
CSE 311: Foundations of Computing

Lecture 13:  Primes, GCD



Last Time: Modular Arithmetic
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Replace number line with a clock.
Taking m steps returns to the same place.

(a + b) mod 7
(a ´ b) mod 7

Makes the answers small since 0 ≤ 𝑟 < 𝑚
Unclear (so far) that modular arithmetic has 
the same properties as ordinary arithmetic....

𝑥 = 𝑞𝑚 + 𝑟

full rotations

where you stop

𝑞 = 𝑥 div 𝑚

𝑟 = 𝑥mod𝑚



Last Time: Modular Arithmetic

For 𝑎, 𝑏,𝑚 ∈ ℤ with 𝑚 > 0
𝑎 ≡! 𝑏 ↔ 𝑚 | (𝑎 − 𝑏)

Definition: “a is congruent to b modulo m”

Idea: Find replacement for “=” that works for modular arithmetic

“=” on ordinary numbers allows us to solve problems, e.g.
• add / subtract numbers from both sides of equations
• substitute “=” values in equations

Equivalently, 𝑎 ≡& 𝑏 iff 𝑎 = 𝑏 + 𝑘𝑚 for some 𝑘 ∈ ℤ.



Last Time: Modular Arithmetic

For 𝑎, 𝑏,𝑚 ∈ ℤ with 𝑚 > 0
𝑎 ≡! 𝑏 ↔ 𝑚 | (𝑎 − 𝑏)

Definition: “a is congruent to b modulo m”

𝒂 ≡& 𝒃 if and only if 𝒂𝐦𝐨𝐝𝒎 = 𝒃𝐦𝐨𝐝𝒎.

I.e., 𝒂 and 𝒃 are congruent modulo m iff 𝒂 and 𝒃 steps
stop at the same spot on the “clock” with m numbers



Last Time: Modular Arithmetic: Properties

If 𝒂 ≡& 𝒃 and 𝒃 ≡& 𝒄, then 𝒂 ≡& 𝒄

If 𝒂 ≡& 𝒃 and 𝒄 ≡& 𝒅, then 𝒂 + 𝒄 ≡& 𝒃 + 𝒅

If 𝒂 ≡& 𝒃, then 𝒂 + 𝒄 ≡& 𝒃 + 𝒄Corollary:

If 𝒂 ≡& 𝒃 and 𝒄 ≡& 𝒅, then 𝒂𝒄 ≡& 𝒃𝒅

If 𝒂 ≡& 𝒃, then 𝒂𝒄 ≡& 𝒃𝒄Corollary:



Last Time: Modular Arithmetic: Properties

“≡” allows us to solve problems in modular arithmetic, e.g.
• add / subtract numbers from both sides of equations
• chains of “≡” values shows first and last are “≡”
• substitute “≡ ” values in equations (not fully proven yet)

If 𝒂 ≡& 𝒃 and 𝒃 ≡& 𝒄, then 𝒂 ≡& 𝒄

If 𝒂 ≡& 𝒃, then 𝒂 + 𝒄 ≡& 𝒃 + 𝒄

If 𝒂 ≡& 𝒃, then 𝒂𝒄 ≡& 𝒃𝒄



Substitution Follows From Other Properties

Given 2𝑦 + 3𝑥 ≡! 25 and 𝑥 ≡! 7,
show that 2𝑦 + 21 ≡! 25. (substituting 7 for 𝑥)

Start from 𝑥 ≡! 7

Multiply both sides 3𝑥 ≡! 21

Add to both sides 2y + 3𝑥 ≡! 2𝑦 + 21

Combine ≡!’s 2𝑦 + 21 ≡! 2y + 3𝑥 ≡! 25



Basic Applications of mod

• Two’s Complement
• Hashing 
• Pseudo random number generation



• Represent integer 𝑥 as sum of powers of 2:

99 = 64 + 32 + 2 + 1 = 26 + 25 + 21 + 20

18 = 16 + 2 = 24 + 21

If 𝑏!"#2!"# +⋯+ 𝑏#2 + 𝑏$ with each 𝑏𝑖 ∈ 0,1
then binary representation is bn-1...b2 b1 b0

• For n = 8:
99:    0110 0011
18:    0001  0010

n-bit Unsigned Integer Representation

Easy to implement arithmetic 𝐦𝐨𝐝 𝟐𝒏
... just throw away bits n+1 and up

2( | 2()* so    𝑏()*2()* ≡+! 0
for 𝑘 ≥ 0



n-bit Unsigned Integer Representation

• Largest representable number is 2! − 1

2n = 100…000 (n+1 bits)
2n – 1 = 011…111 (n bits)

32 bits
1 = $0.0001
$429,496.7295 max

Note: 2n – 1 = 111…111



Sign-Magnitude Integer Representation

𝑛-bit signed integers
Suppose that −2&'( < 𝑥 < 2&'(
First bit as the sign, 𝑛 − 1 bits for the value

99 = 64 + 32 + 2 + 1
18 = 16 + 2

For n = 8:
99:    0110 0011
-18:   1001  0010

Any problems with this representation?



Two’s Complement Representation

Suppose that 0 ≤ 𝑥 < 2!"#
𝑥 is represented by the binary representation of 𝑥

Suppose that −2!"#≤ 𝑥 < 0
𝑥 is represented by the binary representation of 𝑥 + 2!
result is in the range 2!"# ≤ 𝑥 < 2!

2!"#0−1−2!"# 2!

+2(

0 1 2 3 4 5 6 7 -8 -7 -6 -5 -4 -3 -2 -1

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111



Two’s Complement Representation

Suppose that 0 ≤ 𝑥 < 2!"#
𝑥 is represented by the binary representation of 𝑥

Suppose that −2!"#≤ 𝑥 < 0
𝑥 is represented by the binary representation of 𝑥 + 2!
result is in the range 2!"# ≤ 𝑥 < 2!

99 = 64 + 32 + 2 + 1
18 = 16 + 2

For n = 8:
99:    0110 0011
-18:    1110 1110 (-18 + 256 = 238)

0 1 2 3 4 5 6 7 -8 -7 -6 -5 -4 -3 -2 -1

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111



Two’s Complement Representation

Suppose that 0 ≤ 𝑥 < 2!"#
𝑥 is represented by the binary representation of 𝑥

Suppose that −2!"#≤ 𝑥 < 0
𝑥 is represented by the binary representation of 𝑥 + 2!
result is in the range 2!"# ≤ 𝑥 < 2!

Key property: Twos complement representation of any number 𝒚
is equivalent to 𝒚𝐦𝐨𝐝 𝟐𝒏 so arithmetic works 𝐦𝐨𝐝 𝟐𝒏

Key property: First bit is still the sign bit!

0 1 2 3 4 5 6 7 -8 -7 -6 -5 -4 -3 -2 -1

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111



Two’s Complement Representation

• For                         ,  −𝑥 is represented by the 
binary representation of 2! − 𝑥
– How do we calculate –x from x?
– E.g., what happens for “return –x;” in Java?

• To compute this, flip the bits of 𝑥 then add 1!
– All 1’s string is  2& − 1, so

Flip the bits of 𝑥 º replace 𝑥 by 2& − 1 − 𝑥
Then add 1 to get 2& − 𝑥

2( − 𝑥 = 2( − 1 − x + 1



Hashing

Scenario:  
Map a small number of data values from a large 
domain 0, 1,… ,𝑀 − 1 ...
...into a small set of locations 0,1,… , 𝑛 − 1 so 
one can quickly check if some value is present

• hash 𝑥 = 𝑥 mod 𝑝 for 𝑝 a prime close to 𝑛
– or hash 𝑥 = (𝑎𝑥 + 𝑏) mod 𝑝

• Depends on all of the bits of the data 
– helps avoid collisions due to similar values
– need to manage them if they occur



Hashing

• hash 𝑥 = 𝑥 mod 𝑝 for 𝑝 a prime close to 𝑛
• deterministic function with random-ish behavior

• Applications
– map integer to location in array (hash tables)
– map user ID or IP address to machine

requests from the same user / IP address go to the same machine
requests from different users / IP addresses spread randomly



Pseudo-Random Number Generation

Linear Congruential method

𝑥!"# = 𝑎 𝑥! + 𝑐 mod𝑚

Choose random 𝑥1, 𝑎, 𝑐, 𝑚 and produce
a long sequence of 𝑥&’s



More Number Theory
Primes and GCD



Primality

An integer p greater than 1 is called prime if the 
only positive factors of p are 1 and p.

A positive integer that is greater than 1 and is not 
prime is called composite.

𝑝 > 1 Ù ∀x ∈ ℕ ((𝑥 | 𝑝)® ((𝑥 = 1) ∨ (𝑥 = 𝑝)))

𝑝 > 1 Ù ∃x ∈ ℕ ((𝑥 | 𝑝) Ù (𝑥 ≠ 1) Ù (𝑥 ≠ 𝑝))



Fundamental Theorem of Arithmetic

Every positive integer greater than 1 has a 
“unique” prime factorization

48 =  2 • 2 • 2 • 2 • 3
591 = 3 • 197
45,523 = 45,523
321,950 = 2 • 5 • 5 • 47 • 137
1,234,567,890 = 2 • 3 • 3 • 5 • 3,607 • 3,803



Euclid’s Theorem

There are an infinite number of primes.
Proof by contradiction:

Suppose that there are only a finite number of primes 
and call the full list 𝑝", 𝑝#, … , 𝑝$.



Euclid’s Theorem

There are an infinite number of primes.
Proof by contradiction:

Suppose that there are only a finite number of primes 
and call the full list 𝑝", 𝑝#, … , 𝑝$.
Define the number 𝑃 = 𝑝"3 𝑝# 3 𝑝% 3 ⋯ 3 𝑝$ and let 

𝑄 = 𝑃 + 1.



Euclid’s Theorem

There are an infinite number of primes.
Proof by contradiction:

Suppose that there are only a finite number of primes 
and call the full list 𝑝", 𝑝#, … , 𝑝$.
Define the number 𝑃 = 𝑝"3 𝑝# 3 𝑝% 3 ⋯ 3 𝑝$ and let 

𝑄 = 𝑃 + 1. (Note that 𝑄 > 1.)
Case 1: 𝑄 is prime: Then 𝑄 is a prime different from 
all of 𝑝", 𝑝#, … , 𝑝$ since it is bigger than all of them.
Case 2: 𝑄 is not prime:  Then 𝑄 has some prime 
factor 𝑝 (which must be in the list).   Therefore 𝑝|𝑃
and 𝑝|𝑄 so 𝑝| 𝑄 – 𝑃 which means that 𝑝|1.
Both cases are contradictions,
so the assumption is false (proof by cases).



Famous Algorithmic Problems

• Primality Testing
– Given an integer 𝑛, determine if 𝑛 is prime

• Factoring
– Given an integer 𝑛, determine the prime 

factorization of 𝑛



Factoring

Factor the following 232 digit number [RSA768]:

123018668453011775513049495838496272077
285356959533479219732245215172640050726
365751874520219978646938995647494277406
384592519255732630345373154826850791702
612214291346167042921431160222124047927
4737794080665351419597459856902143413



12301866845301177551304949583849627207728535695953347
92197322452151726400507263657518745202199786469389956
47494277406384592519255732630345373154826850791702612
21429134616704292143116022212404792747377940806653514
19597459856902143413

334780716989568987860441698482126908177047949837
137685689124313889828837938780022876147116525317
43087737814467999489

367460436667995904282446337996279526322791581643
430876426760322838157396665112792333734171433968
10270092798736308917



Greatest Common Divisor

GCD(a, b): 
Largest integer 𝑑 such that 𝑑 ∣ 𝑎 and 𝑑 ∣ 𝑏

• GCD(100, 125) = 
• GCD(17, 49) = 
• GCD(11, 66) =
• GCD(13, 0) = 
• GCD(180, 252) =

𝑑 is GCD  iff (𝑑 ∣ 𝑎) Ù (𝑑 ∣ 𝑏) Ù ∀𝑥 ∈ ℕ (((𝑥 ∣ 𝑎) Ù (𝑥 ∣ 𝑏))® (𝑥 ≤ 𝑑))



GCD and Factoring

a = 23 • 3 • 52 • 7 • 11 = 46,200

b = 2 • 32 • 53 • 7 • 13 = 204,750

GCD(a, b) = 2min(3,1) • 3min(1,2) • 5min(2,3) • 7min(1,1) • 11min(1,0) • 13min(0,1)

Factoring is expensive!    
Can we compute GCD(a,b) without factoring?



Useful GCD Fact

Let a and b be positive integers.
We have gcd(a,b) = gcd(b, a mod b)

Proof:
We will show that every number dividing 𝑎 and 𝑏 also divides 𝑏 and 𝑎 mod 𝑏.
I.e. 𝑑|𝑎 and 𝑑|𝑏 iff 𝑑|𝑏 and 𝑑|(𝑎 mod 𝑏).

Hence, their set of common divisors are the same,
which means that their greatest common divisor is the same.



Useful GCD Fact

Let a and b be positive integers.
We have gcd(a,b) = gcd(b, a mod b)

Proof:
By definition of mod, 𝑎 = 𝑞𝑏 + (𝑎 mod 𝑏) for some integer 𝑞 = 𝑎 div 𝑏.  

Suppose 𝑑|𝑏 and 𝑑|(𝑎 mod 𝑏).
Then 𝑏 = 𝑚𝑑 and (𝑎 mod 𝑏) = 𝑛𝑑 for some integers 𝑚 and 𝑛.    
Therefore  𝑎 = 𝑞𝑏 + (𝑎 mod 𝑏) = 𝑞𝑚𝑑 + 𝑛𝑑 = 𝑞𝑚 + 𝑛 𝑑.
So 𝑑|𝑎.

Suppose 𝑑|𝑎 and 𝑑|𝑏.
Then 𝑎 = 𝑘𝑑 and 𝑏 = 𝑗𝑑 for some integers 𝑘 and 𝑗.
Therefore (𝑎 mod 𝑏) = 𝑎 –𝑞𝑏 = 𝑘𝑑 –𝑞𝑗𝑑 = (𝑘 – 𝑞𝑗)𝑑. 
So, 𝑑|(𝑎 mod 𝑏) also.

Since they have the same common divisors, gcd(𝑎, 𝑏) = gcd(𝑏, 𝑎 mod 𝑏).



Another simple GCD fact

Let a be a positive integer.
We have gcd(a,0) = a.



Euclid’s Algorithm

gcd(a, b) = gcd(b, a mod b)   gcd(a, 0) = a

int gcd(int a, int b){ /* Assumes: a >= b, b >= 0 */
if (b == 0) {

return a;
} else {

return gcd(b, a % b);
}

}

Note: gcd(b, a) = gcd(a, b)



Euclid’s Algorithm

gcd(660,126) =

Repeatedly use gcd 𝑎, 𝑏 = gcd 𝑏, 𝑎 mod 𝑏 to reduce 
numbers until you get gcd(𝑔, 0) = 𝑔.

gcd(660,126) 



Euclid’s Algorithm

gcd(660,126) = gcd(126, 660 mod 126) = gcd(126, 30)
= gcd(30, 126 mod 30) = gcd(30, 6)
= gcd(6, 30 mod 6) = gcd(6, 0)
= 6

gcd(660,126) 

Repeatedly use gcd 𝑎, 𝑏 = gcd 𝑏, 𝑎 mod 𝑏 to reduce 
numbers until you get gcd(𝑔, 0) = 𝑔.


