Binary Trees

size(@)=1
Basis: A single node is a rooted binary tree

- size() =
: A0

Recursive Step: If T; and T, are rooted

binary trees with roots r; and r,, then a size(Ty) + size(T,) + 1

tree rooted at a new node, with children

Ty, 15 IS @ binary tree. height(®) = 0
height() =

1+max(height(T;),height(T,))

Structural Induction Template

1. Define P() State that you will show P(x) holds for all x € S and that
your proof is by structural induction.

2. Base Case: Show P(b)
[Do that for every b in the basis step of defining S]

3. Inductive Hypothesis: Suppose P(x)
[Do that for every x listed as already in S in the recursive rules].

4. Inductive Step: Show P() holds for the "new elements.”
[You will need a separate step for every element created by the recursive rules].

5. Therefore P(x) holds for all x € S by the principle of induction.

2/13/2024

Functions on Strings

Since strings are defined recursively, most functions on strings are as well.
Length:

len(e)=0;

len(wa)=lenw)+1forw € 2*, a €

Reversal:

R .
et =g
(Wa)’§= awR forw € ¥, a € X
Concatenation

x-e=xforallx ex*
x-(wa)=(x-w)aforw el ,aeX

Number of ¢’s in a string

#.(e)=0
#e Wc3=#cw + 1forw € T
#.(wa) =#.(w) forweX*ae X\ {c}

Claim for all x,y € Z* len(x-y)=len(x) + len(y).

Let P(y) be "len(x-y)=len(x) + len(y) for all x € *.“
We prove P(y) for all x € £* by structural induction.
Base Case:

Inductive Hypothesis

Inductive Step:

We conclude that P(y) holds for all string y by the principle of induction.
Unwra%ing the definition of P, we get VxVy € X* len(xy)=len(x)+len(y), as
required.

2/13/2024

