CSE 311: Foundations of Computing

Lecture 24: FSMs with Output and Minimization

WELL, LETS SAY You

mi| WANT 25 DOLLARS. YOU

BANK '
MACHINES -
WORK ? 3

PUNCH IN THE AMOUNT..

THERES A GUY WITH A
PRINTING PRESS WHO
MAKES THE -
| MONEY AND] 5
STICKS 1T /

QUT THIS '

THE GUY WHO

"D BEHIND THE MACHINE | [sorr of Like | ExacTuY. |

s

Last class: Finite State Machines

e States
* Transitions on input symbols
o Start state and final states

* The “language recognized” by the machine is the
set of strings that reach a final state from the start

Old State 0 1

Last class: Finite State Machines

 Each machine designed for strings over some
fixed alphabet 2.

 Must have a transition defined from each state for
every symbol in 2.

Old State 0 1

Strings over {0, 1, 2}

M,: Strings with an even number of 2’s

o;()‘\/égpm

M,: Strings where the sum of digits mod 3 is O

Strings over {0,1,2} w/ even number of 2’'s and mod 3 sum O

OOl
©

()

Strings over {0,1,2} w/ even number of 2’'s and mod 3 sum O

O 0

@\,z T
| “‘ 3)
@’*@ o

Strings over {0,1,2} w/ even nhumber of 2’s OR mod 3 sum O

The set of binary strings with a 1 in the 3" position from the start

The set of binary strings with a 1 in the 3" position from the start

0,1
0

OmOmOnn O

0,1

The set of binary strings with a 1 in the 3" position from the end

3 bit shift register “Remember the last three bits”

The set of binary strings with a 1 in the 3" position from the end

0
ONORNONR®
0

0) 0 1
001 L {011
A O
ofpciiclic
0 0 : 1 0
100 110

The set of binary strings with a 1 in the 3" position from the end

The beginning versus the end

Adding Output to Finite State Machines

 So far, we have considered finite state
machines that just accept/reject strings

— called “Deterministic Finite Automata” or DFAs

* Now we consider finite state machines
with output

— These are the kinds used as controllers

Enter 15 cents in dimes or nickels
Press S or B for a candy bar

Vending Machine, vO.1

2ORNORORG

B,S

Basic transitions on N (nickel), D (dime), B (butterfinger), S (snickers)

Vending Machine, v0.2

O%
| (15)
D D B
N S
G —{w)s
=\ [N]
S
N

:

Adding output to states: N — Nickel, S — Snickers, B — Butterfinger

Vending Machine, v1.0

B,S

()
N
15
BS p B,S B 0
| N S |N
=00
15’

Adding additional “unexpected” transitions to cover all symbols for each state

State Minimization

 Many different FSMs (DFAs) for the same
problem

 Take a given FSM and try to reduce its state
set by combining states
— Algorithm will always produce the unique

minimal equivalent machine (up to renaming of
states) but we won'’t prove this

State Minimization Algorithm

* Put states into groups

* Try to find groups that can be collapsed into one state

— states can keep track of information that isn’t necessary to
determine whether to accept or reject

* Group states together until we can prove that
collapsing them can change the accept/reject result
— find a specific string x such that:

starting from state A, following edges according to x ends in accept
starting from state B, following edges according to x ends in reject

— (algorithm below could be modified to show these strings)

State Minimization Algorithm

1. Put states into groups based on their outputs
(whether they accept or reject)

State Minimization Algorithm

1. Put states into groups based on their outputs
(whether they accept or reject)

2. Repeat the following until no change happens

a. If there is a symbol s so that not all states in a group
G agree on which group s leads to, split G into smaller
groups based on which group the states gotoon s

3. Finally, convert groups to states

State Minimization Example

present next state output
state 0 1 2 3
SO SO0 ST S2 S3 1
S1 SO S3 S1 S5 0
S2 S1 S3 S2 S4 1
S3 S1 SO S4 S5 0
S4 SO S1 S2 S5 1
S5 S1 S4 SO S5 0
state

transition table

Put states into groups based on their
outputs (or whether they accept or reject)

State Minimization Example

present next state output
state 0 1 2 3

0 2 SO SO SI S2 S3 T
A 0 A S1 SO S3 S1 S5 0
SO)< (S1 S2 S1 S3 S2 S4 1
[1] T »\ [0] S3 S1 SO S4 S5 0
1
0

2 3 sS4 SO S1 S2 S5
S5 S1 S4 SO S5
N\l
' . v state
s2 ‘ s3 transition table
[1] X [0]
2~ T3 3 Put states into groups based on their

outputs (or whether they accept or reject)

0 S4 »/ S5 ‘
[l) —\ 0]

State Minimization Example

transition table

0

[1]

present next state output
state 0 1 2 3
0 2 SO SO SI S2 S3 T
A 0 A S1 SO S3 S1 S5 0
S0)< (S1 S2 S1 S3 S2 S4 1
[1] T »\ [0] S3 S1 SO S4 S5 0
2 S4 SO S1 S2 S5 1
S5 S1 S4 SO S5 0
\ o |1
! state

Put states into groups based on their
outputs (or whether they accept or reject)

If there is a symbol s so that not all states in
a group G agree on which group s leads to,
split G based on which group the states go

toons

State Minimization Example

transition table

present next state output
state o 1 2 3
a% N2 S0 S0 ST 52 S3[1
o S1 SO S3 S1 S5 0O
S0\« & 52 S1 S3 S2 sS4 1
[) -\ [0] S3 S1 SO S4 S5 0O
) \ 5 54 SO S1 S2 s5| 1
S5 S1 S4 SO S5 0O
Nl
b L] state

N
N

0 sS4 >
A —

toons

Put states into groups based on their
outputs (or whether they accept or reject)

If there is a symbol s so that not all states in
a group G agree on which group s leads to,
split G based on which group the states go

State Minimization Example

present next state output
state o 1 2 3
a% MN\? S0 S0 ST 52 S3[1
o S1 SO S3 S1 S5 0O
S0\« & 52 S1 S3 S2 sS4 1
[o\ [S3 S1 SO S4 S5 0O
) \ 54 SO S1 S2 s5| 1
S5 S1 S4 SO S5 0O
‘ 1
. state

transition table

0

[1]

Put states into groups based on their
outputs (or whether they accept or reject)

If there is a symbol s so that not all states in
a group G agree on which group s leads to,
split G based on which group the states go

toons

State Minimization Example

transition table

present next state output
state o 1 2 3
N\ a% 50 S0 ST 52 S3[1
o 51 SO S3 S1 S5| O
50\« & 52 S1 S3 S2 s4| 1
[1] j—p—\ [0] 53 S1 SO S4 S5| O
) \) 54 SO S1 S2 S5 1
‘ ’ S5 S1 S4 SO S5| O
NG ||
‘gl state
S3

(8

[1] [0]
2 A | 3 3
2 2
;4' 3
)

Put states into groups based on their
outputs (or whether they accept or reject)

L A (o : If there is a symbol s so that not all states in
! 3 a group G agree on which group s leads to,
split G based on which group the states go

toons

State Minimization Example

{

2

0

Ay
T
\

5

present next state output
state 0 1 2 3
SO SO0 ST S2 S3 1
S1 SO S3 S1 S5 0
S2 S1 S3 S2 S4 1
S3 S1 SO S4 S5 0
S4 SO S1 S2 S5 1
S5 S1 S4 SO S5 0
state

transition table

Put states into groups based on their
outputs (or whether they accept or reject)

If there is a symbol s so that not all states in
a group G agree on which group s leads to,
split G based on which group the states go
toons

State Minimization Example

present next state output
state 0 1 2 3
0 2 SO SO0 S1 S3 il
A 0 A S1 SO S3 S1 S5 0
S0)< (s1 S1 S3 sS4 1
[1] T —\ [0] S3 S1 SO S4 S5 0
5 3 S4 SO0 S1 S5 1
S5 S1 S4 SO S5 0
NVl
! state

0 S4 >
[l) —\ 0]

transition table

and all S5 with S3

Finally convert groups to states:

Can combine states S0-S4 and
S3-S5.

In table replace all S4 with SO

Minimized Machine

present next state output
state 0 1 2 3
SO S0 S1 S3 T
S1 SO S3 S1 S3 0
S1 S3 SO 1
S3 S1 SO SO S3 0
state

transition table

A Simpler Minimization Example

0 0
oo, v
—)
1

The set of all binary strings with # of 1’s = # of 0’s (mod 2).

A Simpler Minimization Example

1 S Split states into
< @ accept/reject groups

1o T 4o
0 0 Every symbol causes
L1 X the DFA to go from one
@ < @ group to the other so
1 neither group needs to

be split

Minimized DFA

0,1
)—
< S,

0,1

The set of all binary strings with # of 1’s = # of 0’s (mod 2).

= The set of all binary strings with even length.

Nondeterministic Finite Automata (NFA)

 Graph with start state, final states, edges labeled
by symbols (like DFA) but

— Not required to have exactly 1 edge out of each state
labeled by each symbol— can have O or >1

— Also can have edges labeled by empty string ¢

* Definition: xis in the language recognized by an
NFA if and only if some valid execution of the
machine gets to an accept state

OO0 O
® e

0,1 0,1

Consider This NFA

What language does this NFA accept?

Consider This NFA

What language does this NFA accept?

10(10)* U 111 (0 U 1)*

NFA s-moves

NFA s-moves

Strings over {0,1,2} w/even # of 2’s OR sum to O mod 3

NFA for set of binary strings with a 1 in the 3" position from the end

NFA for set of binary strings with a 1 in the 3" position from the end

0,1
*Zi——%l e Oaae O
S

Compare with the smallest DFA

0,1
Ef 1 C 0,1 e 0,1 e
S

Summary of NFAs

e Generalization of DFAs

— drop two restrictions of DFAs
— every DFA is an NFA

« Seem to be more powerful
— designing is easier than with DFAs

 Seem related to regular expressions

