
Section 04: Solutions

1. Divisibility

(a) Circle the statements below that are true. Recall for a, b ∈ Z: a | b if and only if ∃k ∈ Z such that b = ka.

(i) 1 | 3

(ii) 3 | 1

(iii) 2 | 2018

(iv) −2 | 12

(v) 1 · 2 · 3 · 4 | 1 · 2 · 3 · 4 · 5

Solution:

(i) True

(ii) False

(iii) True

(iv) True

(v) True

(b) Circle the statements below that are true. Recall for a, b,m ∈ Z and m > 0: a ≡ b (mod m) if and only if
m | (a− b).

(i) −3 ≡ 3 (mod 3)

(ii) 0 ≡ 9000 (mod 9)

(iii) 44 ≡ 13 (mod 7)

(iv) −58 ≡ 707 (mod 5)

(v) 58 ≡ 707 (mod 5)

Solution:

(i) True

(ii) True

(iii) False

(iv) True

(v) False

2. Just The Setup

For each of these statements,

• Translate the sentence into predicate logic.

• Write the first few sentences and last few sentences of the English proof.
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(a) The product of an even integer and an odd integer is even.

Solution:

∀x∀y([Even(x) ∧ Odd(y)] → Even(xy))

Let x be an arbitrary even integer and let y be an arbitrary odd integer.
...
So xy is even.
Since x, y were arbitrary, we have that the product of an even integer with an odd integer is always even.

(b) There is an integer x s.t. x2 > 10 and 3x is even.

Solution:

∃x[GreaterThan10(x2) ∧ Even(3x)]

Consider x = 6.
...
So 62 > 10 and 3 · 6 is even.
Hence, 6 is the desired x.

(c) For every integer n, there is a prime number p greater than n.

Solution:

∀x∃y[Prime(y) ∧ GreaterThan(y, x)]

Let x be an arbitrary integer.
Consider y = p (this p is a specific prime).
. . .
So p is prime and p > x.
Since x was arbitrary, we have that every integer has a prime number that is greater than it.

3. Modular Arithmetic

(a) Prove that if a | b and b | a, where a and b are integers greater than 0, then a = b or a = −b. Solution:

Suppose that a | b and b | a, where a, b are arbitrary integers greater than 0. By the definition of divides,
we have a 6= 0, b 6= 0 and b = ka, a = jb for some integers k, j. Substituting this equation, we see that
a = j(ka).

Then, dividing both sides by a, we get 1 = jk. So,
1

j
= k. Note that j and k are integers, which is only

possible if j, k ∈ {1,−1}. Since a and b were arbitrary, it follows that b = −a or b = a,

(b) Prove that if n | m, where n and m are integers greater than 1, and if a ≡ b (mod m), where a and b are
integers, then a ≡ b (mod n).

Solution:

Let n and m be arbitrary integers.
Suppose n | m with n,m > 1, and a ≡ b (mod m). By definition of divides, we have m = kn for some
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k ∈ Z. By definition of congruence, we have m | a − b, which means that a − b = mj for some j ∈ Z.
Combining the two equations, we see that a − b = (knj) = n(kj). By definition of congruence, we have
a ≡ b (mod n), as required. Since n and m were arbitrary, the claim holds.

4. Become a Mod God

Prove from definitions that for integers a, b, c, d and positive integer m, if a ≡ b (mod m) and c ≡ d (mod m), then
a− c ≡ b− d (mod m).

Solution:

Let a, b, c, d be arbitrary integers, and let m be an arbitrary positive integer. Suppose that a ≡ b (mod m) and
c ≡ d (mod m). Then by the definition of congruence, m | (a− b) and m | (c− d).

By the definition of divides, there exist integers k and j such that a− b = km and c− d = jm. Subtracting the
second equation from the first, we have:

(a− b)− (c− d) = km− jm

a− b− c+ d = (k − j)m

(a− c)− (b− d) = (k − j)m

Then by the definition of divides, m | (a−c)−(b−d). Then by the definition of congruence, a−c ≡ b−d(modm),
as desired.
Since a,b,c,d, and m were arbitrary the claim holds.

5. Fair and Square

(a) Prove that for all integers n, n2 ≡ 0 (mod 4) or n2 ≡ 1 (mod 4) . Solution:

Let n be an arbitrary integer. We will argue by cases.

Case 1: n is even. Then n = 2k for some integer k. Then n2 = (2k)2 = 4k2. Since k is an integer, k2 is
an integer. So n2 is 4 times an integer. Then by definition of divides, 4 | n2 − 0. Then by definition of
congruence, n2 ≡ 0 (mod 4) . Since n2 ≡ 0 (mod 4), it follows that n2 ≡ 0 (mod 4) or n2 ≡ 1 (mod 4).

Case 2: n is odd. Then n = 2k+1 for some integer k. Then n2 = (2k+1)2 = 4k2+4k+1 = 4(k2+k)+1.
So n2 − 1 = 4(k2 + k). Since k is an integer, k2 + k is an integer. So n2 − 1 is 4 times an integer. Then by
definition of divides, 4 | n2 − 1. Then by definition of congruence, n2 ≡ 1 (mod 4). Since n2 ≡ 1 (mod 4),
it follows that n2 ≡ 0 (mod 4) or n2 ≡ 1 (mod 4).

Thus in all cases, n2 ≡ 0 (mod 4) or n2 ≡ 1 (mod 4). Since n was arbitrary, the claim holds.

6. Even Numbers, Odd Results!

For any integer j, if 3j + 1 is even, then j is odd

(a) Write the predicate logic of this claim

Odd(x) := x is 2k + 1, for some integer k
Even(x) := x is 2k, for some integer k
Solution:
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∀j (Even(3j + 1) →Odd(j))

(b) Write the contrapositive of this claim
Solution:

For any integer j, if j is even, 3k+1 is odd
∀j (Even(j) →Odd(3j + 1))

(c) Determine which claim is easier to prove, then prove it! Solution:

we will prove the contrapositive of this claim
Let j be an arbitrary even integer.
By the definition of even j = 2k for some integer k
Then by Algebra, 3j + 1 = 3(2k) + 1 = 2(3k) + 1
Since k is an integer, under closure of multiplication, 3k is an integer
Therefore 2(3k) + 1 takes the form of an odd integer so 3j + 1 must be odd Since j was arbitrary and we
have shown the contrapositive, the claim holds

7. The Trifecta

Consider the following proposition: For each integer a, if 3 divides a2, then 3 divides a

(a) Write the contrapositive of this proposition as a sentence:
Solution:

If 3 does not divide a then 3 does not divide a2

(b) Prove the proposition by proving its contrapositive.
Hint: Consider using cases based on the Division Algorithm using the remainder for “division by 3.” There
will be two cases! Solution:

we will prove the contrapositive of this claim
Let a be an arbitrary integer such that 3 does not divide a.
If a is not divisible by 3, it can have a remainder of either 1 or 2

Case 1: a ≡1 (mod 3)
a can be expressed as an integer with remainder 1 as: a = 3k + 1, a = 3k + 1, k ∈ Z
Similarly, we define a2 as a ·a = (3k+1) ·(3k+1) = 9k2+6k+1 = 3(3k2+2k)+1 where 3k2+2k is an in-
teger under closure of addition and multiplication such that we produce an integer that is not divisible by 3.

Case 2: a ≡2 (mod 3)
a can be expressed as an integer with remainder 2 as: a = 3k + 2, a = 3k + 2, k ∈ Z
Similarly, we define a2 as a ·a = (3k+2) ·(3k+2) = 9k2+12k+4 = 9k2+12k+3+1 = 3(3k2+4k+1)+1
where 3k2 + 4k + 1 is an integer under closure of addition and multiplication such that we produce an
integer that is not divisible by 3.

In either case for integer a, we see that 3 does not divide a2 and results in a remainder of 1.
Since a was arbitrary, and we have demonstrated the contrapositive, the claim holds
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