CSE 311: Foundations of Computing

Lecture 15: Induction




Modular Exponentiation mod 7
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Exponentiation

* Compute 783658143

 Compute 78365814>3 mod 104729

* Qutput is small
— need to keep intermediate results small



Repeated Squaring - small and fast

Sincebmodm =,, bandcmodm =,,, ¢

we have bc mod m = (b mod m)(c mod m) mod m

So

and
and
and
and

a?modm = (a modm)? modm
a*modm = (a2 mod m)? mod m
a8 modm = (a* mod m)? modm
at®* mod m = (a® mod m)? mod m

a32mod m = (a'®* mod m)? mod m

Can compute a* mod m for k = 2t in only i steps
What if k is not a power of 2?



Fast Exponentiation Algorithm

81453 in binary is 10011111000101101
81453 =210 + 213 + 212 + 211 + 210 + 29+ 25+ 23 + 22 + 20

16 13 12 11 10 9 5 3 2 0
a81453 - a2 . a2 . a2 . a2 . a2 . a2 . a2 . a2 . a2 . a2

gs814s3 mod m=
(--((((2%"> mod m -

13
a2 Jnod m) mod m -
a2"’ 1r1n0d m) mod m - Uses only 16 + 9 = 25
a2’ mod m) mod m - multiplications

a2" mod m) mod m -
a2’ mod m) mod m -
a2’ mod m) mod m -
a2’ mod m) mod m -
a2 mod m) mod m -
a2’ mod m) mod m

The fast exponentiation algorithm computes
a® mod m using < 2log k multiplications mod m



Fast Exponentiation: a* mod m for all k

Another way....

. . 2
a’modm = (af mod m) mod m

a*’*Imodm = ((a mod m) - (a¥ mod m)) mod m



Fast Exponentiation

public static int FastModExp(int a, int k, int modulus) {

if (k == 0) {
return 1;

} else if ((k % 2) == 0) {
long temp = FastModExp(a,k/2,modulus);
return (temp * temp) % modulus;

} else {

long temp = FastModExp(a,k-1,modulus);
return (a * temp) % modulus;

a*’mod m = (a’ mod m)zmod m
a**Imodm = ((a modm) - (a¥ mod m)) mod m



Using Fast Modular Exponentiation

* Your e-commerce web transactions use SSL
(Secure Socket Layer) based on RSA encryption

 RSA

— Vendor chooses random 512-bit or 1024-bit primes p, q
and 512/1024-bit exponent e. Computes m = p - q

— Vendor broadcasts (m, e)

— To send a to vendor, you compute C = a® mod m using
fast modular exponentiation and send C to the vendor.

— Using secret p, q the vendor computes d that is the
multiplicative inverse of e mod (p — 1)(q — 1).

— Vendor computes €% mod m using fast modular
exponentiation.

— Fact: a = C%modm for0 < a < munless p|aorqg|a



More Logic
Induction



Mathematical Induction

Method for proving statements about all natural numbers

— A new logical inference rule!
* It only applies over the natural numbers

 The idea is to use the special structure of the naturals
to prove things more easily

— Particularly useful for reasoning about programs!
for (int i=0; i < n; n++) { .. }
* Show P(i) holds after i times through the loop



Prove va,bm>0vVkeN ((a=,, b) » (ak =mn bk))

Let a, b, m > 0 be arbitrary. Let k € N be arbitrary.
Suppose that a =,,, b.

We know ((a =,,, b) A (a =, b)) — (a?=,, b?) by multiplying
congruences. So, applying this repeatedly, we have:

((@a=m b)A(a =, b)) - (a bz)
((@*=m b*) A(a =y b)) - m b*)

(@1 = 1) A (@ = b)) = (@ S bY)

The “...”sis a problem! We don’t have a proof rule that
allows us to say “do this over and over”.



But there such a property of the natural numbers!

Domain: Natural Numbers

P(0)
vk (P(k) — P(k + 1))

. Vn P(n)




Induction Is A Rule of Inference

Domain: Natural Numbers P(0)
vk (P(k) — P(k + 1))

~Vn P(n)

How do the givens prove P(3)?



Induction Is A Rule of Inference

Domain: Natural Numbers P(0)
vk (P(k) — P(k + 1))

~Vn P(n)

How do the givens prove P(5)?

P(0)—P(1) P(1)-P(2) P(2)-P(3) P(3)—P(4) P(4)—P(5)

N N N N N
P(0) P(1) P2 P@3) PM#)  P(®5)

First, we have P(0).
Since P(n) — P(n+1) for all n, we have P(0) — P(1).

Since P(0) is true and P(0) — P(1), by Modus Ponens, P(1) is true.
Since P(n) — P(n+1) for all n, we have P(1) — P(2).

Since P(1) is true and P(1) — P(2), by Modus Ponens, P(2) is true.



Using The Induction Rule In A Formal Proof

P(0)
vk (P(k) — P(k + 1))

. Vn P(n)




Using The Induction Rule In A Formal Proof

P(0)
vk (P(k) — P(k + 1))

. Vn P(n)

1. P(0)

4. Vk(P(k) — P(k+1))
5. VnP(n) Induction: 1, 4



Using The Induction Rule In A Formal Proof

P(0)
vk (P(k) — P(k + 1))

. Vn P(n)

1. P(0)
2. Let k be an arbitrary integer >0

3. P(k) > P(k+1)
4. Vk(P(k) > P(k+1)) IntroV: 2, 3
5. VnP(n) Induction: 1, 4



Using The Induction Rule In A Formal Proof

P(0)
vk (P(k) — P(k + 1))

. Vn P(n)

1. P(0)
2. Let k be an arbitrary integer >0
3.1. P(k) Assumption
3.2. ..
3.3. P(k+1)
3. P(k) > P(k+1) Direct Proof Rule
4. Vk(P(k) > P(k+1)) IntroV: 2, 3
5. VnP(n) Induction: 1, 4



Translating to an English Proof

P(0)
vk (P(k) — P(k+ 1))
. Vn P(n)

1. Prove P(0) Base Case

2. Let k be an arbitrary integer >0
3.1. Suppose that P(k) is true

Inductive
Hypothesis

3.2. ... Inductive
3.3. Prove P(k+1) is true Step
3. P(k) > P(k+1) Direct Proof Rule
4. Yk (P(k) > P(k+1)) Intro V: 2, 3

5. Vn P(n) Induction: 1, 4



Translating to an English Proof

1. Prove P(0) Base Case

2. Let k be an arbitrary integer 20 Inductive
3.1. Assume that P(k) is true | Hypothesis
3.2. .. Inductive
3.3. Prove P(k+1) is true Step

3. P(k) > P(k+1) Direct Proof Rule

4. Vk (P(k) > P(k+1)) Intro V: 2, 3

5. ¥nP(n) Induction: 1, 4

Induction English Proof Template
[...Define P(n)...]
We will show that P(n) is true for every n € N by Induction.

Base Case: [...proof of P(0) here...]
Induction Hypothesis:

Suppose that P (k) is true for an arbitrary k € N.
Induction Step:

[...proof of P(k + 1) here...]

The proof of P(k + 1) must invoke the IH somewhere.
So, the claim is true by induction.




Inductive Proofs In 5 Easy Steps

Proof:

1. “Let P(n) be... . We will show that P(n) is true for every
n = 0 by Induction.”

2. “Base Case:” Prove P(0)
3. “Inductive Hypothesis:
Suppose P (k) is true for an arbitrary integer k > 0”
4. “Inductive Step:” Prove that P(k + 1) is true.
Use the goal to figure out what you need.
Make sure you are using I.H. and point out where you are
using it. (Don’t assume P(k + 1) !))
5. “Conclusion: Result follows by induction”



Whatis1 + 2 + 4 + ... + 2™?

.« 1 = 1
¢ 1+ 2 = 3
1 +2+4 = 7
c14+24+4+48 = 15

*1+2+ 4+ 38+ 16 31

It sure looks like this sum is 21 — 1
How can we prove it?

We could prove itforn =1,n=2,n =3, ... but
that would literally take forever.

Good that we have induction!



Provel + 2 + 4 + ... + 2n =2n+l_1




Provel + 2 + 4 + ... + 2n =2n+l_1

1. LetP(n)be “20+ 21+ .. +2"=2"1-1" We will show P(n) is true
for all natural numbers by induction.



Provel + 2 + 4 + ... + 2n =2n+l_1

1. LetP(n)be “20+ 21+ ... +2"=2"1-1" We will show P(n) is true
for all natural numbers by induction.

2. Base Case (n=0): 2°=1=2-1=2%1-1s0P(0)is true.



Provel + 2 + 4 + ... + 2n =2n+l_1

1. LetP(n)be “20+ 21+ ... +2"=2"1-1" We will show P(n) is true
for all natural numbers by induction.
2. Base Case (n=0): 2°=1=2-1=2%1-1s0 P(0)is true.

3. Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k >0, i.e., that|2° + 21 + ... + 2k = 2k+1 — 1,




Provel + 2 + 4 + ... + 2n =2n+l_1

1.

N

Let P(n) be “20+ 21+ ...+ 2" =2"1—-1", We will show P(n) is true
for all natural numbers by induction.

Base Case (n=0): 2°=1=2-1=2%1-1s0P(0)is true.
Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k >0, i.e., that 20 + 21 + ... + 2k = 2k+1 — 1,

Induction Step:
Goal: Show P(k+1), i.e. show 20 + 21 + ... + 2k 4 2k+1 = Jk+2 _ 1




Provel + 2 + 4 + ... + 2n =2n+l_1

1.

N

Let P(n) be “20+ 21+ ...+ 2" =2"1—-1", We will show P(n) is true
for all natural numbers by induction.

Base Case (n=0): 2°=1=2-1=2%1-1so0P(0)is true.

Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k >0, i.e., that 20 + 21 + ... + 2k = 2k+1 — 1,

Induction Step:
204214+ | +2k=2k1_-1 pylH
Adding 21 to both sides, we get:
20+ 21+ + 2k 4 2k+l = Dkt 4 D+l _q
Note that 2k+1 + 2k+1 = 2(2k+1) = Qk+2,
So, we have 20 + 21 + . + 2k + 2k+1 = Jk+2 _ 1 which is
exactly P(k+1).



Provel + 2 + 4 + ... + 2n =2n+l_1

1.

N

Let P(n) be “20+ 21+ ...+ 2" =2"1—-1", We will show P(n) is true
for all natural numbers by induction.

Base Case (n=0): 2°=1=2-1=2%1-1so0P(0)is true.

Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k >0, i.e., that 20 + 21 + ... + 2k = 2k+1 — 1,

Induction Step:
We can calculate
20421+ |+ 2k + 2k 1 = (204214 |+ 2Kk) 4 2k+1
= (2k+1 — 1) + 2k+1 by the IH
— 2(2k+1) -1
— 2k+2 - 1’
which is exactly P(k+1).

Alternative way of writing the inductive step



Provel + 2 + 4 + ... + 2n =2n+l_1

1.

N

Let P(n) be “20+ 21+ ...+ 2" =2"1—-1", We will show P(n) is true
for all natural numbers by induction.
Base Case (n=0): 2°=1=2-1=2%1-1s0P(0)is true.

Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k >0, i.e., that 20 + 21 + ... + 2k = 2k+1 — 1,

Induction Step:
We can calculate
20421+ |+ 2k + 2k 1 = (204214 |+ 2Kk) 4 2k+1
= (2k+1 — 1) + 2k+1 by the IH
— 2(2k+1) -1
— 2k+2 - 1’
which is exactly P(k+1).

5. Thus P(n) is true for all n €N, by induction.



Provel + 2 +3 + ..+ n=nn+1)/2




Prove 1 +2 +3 4+ ..+ n=nn+1)/2

1. LetP(n)be “0+1+2+..+n=n(n+1)/2". We will show P(n) is
true for all natural numbers by induction.



Prove 1 +2 +3 4+ ..+ n=nn+1)/2

1. LetP(n)be “0+1+2+..+n=n(n+1)/2". We will show P(n) is
true for all natural numbers by induction.

2. Base Case (n=0): 0=0(0+1)/2. Therefore P(0) is true.



Prove 1 +2 +3 4+ ..+ n=nn+1)/2

1. LetP(n)be “0+1+2+..+n=n(n+1)/2". We will show P(n) is
true for all natural numbers by induction.
2. Base Case (n=0): 0=0(0+1)/2. Therefore P(0) is true.

3. Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 0.‘I.e., suppose 1 +2 + ..+ k =k(k+1)/2




Prove 1 + 2+ 3 4+ ... + n

nn+1)/2

1.

N

Let P(n)be “0+1+2+..+n=n(n+1)/2"”. We will show P(n) is
true for all natural numbers by induction.
Base Case (n=0): 0=0(0+1)/2. Therefore P(0) is true.

Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 0. l.e., suppose 1 + 2 + ...+ k = k(k+1)/2

Induction Step:

Goal: Show P(k+1), i.e. show 1 + 2 + ...+ k+ (k+1) = (k+1)(k+2)/2




Prove 1 + 2+ 3 4+ ... + n

nn+1)/2

1.

N

Let P(n)be “0+1+2+..+n=n(n+1)/2"”. We will show P(n) is
true for all natural numbers by induction.
Base Case (n=0): 0=0(0+1)/2. Therefore P(0) is true.

Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 0. l.e., suppose 1 + 2 + ...+ k = k(k+1)/2

Induction Step:
1+2+ ... +k+(k+t1)=(1+2+..+k)+ (k+1)
= k(k+1)/2 + (k+1) by IH
= (k+1)(k/2 + 1)
= (k+1)(k+2)/2
So, we have shown 1 + 2 + ... + k + (k+1) = (k+1)(k+2)/2,
which is exactly P(k+1).

5. Thus P(n) is true for all n €N, by induction.



Another example of a pattern

¢ 20— 1 1—-—1=0=3-0
e 22—-1=4 —-1=3=3-1

e 24—-—1=16—-1=15 = 3-5
¢« 260—1=64—-1=63 =321
e 28— 1 =256 —1 = 255 =3-85



Prove: 3| (2°™"—1) foralln = 0




Prove: 3| (2°™"—1)foralln = 0

1. Let P(n) be “3 | (22"—1)". We will show P(n) is true for all
natural numbers by induction.



Prove: 3| (2°™"—1)foralln = 0

1. Let P(n) be “3 | (22"—1)". We will show P(n) is true for all
natural numbers by induction.

2. Base Case (n=0): 2%9-1=1-1=0=3-0 Therefore P(0) is true



Prove: 3| (2°™"—1) foralln = 0

1. Let P(n) be “3 | (22"—1)". We will show P(n) is true for all
natural numbers by induction.

2. Base Case (n=0): 2%9-1=1-1=0=3-0 Therefore P(0) is true.

3. Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 0./l.e., suppose that 3 | (22— 1)




Prove: 3| (2°™"—1) foralln = 0

1.

Let P(n) be “3 | (22"—1)"”. We will show P(n) is true for all
natural numbers by induction.

Base Case (n=0): 220-1=1-1=0=3-0 Therefore P(0) is true.

Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 0. l.e., suppose that 3 | (22— 1)

Induction Step:
Goal: Show P(k+1), i.e. show 3 | (22(k+1)— 1)




Prove: 3| (2°™"—1)foralln = 0

1.

Let P(n) be “3 | (22"—1)"”. We will show P(n) is true for all
natural numbers by induction.

Base Case (n=0): 220-1=1-1=0=3-0 Therefore P(0) is true.

Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 0. l.e., suppose that 3 | (22— 1)

Induction Step:
By IH, 3 | (22— 1) so 2%k— 1 = 3j for some integer |
So 221 — 1 = 222 1 = 4(22K) — 1 = 4(3j+1) — 1

= 12j+3 = 3(4j+1)
Therefore 3 | (22(k*1)— 1) which is exactly P(k+1).

5. Thus P(n) is true for all n € N, by induction.



