
Regular Expressions CSE 311 Winter 2024

Lecture 18

Announcements

Monday is a holiday!

Next lecture is Wednesday (CC18 due Wed)

Monday OH cancelled, unless you hear otherwise.

Robbie’s OH today are on zoom.

What does the inductive step look like?

Here’s a recursively-defined set:

Basis: 0 ∈ 𝑇 and 5 ∈ 𝑇

Recursive: If 𝑥, 𝑦 ∈ 𝑇 then 𝑥 + 𝑦 ∈ 𝑇 and 𝑥 − 𝑦 ∈ 𝑇.

Let 𝑃(𝑥) be “5|𝑥”

What does the inductive step look like?

Well there’s two recursive rules, so we have two things to show

Just the IS (you still need the other steps)

Inductive hypothesis: Suppose 𝑃(𝑥) and 𝑃(𝑦) hold for arbitrary 𝑥, 𝑦 ∈ 𝑇

Inductive Step

Case 1: Let 𝑧 = 𝑥 + 𝑦

By IH 5|𝑥 and 5|𝑦 so 5𝑎 = 𝑥 and 5𝑏 = 𝑦 for integers 𝑎, 𝑏.

Adding, we get 𝑥 + 𝑦 = 5𝑎 + 5𝑏 = 5(𝑎 + 𝑏). Since 𝑎, 𝑏 are integers, so is 𝑎 +
𝑏, and 𝑃(𝑥 + 𝑦) holds.

Case 2: Let 𝑧 = 𝑥 − 𝑦

By IH 5|𝑥 and 5|𝑦 so 5𝑎 = 𝑥 and 5𝑏 = 𝑦 for integers 𝑎, 𝑏.

Subtracting, we get 𝑥 − 𝑦 = 5𝑎 − 5𝑏 = 5(𝑎 − 𝑏). Since 𝑎, 𝑏 are integers, so is
𝑎 − 𝑏, and 𝑃(𝑥 − 𝑦) holds.

If you don’t have a recursively-defined set

You won’t do structural induction.

You can do weak or strong induction though.

For example, Let 𝑃 𝑛 be “for all elements of 𝑆 of “size” 𝑛 <something>
is true”

To prove “for all 𝑥 ∈ 𝑆 of size 𝑛…” you need to start with “let 𝑥 be an
arbitrary element of size 𝑘 + 1 in your IS.

You CAN’T start with size 𝑘 and “build up” to an arbitrary element of
size 𝑘 + 1 it isn’t arbitrary.

Part 3 of the course!

Course Outline

Symbolic Logic (training wheels)
Just make arguments in mechanical ways.

Set Theory/Number Theory (bike in your backyard)

Models of computation (biking in your neighborhood)
Still make and communicate rigorous arguments

But now with objects you haven’t used before.

-A first taste of how we can argue rigorously about computers.

This week: regular expressions and context free grammars – understand these
“simpler computers”

Soon: what these simple computers can do
Then: what simple computers can’t do.

Last week: A problem our computers cannot solve.

The next two weeks

A big of a grab-bag—topics that don’t build on each other much.

Some stuff that’s has applications in future classes.

This week: some theory that’s useful for computer scientists
The topics for this weeks are key parts of building compilers, we’ll use that as
motivation—no details on compilers, but hopefully enough that you’ll find it
interesting.

They ALSO can be thought of as “underpowered computers.”

We’ll use them to build up to proving what computers can and can’t do.

Next week: some mathematical tools that are useful in the future.

Regular Expressions

I have a giant text document. And I want to find all the email addresses
inside. What does an email address look like?

[some letters and numbers] @ [more letters] . [com, net, or edu]

We want to ctrl-f for a pattern of strings rather than a single string

Languages

A set of strings is called a language.

Σ∗ is a language

“the set of all binary strings of even length” is a language.

“the set of all palindromes” is a language.

“the set of all English words” is a language.

“the set of all strings matching a given pattern” is a language.

Regular Expressions

Basis:
𝜀 is a regular expression. The empty string itself matches the pattern (and nothing
else does).

∅ is a regular expression. No strings match this pattern.

𝑎 is a regular expression, for any 𝑎 ∈ Σ (i.e. any character). The character itself
matching this pattern.

Recursive
If 𝐴, 𝐵 are regular expressions then (𝐴 ∪ 𝐵) is a regular expression

matched by any string that matches 𝐴 or that matches 𝐵 [or both]).

If 𝐴, 𝐵 are regular expressions then 𝐴𝐵 is a regular expression.

matched by any string 𝑥 such that 𝑥 = 𝑦𝑧, 𝑦 matches 𝐴 and 𝑧 matches 𝐵.

If 𝐴 is a regular expression, then 𝐴∗ is a regular expression.

matched by any string that can be divided into 0 or more strings that match 𝐴.

Regular Expressions

(𝑎 ∪ 𝑏𝑐)

0 0 ∪ 1 1

0∗

0 ∪ 1 ∗

Regular Expressions

(𝑎 ∪ 𝑏𝑐)

Corresponds to {𝑎, 𝑏𝑐}

0 0 ∪ 1 1

Corresponds to {001, 011}

all length three strings that start with a 0 and end in a 1.

0∗

Corresponds to {𝜀, 0,00,000,0000,… }

0 ∪ 1 ∗

Corresponds to the set of all binary strings.

More Examples

0∗1∗ ∗

0∗1∗

0 ∪ 1 ∗ 00 ∪ 11 ∗ 0 ∪ 1 ∗

00 ∪ 11 ∗

More Examples

0∗1∗ ∗

All binary strings

0∗1∗

All binary strings with any 0’s coming before all 1’s

0 ∪ 1 ∗ 00 ∪ 11 ∗ 0 ∪ 1 ∗

This is all binary strings again. Not a “good” representation, but valid.

00 ∪ 11 ∗

All binary strings where 0s and 1s come in pairs

More Practice

You can also go the other way

Write a regular expression for “the set of all binary strings of odd
length”

Write a regular expression for “the set of all binary strings with at most
two ones”

Write a regular expression for “strings that don’t contain 00”

More Practice

You can also go the other way

Write a regular expression for “the set of all binary strings of odd
length”

0 ∪ 1 00 ∪ 01 ∪ 10 ∪ 11 ∗

Write a regular expression for “the set of all binary strings with at most
two ones”

0∗ 1 ∪ 𝜖 0∗ 1 ∪ 𝜖 0∗

Write a regular expression for “strings that don’t contain 00”

01 ∪ 1 ∗(0 ∪ 𝜖) (key idea: all 0s followed by 1 or end of the string)

Practical Advice

Check 𝜀 and 1 character strings to make sure they’re excluded or
included (easy to miss those edge cases).

If you can break into pieces, that usually helps.

“nots” are hard (there’s no “not” in standard regular expressions)
But you can negate things, usually by negating at a low-level. E.g. to have binary
strings without 00, your building blocks are 1’s and 0’s followed by a 1

01 ∪ 1 ∗(0 ∪ 𝜀) then make adjustments for edge cases (like ending in 0)

Remember ∗ allows for 0 copies! To say “at least one copy” use 𝐴𝐴∗.

Regular Expressions In Practice
EXTREMELY useful. Used to define valid “tokens” (like legal variable names or all known keywords when writing
compilers/languages)

Used in grep to actually search through documents.
Pattern p = Pattern.compile("a*b");

Matcher m = p.matcher("aaaaab");

boolean b = m.matches();

^ start of string

$ end of string

[01] a 0 or a 1

[0-9] any single digit

\. period \, comma \- minus

. any single character

ab a followed by b (AB)

(a|b) a or b (A  B)

a? zero or one of a (A  )

a* zero or more of a A*

a+ one or more of a AA*

e.g. ^[\-+]?[0-9]*(\.|\,)?[0-9]+$

General form of decimal number e.g. 9.12 or -9,8 (Europe)

Regular Expressions In Practice

When you only have ASCII characters (say in a programming language)

| usually takes the place of ∪

? (and perhaps creative rewriting) take the place of 𝜀.

E.g. 0 ∪ 𝜀 1 ∪ 10 ∗ is 0?(1|10)*

A Final Vocabulary Note

Not everything can be represented as a regular expression.
E.g. “the set of all palindromes” is not the language of any regular expression.

Some programming languages define features in their “regexes” that
can’t be represented by our definition of regular expressions.
Things like “match this pattern, then have exactly that substring appear later.

So before you say “ah, you can’t do that with regular expressions, I
learned it in 311!” you should make sure you know whether your
language is calling a more powerful object “regular expressions”.

But the more “fancy features” beyond regular expressions you use, the
slower the checking algorithms run, (and the harder it is to force the
expressions to fit into the framework) so this is still very useful theory.

A bit more on induction

If there’s time

CAUTION

When you don’t have a recursive definition, you can’t use structural
induction! But you can do an inductive proof that looks like structural
induction.

The way to do the proof is to define a predicate with a for-all in it

Let 𝑃(𝑛) be “for all <things> of <size> 𝑛, the claim holds”

Then in doing the inductive step you start with an arbitrary thing of size
𝑘 + 1. Start with the BIG thing, then find the small thing inside to apply
the IH.

Induction: Hats!

You have 𝑛 people in a line (𝑛 ≥ 2). Each of them wears either a purple
hat or a gold hat. The person at the front of the line wears a purple hat.
The person at the back of the line wears a gold hat.

Show that for every arrangement of the line satisfying the rule above,
there is a person with a purple hat next to someone with a gold hat.

Yes this is kinda obvious. I promise this is good induction practice.

Yes you could argue this by contradiction. I promise this is good
induction practice.

Induction: Hats!

Define 𝑃(𝑛) to be “in every line of 𝑛 people with gold and purple hats, with a
purple hat at one end and a gold hat at the other, there is a person with a
purple hat next to someone with a gold hat”

We show 𝑃(𝑛) for all integers 𝑛 ≥ 2 by induction on 𝑛.

Base Case: 𝑛 = 2

Inductive Hypothesis:

Inductive Step:

By the principle of induction, we have 𝑃(𝑛) for all 𝑛 ≥ 2

Induction: Hats!

Define 𝑃(𝑛) to be “in every line of 𝑛 people with gold and purple hats, with a purple hat at one end
and a gold hat at the other, there is a person with a purple hat next to someone with a gold hat”

We show 𝑃(𝑛) for all integers 𝑛 ≥ 2 by induction on 𝑛.

Base Case: 𝑛 = 2 The line must be just a person with a purple hat and a person with a gold hat, who
are next to each other.

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 2.

Inductive Step: Consider an arbitrary line with 𝑘 + 1 people in purple and gold hats, with a gold hat at
one end and a purple hat at the other.

Target: there is someone in a purple hat next to someone in a gold hat.

By the principle of induction, we have 𝑃(𝑛) for all 𝑛 ≥ 2

We start with an arbitrary

BIG thing—start with an

arbitrary line of size 𝑘 + 1.

Induction: Hats!

Define 𝑃(𝑛) to be “in every line of 𝑛 people with gold and purple hats, with a purple hat at one end
and a gold hat at the other, there is a person with a purple hat next to someone with a gold hat”

We show 𝑃(𝑛) for all integers 𝑛 ≥ 2 by induction on 𝑛.

Base Case: 𝑛 = 2 The line must be just a person with a purple hat and a person with a gold hat, who
are next to each other.

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 2.

Inductive Step: Consider an arbitrary line with 𝑘 + 1 people in purple and gold hats, with a gold hat at
one end and a purple hat at the other.

Case 1: There is someone with a purple hat next to the person in the gold hat at one end. Then those
people are the required adjacent opposite hats.

Case 2:. There is a person with a gold hat next to the person in the gold hat at the end. Then the line
from the second person to the end is length 𝑘, has a gold hat at one end and a purple hat at the
other. Applying the inductive hypothesis, there is an adjacent, opposite-hat wearing pair.

In either case we have 𝑃(𝑘 + 1).

By the principle of induction, we have 𝑃(𝑛) for all 𝑛 ≥ 2

	Slide 1: Regular Expressions
	Slide 2: Announcements
	Slide 3: What does the inductive step look like?
	Slide 4: Just the IS (you still need the other steps)
	Slide 5: If you don’t have a recursively-defined set
	Slide 6: Part 3 of the course!
	Slide 7: Course Outline
	Slide 8: The next two weeks
	Slide 9: Regular Expressions
	Slide 10: Languages
	Slide 11: Regular Expressions
	Slide 12: Regular Expressions
	Slide 13: Regular Expressions
	Slide 14: More Examples
	Slide 15: More Examples
	Slide 16: More Practice
	Slide 17: More Practice
	Slide 18: Practical Advice
	Slide 19: Regular Expressions In Practice
	Slide 20: Regular Expressions In Practice
	Slide 21: A Final Vocabulary Note
	Slide 22: A bit more on induction
	Slide 23: CAUTION
	Slide 24: Induction: Hats!
	Slide 25: Induction: Hats!
	Slide 26: Induction: Hats!
	Slide 27: Induction: Hats!

