01 ∪ 001 ∪ 1)* 111 (0 ∪ 00 ∪ ε) (01 ∪ 001 ∪ 1)* ⚠ Generates “000” like “00 01 111”

Problem 1 – Regular Expressions
c) Write a regular expression that matches all binary strings that contain the

substring “111”, but not the substring “000”.

all binary strings that contain the substring “111”

(0 ∪ 1)* 111 (0 ∪ 1)* ⚠ The Kleene-star has us generating any number of 0’s

…without the substring “000”

Use careful case-work to modify this and produce only 0,1,or two 0’s

(0 ∪ 00 ∪ ε) (1)* 111 (0 ∪ 00 ∪ ε) (1)* ⚠ Cannot produce 1’s with “0” or “00” like “1011101”

(0 ∪ 00 ∪ ε) (01 ∪ 001 ∪ 1)* 111 (0 ∪ 00 ∪ ε) (01 ∪ 001 ∪ 1)* ⚠ Generates “000” like “00 01 111”

(01 ∪ 001 ∪ 1)* (0 ∪ 00 ∪ ε) 111 (01 ∪ 001 ∪ 1)* (0 ∪ 00 ∪ ε)✅ all binary strings with “111” and without “000”

Problem 1 – Regular Expressions
c) Write a regular expression that matches all binary strings that contain the

substring “111”, but not the substring “000”.

all binary strings that contain the substring “111”

(0 ∪ 1)* 111 (0 ∪ 1)*

…without the substring “000”

(0 ∪ 00 ∪ ε) (1)* 111 (0 ∪ 00 ∪ ε) (1)*

(0 ∪ 00 ∪ ε) (01 ∪ 001 ∪ 1)* 111 (0 ∪ 00 ∪ ε) (01 ∪ 001 ∪ 1)*

(01 ∪ 001 ∪ 1)* (0 ∪ 00 ∪ ε) 111 (01 ∪ 001 ∪ 1)* (0 ∪ 00 ∪ ε)

⚠ The Kleene-star has us generating any number of 0’s

Use careful case-work to modify this and produce only 0,1,or two 0’s

⚠ Cannot produce 1’s with “0” or “00” like “1011101”

⚠ Generates “000” like “00 01 111”

✅ all binary strings with “111” and without “000”

(01 ∪ 001 ∪ 1)* (0 ∪ 00 ∪ ε) 111 (01 ∪ 001 ∪ 1)* (0 ∪ 00 ∪ ε)

Problem 1 – Regular Expressions
d) Write a regular expression that matches all binary strings that do not have any

consecutive 0’s or 1’s.

Problem 1 – Regular Expressions
d) Write a regular expression that matches all binary strings that do not have any

consecutive 0’s or 1’s.

Step 1: Write out basic and more intricate cases

Problem 1 – Regular Expressions
d) Write a regular expression that matches all binary strings that do not have any

consecutive 0’s or 1’s.

Step 1: Write out basic and more intricate cases

Accepted Strings Rejected Strings

ε 00

1 11

10101 101011

0101 0100

Problem 1 – Regular Expressions
d) Write a regular expression that matches all binary strings that do not have any

consecutive 0’s or 1’s.

Step 1: Write out basic and more intricate cases

Accepted Strings Rejected Strings

ε 00

1 11

10101 101011

0101 0100

Step 2: Find a pattern!

Problem 1 – Regular Expressions
d) Write a regular expression that matches all binary strings that do not have any

consecutive 0’s or 1’s.

Accepted Strings Rejected Strings

ε 00

1 11

10101 101011

0101 0100

Step 1: Write out basic and more intricate cases Step 2: Find a pattern!

strings can be generated from
either a series of “01” or “10”
substrings

(1) Using the “01” substring, one
additional 0 can be added

(1) Using the “10” substring, one
additional 1 can be added

Problem 1 – Regular Expressions
d) Write a regular expression that matches all binary strings that do not have any

consecutive 0’s or 1’s.

Step 3: Write out the expression with the two cases we found

Problem 1 – Regular Expressions
d) Write a regular expression that matches all binary strings that do not have any

consecutive 0’s or 1’s.

((01)∗ (0 ∪ ε)) ∪ ((10)∗ (1 ∪ ε))

Step 3: Write out the expression with the two cases we found

Problem 1 – Regular Expressions

Problem 1 – Regular Expressions

1(0 ∪ 1)∗ 1(0 ∪ 1)∗

Explanation: While it may seem like we need to keep track of how many 1’s
there are, it turns out that we don’t. Convince yourself that strings in the
language are exactly those of the form 1x, where x is any binary string with at
least one 1. Hence, x is matched by the regular expression (0 ∪ 1)∗1(0 ∪ 1)
∗

Context-Free Grammars

Context-Free Grammars
A context free grammar (CFG) is a finite set of production rules
over:
● An alphabet Σ of “terminal symbols”
● A finite set 𝑉 of “nonterminal symbols”
● A start symbol (one of the elements of 𝑉) usually denoted 𝑆

A production rule for a nonterminal 𝐴 ∈ 𝑉 takes the form
● 𝐴 → 𝑤1 | 𝑤2 | … |𝑤𝑘

Where each 𝑤𝑖 ∈ 𝑉 ∪ Σ* is a string of nonterminals and
terminals.

Problem 2 – CFGs
Write a context-free grammar to match each of these languages.

a) All binary strings that start with 11.

b) All binary strings that contain at most one 1.

c) All strings over 0, 1, 2 with the same number of 1s and 0s and exactly one 2.

Work on this problem with the people around you.

Problem 2 – CFGs
a) All binary strings that start with 11.

Problem 2 – CFGs
a) All binary strings that start with 11.

Thinking back to regular expressions…

Problem 2 – CFGs
a) All binary strings that start with 11.

Thinking back to regular expressions…

11 (0 ∪ 1)*

Problem 2 – CFGs
a) All binary strings that start with 11.

Thinking back to regular expressions…

11 (0 ∪ 1)*

Now generate the CFG…

Problem 2 – CFGs
a) All binary strings that start with 11.

Thinking back to regular expressions…

11 (0 ∪ 1)*

Now generate the CFG…

S → 11T
T → 1T | 0T | ε

Problem 2 – CFGs
b) All binary strings that contain at most one 1.

Problem 2 – CFGs
b) All binary strings that contain at most one 1.

Thinking back to Regular expressions…

Problem 2 – CFGs
b) All binary strings that contain at most one 1.

Thinking back to Regular expressions…

0* (1 ∪ ε) 0*

Problem 2 – CFGs
b) All binary strings that contain at most one 1.

Thinking back to Regular expressions…

0* (1 ∪ ε) 0*

Now generate the CFG…

Problem 2 – CFGs
b) All binary strings that contain at most one 1.

Thinking back to Regular expressions…

0* (1 ∪ ε) 0*

Now generate the CFG…

S → ABA
A → 0A | ε
B → 1 | ε

Problem 2 – CFGs
b) All binary strings that contain at most one 1.

Thinking back to Regular expressions…

0* (1 ∪ ε) 0*

Now generate the CFG…

S → ABA
A → 0A | ε
B → 1 | ε

Alternative solution:

S → 0S | S0| 1 | 0 | ε

Problem 2 – CFGs
c) All strings over 0, 1, 2 with the same number of 1s and 0s and exactly one 2.

Problem 2 – CFGs
c) All strings over 0, 1, 2 with the same number of 1s and 0s and exactly one 2.

S → 01S | 10S | 0S1 | 1S0 | S01 | S10 | 2
Counter example: 001121100

Correct Answer:
S → 2T | T2 | ST | TS | 0S1 | 1S0
T → TT | 0T1 | 1T0 | ε

That’s All, Folks!

Thanks for coming to section this week!
Any questions?

