CSE 311: Foundations of Computing

Lecture 9: English Proofs & Proof Strategies

THE AXIOM OF CHOICE AULOWS
You To SELECT ONE ELEMENT
FROM EACH SET N‘A COLLECTION

AND HAVE IT” EXECUTED RS
AN EXAMPLE T0 THE OTHERS.

MY MATH TEACHER WAS A BIG
BELIEVER IN PROOF BY INTIMIDATION.



Last class: Inference Rules for Quantifiers

—— P(c) for some c — Vx P(x)
Ix P(x) = P(a) for any a
——_ Let a be arbitrary*”...P(a)  [Elim3 Ix P(x)
Vx P(x) = P(c) for some special** c

*in the domain of P. ** cisa NEW name.




These rules need some caveats...

There are extra conditions on using these rules:

oy L Let a be arbitrary*”...P(a)  [Elim3 3x P(x) _
Vx P(x) . P(c) for some special** c
*in the domain of P ** ¢ has to be a NEW name.

Over integer domain: Vx dy (y = x) is True but JyVx (y = x) is False

BAD “PROOF”

1. Vx3dy(y=x) Given

2. Let a be an arbitrary integer
3. 3dy(y=a) ElimV: 1

4, b=>a Elim 3: 3 (b)
5. Vx(b=x) Intro V: 2,4
6. dyVx(y=x) Introd: 5



These rules need some caveats...

There are extra conditions on using these rules:

oy L Let a be arbitrary*”...P(a)  [Elim3 3x P(x)
Vx P(x) . P(c) for some special** c
*in the domain of P ** c has to be a NEW name.

Over integer domain: Vx dy (y = x) is True but JyVx (y = x) is False

BAD “PROOF”

1. Vx3dy(y=x) Given

2. Let a be an arbitrary integer
3. 3dy(y=a) ElimV: 1

4, b=>a Elim 3: 3 (b)

B wWwib——ntto v 2,4
ﬁ 6. dyVx(y=x) Introd: 5

Can’t get rid of a since another name in the same line, b, depends on it!



These rules need some caveats...

There are extra conditions on using these rules:

oy L Let a be arbitrary*”...P(a)  [Eliim3 dx P(x)
=~ P(c) for some special** c

*in the domain of P. No other ** cisa NEW name.
name in P depends on a List all dependencies for c.

Over integer domain: Vx dy (y = x) is True but JyVx (y = x) is False

BAD “PROOF”

1. Vx3dy(y=x) Given

2. Let a be an arbitrary integer
3. 3dy(y=a) ElimV: 1

4, b=>a Elim 3: 3 (b)

T V'X:(“Dzj:):—-( :llirOW
ﬁ 6. dyVx(y=x) Introd: 5

Can’t get rid of a since another name in the same line, b, depends on it!



Dependencies

Over integer domain: Vx dy (y = x) is True but JyVx (y = x) is False

b depends on a since it appears inside the expression “Jy (y > a)”

BAD “PROOF”
1. Vx3dy(y=x) Given
2. Let a be an arbitrary integer
3. 3dy(y=a) ElimV: 1
4, b=>a Elim 3: 3 (b depends on a)
5. Vx(b=x) Intro V: 2,4
f’ 6. dyVx(y=x) Introd: 5

Can’t Intro ¥V with “Let a be an arbitrary ... P(a)”
because P(a) = “b > a” uses object b, which depends on a!



Dependencies

Over integer domain: Vx dy (y = x) is True but JyVx (y = x) is False

b depends on a since it appears inside the expression “Jy (y > a)”

BAD “PROOF”
1. Vx3dy(y=x) Given
2. Let a be an arbitrary integer
3. 3dy(y=a) ElimV: 1
4, b=>a Elim 3: 3 (b depends on a)
5. Vx(b>=x) Intro V: 2,4
r’ 6. dyVx(y=x) Introd: 5

Have instead shown Vx (b(x) = x)
where b(x) is a number that is possibly different for each x



Formal Proofs

* In principle, formal proofs are the standard for
what it means to be “proven” in mathematics

— almost all math (and theory CS) done in Predicate Logic

* But they are tedious and impractical
— e.g., applications of commutativity and associativity

— Russell & Whitehead’s formal proof that 1+1 =2 is
several hundred pages long
we allowed ourselves to cite “Arithmetic”, “Algebra”, etc.

* Similar situation exists in programming...



Programming

a:=ADD(1, 1)

b:=MOD(a, n)

c :=ADD(arr, b)

d :=LOAD(c)

e :=ADD(arr, 1)

STORE (e, d) arr[i1] = arr[(1+1) % n];

Assembly Language High-level Language



Programming vs Proofs

a:=ADD(1, 1)
b:=MOD(a, n)
c :=ADD(arr, b)
d :=LOAD(c)

e :=ADD(arr, 1)
STORE (e, d)

Assembly Language
for Programs

Given

Given

ElimA: 1

Double Negation: 4
ElimVv: 3,5

Modus Ponens: 2, 6

Assembly Language
for Proofs



Proofs

Given

Given

A Elim: 1 what is the “Java”
Double Negation: 4 for proofs?

V Elim: 3,5

MP: 2, 6

Assembly Language High-level Language
for Proofs for Proofs



Proofs

Given

Given

A Elim: 1

Double Negation: 4
V Elim: 3,5

MP: 2, 6

English?

Assembly Language High-level Language
for Proofs for Proofs



Proofs

Given

Given

A Elim: 1

Double Negation: 4
V Elim: 3,5

MP: 2, 6

Math English

Assembly Language High-level Language
for Proofs for Proofs



Proofs

* Formal proofs follow simple well-defined rules and
should be easy for a machine to check

— as assembly language is easy for a machine to execute

* English proofs correspond to those rules but are
designed to be easier for humans to read
— also easy to check with practice
(almost all actual math and theory CS is done this way)

— English proof is correct if the reader believes they could

translate it into a formal proof
(the reader is the “compiler” for English proofs)



Even(x) =3y (x=2y)
Last class: Even and Odd Odd(x) =3y (x=2y+1)

Domain: Integers

Prove: “The square of every even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

1. Let a be an arbitrary integer

2.1 Even(a) Assumption
2.2 3dy(a=2y) Definition of Even
2.3 a=2b Elim 3: b special depends on a
2.4 a’=4b?=2(2b%?) Algebra
2.5 3Jy (a?=2y) Intro I rule
2.6 Even(a?) Definition of Even
2. Even(a)—Even(a?) Direct Proof

3. Vx (Even(x)—Even(x?)) Intro V: 1,2



Even(x) =3y (x=2y)
English Proof: Even and Odd Odd(x) =3y (x=2y+1)

Domain: Integers

Prove “The square of every even integer is even.”

Let a be an arbitrary integer. 1. Let a be an arbitrary integer

Suppose a is even. 2.1 Even(a) Assumption

Then, by definition, a = 2b for 2.2 3Ty (a=2y) Definition
some integer b (dep on a). 2.3 a=2b b special depends on a

Squaring both sides, we get 2.4 a2=4b?=2(2b?) Algebra
aZ=4b? = 2(2b?).

2.5 3Ty (a?=2y)

So a? is, by definition, even.
y 2.6 Even(a?) Definition

Since a was arbitrary, we have 5
shown that the square of every 2. Even(a)—Even(a’)
even nhumber is even. 3. Vx (Even(x)—Even(x?))



Even(x) =3y (x=2y)
English Proof: Even and Odd Odd(x) =3y (x=2y+1)

Domain: Integers

Prove “The square of every even integer is even.”

Proof: Let a be an arbitrary integer.

Suppose a is even. Then, by definition, a = 2b for some
integer b (depending on a). Squaring both sides, we get
a2=4b? = 2(2b?%). So a?is, by definition, is even.

Since a was arbitrary, we have shown that the square of
every even number is even. B



Even(x) =3y (x=2y)
English Proof: Even and Odd Odd(x) =3y (x=2y+1)

Domain: Integers

Prove “The square of every even integer is even.”

Proof: Let a be an arbitrary even integer.

Then, by definition, a = 2b for some integer b (dep on a).
Squaring both sides, we get a2 =4b? = 2(2b?). So a?is,
by definition, is even.

Since a was arbitrary, we have shown that the square of
every even number is even. B

Vx (Even(x) — Even(x?))



Predicate Definitions

Even(x) =3y (x = 2y)
Even and Odd S s (G = 2 T

Domain of Discourse

Integers

Prove “The sum of two odd numbers is even.”
Formally, prove Vx Vy ((Odd(x) A Odd(y))—>Even(x+y))




Predicate Definitions

Even(x) =3y (x = 2y)
Even and Odd S s (G = 2 T

Domain of Discourse
Integers

Prove “The sum of two odd numbers is even.”
Formally, prove Vx Vy ((Odd(x) A Odd(y))—>Even(x+y))

Let x and y be arbitrary integers. 1. Let x be an arbitrary integer
2. Lety be an arbitrary integer

Since x and y were arbitrary, the 3. (0dd(x) A Odd(y)) — Even(x+y)
sum of any odd integers is even. 4. vx Yy ((0dd(x) A Odd(y)) = Even(x+y)) Intro V



Predicate Definitions

Even(x) =3y (x = 2y)
Even and Odd S s (G = 2 T

Domain of Discourse
Integers

Prove “The sum of two odd numbers is even.”
Formally, prove Vx Vy ((Odd(x) A Odd(y))—>Even(x+y))

Let x and y be arbitrary integers. 1. Letxbe an arbitrary integer

2. Lety be an arbitrary integer
Suppose that both are odd. 3.1 Odd(x) AOdd(y)  Assumption
SO X+Y is even. 3.9 Even(x+y)
Since x and y were arbitrary, the 3. (Odd(x) A Odd(y)) - Even(x+y)  DPR

sum of any odd integers is even. 4. VxVy ((0dd(x) A Odd(y)) = Even(x+y)) Intro V



Predicate Definitions

Even(x) =3y (x = 2y)
Even and Odd S s (G = 2 T

Domain of Discourse
Integers

Prove “The sum of two odd numbers is even.”
Formally, prove Vx Vy ((Odd(x) A Odd(y))—>Even(x+y))

Let x and y be arbitrary integers. 1. Letx be an arbitrary integer
2. Lety be an arbitrary integer
Suppose that both are odd. 3.1 Odd(x) AOdd(y)  Assumption
3.2 0Odd(x) Elim A: 2.1
3.3 0Odd(y) Elim A: 2.1
SO X+y is even. 3.9 Even(x+y)

3. (Odd(x) A Odd(y)) — Even(x+y) DPR

Since x and y were arbitrary, the
4. VxVy ((0dd(x) A Odd(y)) = Even(x+y)) Intro V

sum of any odd integers is even.



English Proof: Even and Odd Odd(x) =3y (x=2y+1)

Even(x) =3y (x=2y)

Domain: Integers

Prove “The sum of two odd numbers is even.”

Let x and y be arbitrary integers.

Suppose that both are odd.

Then, x = 2a+1 for some integer
a (depending on x) and

y = 2b+1 for some integer b
(depending onvy).

so x+y is, by definition, even.

Since x and y were arbitrary, the
sum of any odd integers is even.

1. Let x be an arbitrary integer
2. Lety be an arbitrary integer

3.1 0Odd(x) A Odd(y) Assumption

3.2 0Odd(x) Elim A: 2.1
3.3 0dd(y) Elim A: 2.1
3.4 3Fz(x=2z+1) Def of Odd: 2.2
3.5 x=2a+l Elim 3: 2.4 (a dep x)
3.6 3Jz(y=2z+1) Def of Odd: 2.3
3.7 y=2b+l Elim 3: 2.5 (b dep y)
3.9 3z (x+y=2z) Intro 3: 2.4
3.10 Even(x+y) Def of Even
3. (Odd(x) A Odd(y)) — Even(x+y) DPR

4, Vx Vy ((Odd(x) A Odd(y)) — Even(x+y)) Intro V



English Proof: Even and Odd Odd(x) =3y (x=2y+1)

Even(x) =3y (x=2y)

Domain: Integers

Prove “The sum of two odd numbers is even.”

Let x and y be arbitrary integers.

Suppose that both are odd.

Then, x = 2a+1 for some integer
a (depending on x) and

y = 2b+1 for some integer b
(depending onvy).

Their sum is x+y = ... = 2(a+b+1)

so x+y is, by definition, even.

Since x and y were arbitrary, the
sum of any odd integers is even.

1. Let x be an arbitrary integer
2. Lety be an arbitrary integer

3.1 0Odd(x) A Odd(y) Assumption

3.2 0Odd(x) Elim A: 2.1
3.3 0dd(y) Elim A: 2.1
3.4 3Fz(x=2z+1) Def of Odd: 2.2
3.5 x=2a+l Elim 3: 2.4 (a dep x)
3.6 3Jz(y=2z+1) Def of Odd: 2.3
3.7 y=2b+l Elim 3: 2.5 (b dep y)
3.8 x+y=2(a+b+1) Algebra
3.9 3z (x+y=2z) Intro 3: 2.4
3.10 Even(x+y) Def of Even
3. (Odd(x) A Odd(y)) — Even(x+y) DPR

4, Vx Vy ((Odd(x) A Odd(y)) — Even(x+y)) Intro V



Predicate Definitions

Even(x) =3y (x = 2y)
Even and Odd S s (G = 2 T

Domain of Discourse
Integers

Prove “The sum of two odd numbers is even.”

Proof: Let x andy be arbitrary integers.

Suppose that both are odd. Then, x = 2a+1 for some
integer a (depending on x) and y = 2b+1 for some integer
b (depending on x). Their sum is x+y = (2a+1) + (2b+1) =
2a+2b+2 = 2(a+b+1), so x+vy is, by definition, even.

Since x and y were arbitrary, the sum of any two odd
Integers is even. B



Predicate Definitions

Even(x) =3y (x = 2y)
Even and Odd S s (G = 2 T

Domain of Discourse
Integers

Prove “The sum of two odd numbers is even.”

Proof: Let x andy be arbitrary odd integers.

Then, x = 2a+1 for some integer a (depending on x) and
y = 2b+1 for some integer b (depending on x). Their sum
is x+y = (2a+1) + (2b+1) = 2a+2b+2 = 2(a+b+1), so x+y is,
by definition, even.

Since x and y were arbitrary, the sum of any two odd
Integers is even. B

Vx Yy ((0dd(x) A Odd(y))—Even(x+y))



Domain of Discourse

Rational Numbers  Real Numbers |

* A real number x is rational iff there exist integers a
and b with b#0 such that x=a/b.

Rational(x) := 3a 3b (((Integer(a) A Integer(b)) A (x=a/b)) A b0)




Domain of Discourse

Rationality | Real Numbers

Predicate Definitions
Rational(x) := 3a 3b (Integer(a) A Integer(b) A (x = a/b) A (b # 0))

Prove: “The product of two rationals is rational.”
Formally, prove Vx Yy ((Rational(x) A Rational(y)) — Rational(xy))



Domain of Discourse

Rationality  Real Numbers |

Predicate Definitions
Rational(x) := 3a 3b (Integer(a) A Integer(b) A (x = a/b) A (b # 0))

Prove: “The product of two rationals is rational.”

Proof: Let x and y be arbitrary rationals.

Since x and y were arbitrary, we have shown that the
product of any two rationals is rational. m




Domain of Discourse

Rationality  Real Numbers |

Predicate Definitions
Rational(x) := 3a 3b (Integer(a) A Integer(b) A (x = a/b) A (b # 0))

Prove: “The product of two rationals is rational.”

Proof: Let x and y be arbitrary rationals.

Then, x = a/b for some integers a, b, where b0, and
v = ¢/d for some integers c,d, where d=0.

Since x and y were arbitrary, we have shown that the
product of any two rationals is rational. ®



Domain of Discourse

Rationality  Real Numbers |

Predicate Definitions
Rational(x) := 3a 3b (Integer(a) A Integer(b) A (x = a/b) A (b # 0))

Prove: “The product of two rationals is rational.”

Proof: Let x and y be arbitrary rationals.

Then, x = a/b for some integers a, b, where b0, and
v = ¢/d for some integers c,d, where d=0.

Multiplying, we get that xy = (a/b)(c/d) = (ac)/(bd).
Since b and d are both non-zero, so is bd. Furthermore,
ac and bd are integers. By definition, then, xy is rational.

Since x and y were arbitrary, we have shown that the
product of any two rationals is rational. B




Domain of Discourse

Rationality  Real Numbers |

Predicate Definitions
Rational(x) := 3a 3b (Integer(a) A Integer(b) A (x = a/b) A (b # 0))

Prove: “The product of two rationals is rational.”
OR “If x and y are rational, then xy is rational.”

Recall that unquantified variables (nhot constants)
are implicitly for-all quantified.

Vx Vy ((Rational(x) A Rational(y)) — Rational(xy))




Domain of Discourse

Rationality  Real Numbers |

Predicate Definitions
Rational(x) := 3a 3b (Integer(a) A Integer(b) A (x = a/b) A (b # 0))

Prove: “If x and y are rational, then xy is rational.”

Proof: Letcand-ybearbitraryrationals-

Suppose x and y are rational.

Then, x = a/b for some integers a, b, where b0, and

v = ¢/d for some integers c,d, where d=0.

Multiplying, we get that xy = (a/b)(c/d) = (ac)/(bd).
Since b and d are both non-zero, so is bd. Furthermore,
ac and bd are integers. By definition, then, xy is rational.

—Since-xandy-were-arbitrary-we-have shownthat the-

4
. . . . .




Domain of Discourse

Rationality | Real Numbers

Predicate Definitions
Rational(x) := 3a 3b (Integer(a) A Integer(b) A (x = a/b) A (b # 0))

Prove: “If x and y are rational, then xy is rational.”

Suppose x and y are rational. 1.1 Rational(x) A Rational(y) Assumption

Then, x = a/b for some integers 1.4 3p 3q ((x = p/q) A Integer(p) A Integer(q) A (q # 0))

a, b, where b=0 and y = c/d for Def Rational: 1.2

some integers c,d, where d=0. 1.5 (x = a/b) A Integer(a) A Integer(b) A (b # 0)
Elim 3: 1.4

1.6 3p 3g ((x = p/q) A Integer(p) A Integer(q) A (q # 0))
Def Rational: 1.3

1.7 (y = c/d) N Integer(c) A Integer(d) A (d # 0)
Elim3:1.4



Domain of Discourse

Rationality | Real Numbers

Predicate Definitions
Rational(x) := 3a 3b (Integer(a) A Integer(b) A (x = a/b) A (b # 0))

Prove: “If x and y are rational, then xy is rational.”

Suppose x and y are rational. 1.1 Rational(x) A Rational(y) Assumption
?
Then, x = a/b for some integers 1.4 3p 3q ((x = p/q) A Integer(p) A Integer(q) A (g # 0))
a, b, where b=0 and y = c/d for Def Rational: 1.2
some integers c,d, where d=0. 1.5 (x = a/b) A Integer(a) A Integer(b) A (b # 0)
Elim3: 1.4

1.6 3p 3g ((x = p/q) A Integer(p) A Integer(q) A (q # 0))
Def Rational: 1.3

1.7 (y = c/d) N Integer(c) A Integer(d) A (d # 0)
Elim3:1.4



Domain of Discourse

Rationality | Real Numbers

Predicate Definitions
Rational(x) := 3a 3b (Integer(a) A Integer(b) A (x = a/b) A (b # 0))

Prove: “If x and y are rational, then xy is rational.”

Suppose x and y are rational. 1.1 Rational(x) A Rational(y) Assumption
1.2 Rational(x) Elim A: 1.1
1.3 Rational(y) Elim A: 1.1

1.4 3p3q ((x = p/q) AInteger(p) A Integer(q) A (q # 0))
Then, x = a/b for some integers Def Rational: 1.2
a, b, where b=0 and y = c¢/d for 1.5 (x = a/b) A Integer(a) A Integer(b) A (b #+ 0)
some integers c,d, where d=O0. Elim3: 1.4
1.6 3p 3g ((x = p/q) A Integer(p) A Integer(q) A (q # 0))
Def Rational: 1.3
1.7 (y = c/d) N Integer(c) A Integer(d) A (d # 0)
Elim3:1.4



Domain of Discourse

Rationality | Real Numbers

Predicate Definitions
Rational(x) := 3a 3b (Integer(a) A Integer(b) A (x = a/b) A (b # 0))

Prove: “If x and y are rational, then xy is rational.”

1.5 (x = a/b) A Integer(a) A Integer(b) A (b #+ 0)

1.7 (y = c/d) N Integer(c) A Integer(d) A (d # 0)

Multiplying, we get xy = (ac)/(bd). 1.10 xy = (a/b)(c/d) = (ac/bd) = (ac)/(bd)
Algebra



Domain of Discourse

Rationality | Real Numbers

Predicate Definitions
Rational(x) := 3a 3b (Integer(a) A Integer(b) A (x = a/b) A (b # 0))

Prove: “If x and y are rational, then xy is rational.”
1.5 (x = a/b) A Integer(a) A Integer(b) A (b #+ 0)

1.7 (y = c/d) N Integer(c) A Integer(d) A (d # 0)

??

Multiplying, we get xy = (ac)/(bd). 1.10 xy = (a/b)(c/d) = (ac/bd) = (ac)/(bd)
Algebra



Domain of Discourse

Rationality | Real Numbers

Predicate Definitions
Rational(x) := 3a 3b (Integer(a) A Integer(b) A (x = a/b) A (b # 0))

Prove: “If x and y are rational, then xy is rational.”

1.5 (x = a/b) A Integer(a) A Integer(b) A (b #+ 0)

1.7 (y = c/d) N Integer(c) A Integer(d) A (d # 0)

1.8 x =a/b Elim A: 1.5
19 y=c/d Elim A: 1.7
Multiplying, we get xy = (ac)/(bd). 1.10 xy = (a/b)(c/d) = (ac/bd) = (ac)/(bd)

Algebra



Domain of Discourse

Rationality | Real Numbers

Predicate Definitions
Rational(x) := 3a 3b (Integer(a) A Integer(b) A (x = a/b) A (b # 0))

Prove: “If x and y are rational, then xy is rational.”

1.5 (x = a/b) A Integer(a) A Integer(b) A (b #+ 0)
1.7 (y = c/d) N Integer(c) A Integer(d) A (d # 0)

1.11 b #0 Elim A: 1.5%

112 d #0 Elim A: 1.7
Since b and d are non-zero, so is bd. 1.13 bd # 0 Prop of Integer Mulit

* 0ops, | skipped steps here...



Domain of Discourse

Rationality | Real Numbers

Predicate Definitions
Rational(x) := 3a 3b (Integer(a) A Integer(b) A (x = a/b) A (b # 0))

Prove: “If x and y are rational, then xy is rational.”

1.5 (x = a/b) A (Integer(a) A (Integer(b) A (b # 0)))
;..7 (y = c¢/d) A (Integer(c) A (Integer(d) A (d # 0)))

1.11 Integer(a) A (Integer(b) A (b # 0))

Elim A: 1.5
1.12 Integer(b) A (b # 0) Elim A: 1.11
1.13 b# 0 Elim A: 1.12

We left out the parentheses...



Domain of Discourse

Rationality | Real Numbers

Predicate Definitions
Rational(x) := 3a 3b (Integer(a) A Integer(b) A (x = a/b) A (b # 0))

Prove: “If x and y are rational, then xy is rational.”

1.5 (x = a/b) A Integer(a) A Integer(b) A (b #+ 0)
1.7 (y = c/d) N Integer(c) A Integer(d) A (d # 0)
1.13 b+ 0 Elim A: 1.5

1.16 d # 0 Elim A: 1.7
Since b and d are non-zero, so is bd. 117 bd = 0 Prop of Integer Mult



Rationality

Domain of Discourse

Real Numbers

Predicate Definitions

Rational(x) := 3a 3b (Integer(a) A Integer(b) A (x = a/b) A (b # 0))

Prove: “If x and y are rational, then xy is rational.”

Furthermore, ac and bd are integers.

1.5 (x = a/b) A Integer(a) A Integer(b) A (b #+ 0)

1.7 (y = c/d) N Integer(c) A Integer(d) A (d # 0)

1.19 Integer(a)
1.22 Integer(b)
1.24 Integer(c)

1.27 Integer(d)
1.28 Integer(ac)
1.29 Integer(bd)

Elim A: 1.5%
Elim A: 1.5%
Elim A: 1.7%

ElimA: 1.7*
Prop of Integer Mult
Prop of Integer Mult



Domain of Discourse

Rationality | Real Numbers

Predicate Definitions
Rational(x) := 3a 3b (Integer(a) A Integer(b) A (x = a/b) A (b # 0))

Prove: “If x and y are rational, then xy is rational.”

5..10 xy = (a/b)(c/d) = (ac/bd) = (ac)/(bd)

1.17 bd # 0 Prop of Integer Mult

1.28 Integer(ac) Prop of Integer Mult
1.29 Integer(bd) Prop of Integer Mult

1.30 Integer(bd) A (bd # 0) Intro A: 1.29, 1.17
1.31 Integer(ac) A Integer(bd) A (bd + 0)

Intro A: 1.28, 1.30
1.32 (xy = (a/b)/(c/d)) A Integer(ac) A

Integer(bd) A (bd # 0) Intro A: 1.10, 1.31
1.33 3p 3 ((xy = p/q) A Integer(p) A Integer(q) A (q # 0))
By definition, then, xy is rational. Intro 3: 1.32

1.34 Rational(xy) Def of Rational: 1.32



Domain of Discourse

Rationality | Real Numbers

Predicate Definitions
Rational(x) := 3a 3b (Integer(a) A Integer(b) A (x = a/b) A (b # 0))

Prove: “If x and y are rational, then xy is rational.”

Suppose x and y are rational. 1.1 Rational(x) A Rational(y) Assumption
1.10 xy = (a/b)(c/d) = (ac/bd) = (ac)/(bd)

1.17 bd # 0 Prop of Integer Mult

_ 1.28 Integer(ac) Prop of Integer Mult
Furthermore, ac and bd are integers. 1.99 Integer(bd) Prop of Integer Mult
By definition, then, xy is rational. 1.34 Rational(xy) Def of Rational: 1.32

And finally...



Domain of Discourse

Rationality | Real Numbers

Predicate Definitions
Rational(x) := 3a 3b (Integer(a) A Integer(b) A (x = a/b) A (b # 0))

Prove: “If x and y are rational, then xy is rational.”

Suppose that x and y are rational. 1.1 Rational(x) A Rational(y) Assumption
1.10 xy = (a/b)(c/d) = (ac/bd) = (ac)/(bd)

1.17 bd # 0 Prop of Integer Mult

_ 1.28 Integer(ac) Prop of Integer Mult
Furthermore, ac and bd are integers. 1.99 Integer(bd) Prop of Integer Mult
By definition, then, xy is rational. 1.34 Rational(xy) Def of Rational: 1.32

1. Rational(x) A Rational(y) — Rational(xy)
Direct Proof



Domain of Discourse

Rationality  Real Numbers |

Predicate Definitions
Rational(x) := 3a 3b (Integer(a) A Integer(b) A (x = a/b) A (b # 0))

Prove: “If x and y are rational, then xy is rational.”

Proof: Suppose x and y are rational.

Then, x = a/b for some integers a, b, where b0, and y =
c/d for some integers c,d, where d=0.

Multiplying, we get that xy = (ac)/(bd). Since b and d are
both non-zero, so is bd. Furthermore, ac and bd are
integers. By definition, then, xy is rational. B

vs more than 35 lines of formal proof



English Proofs

* High-level language let us work more quickly
— should not be necessary to spill out every detail
— reader checks that the writer is not skipping too much

— examples so far

skipping Intro A and Elim A
not stating existence claims (immediately apply Elim 3 to name the object)
not stating that the implication has been proven (“Suppose X... Thus, Y.” says it already)

— (list will grow over time)

* English proof is correct if the reader believes they
could translate it into a formal proof

— the reader is the “compiler” for English proofs




