CSE 311: Foundations of Computing

Lecture 13: Primes, GCD
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Last Time: Modular Arithmetic

(@a+ b)mod 7
(@a x b) mod 7

Replace number line with a clock.
Taking m steps returns to the same place.

where you stop r = xmodm
X=qm-+r
full rotations q =xdivm

Makes the answers smallsince 0 <r <m

Unclear (so far) that modular arithmetic has
the same properties as ordinary arithmetic....



Last Time: Modular Arithmetic

Idea: Find replacement for “=" that works for modular arithmetic

“=" on ordinary numbers allows us to solve problems, e.g.
* add / subtract numbers from both sides of equations
* substitute “=" values in equations

Definition: “a is congruent to b modulo m”

Fora,b,m € Z withm > 0

a=,b o m|(a —b)
- J

Equivalently, a =,,, b iff a = b + km for some k € Z.



Last Time: Modular Arithmetic

Definition: “a is congruent to b modulo m”

Fora,b,m € Z withm > 0
a=,b o m|(a —b)

a=,, bifand only ifamodm = b mod m.

l.e., a and b are congruent modulo m iff a and b steps
stop at the same spot on the “clock” with m numbers



Last Time: Modular Arithmetic: Properties

fa=,,band b =,, c,thena =, c

fa=,bandc=,d,thena+c=,,b+d

Corollary: |[Ifa=,, b,thena+c=,, b+

Ifa=,, bandc =,, d, then ac =,,, bd

Corollary: | If a =, b, then ac =,,, bc




Last Time: Modular Arithmetic: Properties

fa=,,band b =,, c,thena =, c

Ifa=,, b,thena+c=,,b+c

If a =,,, b, then ac =,,, bc

“=" allows us to solve problems in modular arithmetic, e.g.
 add / subtract numbers from both sides of equations
* chains of “=" values shows first and last are “="
* substitute “= " values in equations (not fully proven yet)



Substitution Follows From Other Properties

Given 2y +3x =,, 25and x =,,, 7,
show that 2y + 21 =,,, 25. (substituting 7 for x)

Start from X =7

Multiply both sides 3x =,, 21

Add to both sides 2y + 3x =, 2y + 21

Combine =,,,’s 2y + 21 =, 2y + 3x =,,, 25



Basic Applications of mod

 Two’s Complement
* Hashing
* Pseudo random number generation



n-bit Unsighed Integer Representation

* Represent integer x as sum of powers of 2:

99 =64+32+2+1 =26425421420
18 =16+ 2 =24+ 21

If b,,_12" 1 + -+ b2 + by with each b, € {0,1}
then binary representationis b, ....b, b, b,

* Forn=38:
99: 0110 0011 Easy to implement arithmetic mod 2"
18: 0001 0010 ... Just throw away bits n+1 and up

2n | 2tk 5o b k2K =50 0
fork =0



n-bit Unsighed Integer Representation

* Largest representable numberis 2™ — 1

2" =100...000 (n+1 bits)
2"-1=011...111 (n bits)

Note: 2"-1=111...111

THE WAL STREET JOURNAL
Berkshire Hathaway’s Stock Price Is Too

Much for Computers

32 bits Berkshire Hathaway Inc. (BRK-A)

1 =%$0.0001 436,401.00 +679.50 (+0.16%)

$429,496.7295 max ~ ccion



Sign-Magnitude Integer Representation

n-bit signed integers
Suppose that —2""1 < x < 2n1
First bit as the sign, n — 1 bits for the value

99=64+32+2+1
18=16+2

Forn = 8:
99: 0110 0011
-18: 1001 0010

Any problems with this representation?



Two’s Complement Representation

Suppose that 0 < x < 2"1
x is represented by the binary representation of x
Suppose that —2"" 1< x < 0
x is represented by the binary representation of x + 2"
result is in the range 2" 1 < x < 2™

—2n-1 -1 0 2n-1 2"

0 1 2 3 4 5 6 7 -8 -7 -6 -5 -4 -3 -2 -1

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111



Two’s Complement Representation

Suppose that 0 < x < 2"1
x is represented by the binary representation of x
Suppose that —2"" 1< x < 0
x is represented by the binary representation of x + 2"
result is in the range 2" 1 < x < 2™

0 1 2 3 4 5 6 7 -8 -7 -6 -5 -4 -3 -2

0000 0001 o0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110

9=64+32+2+1
18 =16 +2

Forn = 8:
99: 0110 0011
-18: 1110 1110 (-18 + 256 = 238)

1111



Two’s Complement Representation

Suppose that 0 < x < 2"1
x is represented by the binary representation of x
Suppose that —2"" 1< x < 0
x is represented by the binary representation of x + 2"
result is in the range 2" 1 < x < 2™

0 1 2 3 4 5 6 7 -8 -7 -6 -5 -4 -3 -2 -1

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Key property: First bit is still the sign bit!

Key property: Twos complement representation of any number y
IS equivalent to y mod 2™ so arithmetic works mod 2™




Two’s Complement Representation

e For 0 <x <2™1, —xisrepresented by the
binary representation of 2™ — x

— How do we calculate —x from x?
— E.g., what happens for “return -x;” in Java?

2N —x=02"-1)—x+1

* To compute this, flip the bits of x then add 1!
— All 1’s string is 2™ — 1, so
Flip the bits of x = replace x by 2™ — 1 — x
Then add 1 to get 2™ — x



Hashing

Scenario:

Map a small number of data values from a large
domain {0,1,..., M — 1} ...

...into a small set of locations {0,1,...,n — 1} so
one can quickly check if some value is present

* hash(x) = x mod p for p a prime close to n
—or hash(x) = (ax + b) mod p

* Depends on all of the bits of the data
— helps avoid collisions due to similar values
— need to manage them if they occur



Hashing

* hash(x) = x mod p for p a prime close to n
 deterministic function with random-ish behavior

* Applications
— map integer to location in array (hash tables)

— map user ID or IP address to machine
requests from the same user / IP address go to the same machine
requests from different users / IP addresses spread randomly



Pseudo-Random Number Generation

Linear Congruential method

Xn+q1 = (a x,, + c) mod m

Choose random x,, a, ¢, m and produce
a long sequence of x,,’s



More Number Theory
Primes and GCD



Primality

An integer p greater than 1 is called prime if the
only positive factors of p are 1 and p.

p>1AVXEN((x|p)=>((x=1DV(x=p)))

A positive integer that is greater than 1 and is not
prime is called composite.

p>1 AIXEN((x|p)A(x#1)A(x #Dp))



Fundamental Theorem of Arithmetic

Every positive integer greater than 1 has a
“‘unique” prime factorization

48 = 2¢222+3

591 =3« 197

45,523 = 45,523

321,950 =25+5°47 137
1,234,567,890 =233+ 5+ 3,607 « 3,803



Euclid’'s Theorem

There are an infinite number of primes.

Proof by contradiction:

Suppose that there are only a finite number of primes
and call the full list p{, v,, ..., D;,.



Euclid’'s Theorem

There are an infinite number of primes.

Proof by contradiction:

Suppose that there are only a finite number of primes
and call the full list p{, v,, ..., D;,.

Define the number P = p;-p, - p3 -+ -+ - p,, and let
Q=P+ 1.



Euclid’'s Theorem

There are an infinite number of primes.

Proof by contradiction:

Suppose that there are only a finite number of primes
and call the full list p{, p,, ..., py-

Define the number P = p;-p, - p3 : -+ - p,, and let
() =P+ 1.(Notethat Q0 > 1.)

Case 1: () is prime: Then ( is a prime different from
all of p{,v,, ..., p,, since it is bigger than all of them.

Case 2: () is not prime: Then () has some prime
factor p (which must be in the list). Therefore p|P
and p|Q so p|(Q - P) which means that p|1.

Both cases are contradictions,
so the assumption is false (proof by cases).



Famous Algorithmic Problems

* Primality Testing
— Given an integer n, determine if n is prime
* Factoring

— Given an integer n, determine the prime
factorization of n



Factoring

Factor the following 232 digit number [RSA768]:

123018668453011775513049495838496272077
285356959533479219732245215172640050726
365751874520219978646938995647494277406
384592519255732630345373154826850791702
612214291346167042921431160222124047927
4737794080665351419597459856902143413



12301866845301177551304949583849627207728535695953347
92197322452151726400507263657518745202199786469389956
47494277406384592519255732630345373154826850791702612
21429134616704292143116022212404792747377940806653514

19597459856902143413

De—
[

334780716989568987860441698482126908177047949837
137685689124313889828837938780022876147116525317

43087737814467999489

7

N

3674604366679959042824463379962795263227/91581643
430876426760322838157396665112792333734171433968

10270092798736308917



Greatest Common Divisor

GCD(a, b):
Largest integer d suchthatd | aand d | b

. GCD(100, 125)
« GCD(17, 49)
 GCD(11, 66)
. GCD(13, 0)

. GCD(180, 252)

dis GCD iff (d | a)A(d|b)AVx EN(((x]a)A (x|b) > (x <d))



GCD and Factoring

a=2%+352+7+11=46,200
b=2¢32+537+13=204,750

GCD(a, b) = 2min(3,1) ¢ 3min(1,2) ¢ §MIin(2,3) ¢ 7min(1,1) ¢ 14 Min(1,0) ¢ 4 3min(0,1)

Factoring is expensive!
Can we compute GCD(a,b) without factoring?



Useful GCD Fact

Let a and b be positive integers.
We have gcd(a,b) = gcd(b, a mod b)

Proof:
We will show that every number dividing a and b also divides b and a mod b.

l.e. d|a and d|b iff d|b and d|(a mod b).

Hence, their set of common divisors are the same,
which means that their greatest common divisor is the same.



Useful GCD Fact

Let a and b be positive integers.
We have gcd(a,b) = gcd(b, a mod b)

Proof:
By definition of mod, a = gb + (a mod b) for some integer ¢ = a div b.

Suppose d|b and d|(a mod b).

Then b = md and (a mod b) = nd for some integers m and n.
Therefore a = gb + (a mod b) = gmd + nd = (gm + n)d.
Sod|a.

Suppose d|a and d|b.
Then a = kd and b = jd for some integers k and j.

Therefore (a mod b) = a-qb = kd -qjd = (k -qj)d.
So, d|(a mod b) also.

Since they have the same common divisors, gcd(a, b) = gcd(b,a mod b). B



Another simple GCD fact

Let a be a positive integer.
We have gcd(a,0) = a.



Euclid’s Algorithm

gcd(a, b) = ged(b, a mod b) gcd(a, 0) = a

int gcd(int a, int b){ /* Assumes: a >= b, b >= 0 */
if (b == 0) {
return a,;
} else {
return gcd(b, a % b);
}
}

Note: gcd(b, a) = gcd(a, b)




Euclid’s Algorithm

Repeatedly use gcd(a, b) = gcd(b, a mod b) to reduce
numbers until you get gcd(g,0) = g.

gcd(660,126) =



Euclid’s Algorithm

Repeatedly use gcd(a, b) = gcd(b, a mod b) to reduce
numbers until you get gcd(g,0) = g.

gcd(660,126) = gcd(126, 660 mod 126) = gcd(126, 30)
= gcd(30, 126 mod 30) =gcd(30, 6)
= gcd(6, 30 mod 6) = gcd(6, 0)
=6



