
CSE 311: Foundations of Computing

Lecture 9:  English Proofs & Proof Strategies



Last class: Inference Rules for Quantifiers

"x P(x)        
∴ P(a) for any a

P(c) for some c
∴ $x P(x)

Intro $ Elim "

* in the domain of P. ** c is a NEW name.

“Let a be arbitrary*”...P(a)
∴ "x P(x)

Intro " $x P(x)
∴ P(c) for some special** c

Elim $



These rules need some caveats…
There are extra conditions on using these rules:

Over integer domain: "x $y (y ≥ x) is True but $y"x (y ≥ x) is False

1. "x $y (y ≥ x) Given
2. Let a be an arbitrary integer
3. $y (y ≥ a) Elim ": 1
4. b≥	a Elim $: 3 (b)
5. "x (b≥ x)                 Intro ": 2,4
6. $y"x (y ≥ x)             Intro $ : 5

BAD “PROOF”
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Can’t get rid of a since another name in the same line, b, depends on it!



These rules need some caveats…
There are extra conditions on using these rules:

Over integer domain: "x $y (y ≥ x) is True but $y"x (y ≥ x) is False

1. "x $y (y ≥ x) Given
2. Let a be an arbitrary integer
3. $y (y ≥ a) Elim ": 1
4. b≥	a Elim $: 3 (b)
5. "x (b≥ x)                 Intro ": 2,4
6. $y"x (y ≥ x)             Intro $ : 5

BAD “PROOF”

Can’t get rid of a since another name in the same line, b, depends on it!



Dependencies

1. "x $y (y ≥ x) Given
2. Let a be an arbitrary integer
3. $y (y ≥ a) Elim ": 1
4. b≥	a Elim $: 3 (b depends on a)
5. "x (b≥ x)                 Intro ": 2,4
6. $y"x (y ≥ x)             Intro $ : 5

BAD “PROOF”

Can’t Intro " with “Let a be an arbitrary ... P(a)”
because P(a) = “b≥	a” uses object b, which depends on a!  

b depends on a since it appears inside the expression “$y (y ≥ a)”

Over integer domain: "x $y (y ≥ x) is True but $y"x (y ≥ x) is False



Dependencies

1. "x $y (y ≥ x) Given
2. Let a be an arbitrary integer
3. $y (y ≥ a) Elim ": 1
4. b≥	a Elim $: 3 (b depends on a)
5. "x (b≥ x)                 Intro ": 2,4
6. $y"x (y ≥ x)             Intro $ : 5

BAD “PROOF”

b depends on a since it appears inside the expression “$y (y ≥ a)”

Over integer domain: "x $y (y ≥ x) is True but $y"x (y ≥ x) is False

Have instead shown"x (b(x)≥ x)
where b(x) is a number that is possibly different for each x



Formal Proofs

• In principle, formal proofs are the standard for 
what it means to be “proven” in mathematics
– almost all math (and theory CS) done in Predicate Logic

• But they are tedious and impractical
– e.g., applications of commutativity and associativity
– Russell & Whitehead’s formal proof that 1+1 = 2 is 

several hundred pages long
we allowed ourselves to cite “Arithmetic”, “Algebra”, etc.

• Similar situation exists in programming...



Programming

a := ADD(i, 1)
b := MOD(a, n)
c := ADD(arr, b)
d := LOAD(c)
e := ADD(arr, i)
STORE(e, d)

Assembly Language

arr[i] = arr[(i+1) % n];

High-level Language



Programming vs Proofs

Assembly Language
for Programs

Given
Given
Elim ∧: 1
Double Negation: 4
Elim ∨: 3, 5
Modus Ponens: 2, 6

Assembly Language
for Proofs

a := ADD(i, 1)
b := MOD(a, n)
c := ADD(arr, b)
d := LOAD(c)
e := ADD(arr, i)
STORE(e, d)



Proofs

Assembly Language
for Proofs

what is the “Java”
for proofs?

High-level Language
for Proofs

Given
Given
∧ Elim: 1
Double Negation: 4
∨ Elim: 3, 5
MP: 2, 6



Proofs

Given
Given
∧ Elim: 1
Double Negation: 4
∨ Elim: 3, 5
MP: 2, 6

Assembly Language
for Proofs

English

High-level Language
for Proofs

?



Proofs

Given
Given
∧ Elim: 1
Double Negation: 4
∨ Elim: 3, 5
MP: 2, 6

Assembly Language
for Proofs

Math English

High-level Language
for Proofs



Proofs

• Formal proofs follow simple well-defined rules and 
should be easy for a machine to check
– as assembly language is easy for a machine to execute

• English proofs correspond to those rules but are 
designed to be easier for humans to read
– also easy to check with practice

(almost all actual math and theory CS is done this way)

– English proof is correct if the reader believes they could 
translate it into a formal proof

(the reader is the “compiler” for English proofs)



Last class: Even and Odd

Prove: “The square of every even number is even.”
Formal proof of:  "x (Even(x) ® Even(x2))

1. Let a be an arbitrary integer
2.1   Even(a) Assumption
2.2 ∃y (a = 2y) Definition of Even
2.3   a = 2b Elim $: b special depends on a
2.4   a2 = 4b2 = 2(2b2) Algebra
2.5 ∃y (a2 = 2y) Intro $ rule
2.6  Even(a2) Definition of Even

2.   Even(a)®Even(a2) Direct Proof
3.   "x (Even(x)®Even(x2))         Intro ": 1,2

Even(x) º $y  (x=2y)     
Odd(x)  º $y  (x=2y+1)
Domain: Integers 



English Proof: Even and Odd

Prove “The square of every even integer is even.”

Even(x) º $y  (x=2y)     
Odd(x)  º $y  (x=2y+1)
Domain: Integers 

1. Let a be an arbitrary integer

2.1   Even(a) Assumption

2.2   ∃y (a = 2y) Definition
2.3   a = 2b b special depends on a

2.4   a2= 4b2 = 2(2b2) Algebra

2.5 ∃y (a2 = 2y)
2.6  Even(a2) Definition

2.   Even(a)®Even(a2)
3.   "x (Even(x)®Even(x2))

Let a be an arbitrary integer. 

Suppose a is even.

Then, by definition, a = 2b for 
some integer b (dep on a).

Squaring both sides, we get 
a2= 4b2 = 2(2b2). 

So a2 is, by definition, even.

Since a was arbitrary, we have 
shown that the square of every 
even number is even.



English Proof: Even and Odd

Prove “The square of every even integer is even.”

Even(x) º $y  (x=2y)     
Odd(x)  º $y  (x=2y+1)
Domain: Integers 

Proof: Let a be an arbitrary integer.

Suppose a is even. Then, by definition, a = 2b for some 
integer b (depending on a). Squaring both sides, we get 
a2 = 4b2 = 2(2b2). So a2 is, by definition, is even.

Since a was arbitrary, we have shown that the square of 
every even number is even.



English Proof: Even and Odd

Prove “The square of every even integer is even.”

Even(x) º $y  (x=2y)     
Odd(x)  º $y  (x=2y+1)
Domain: Integers 

Proof: Let a be an arbitrary even integer.

Then, by definition, a = 2b for some integer b (dep on a). 
Squaring both sides, we get a2 = 4b2 = 2(2b2). So a2 is, 
by definition, is even.

Since a was arbitrary, we have shown that the square of 
every even number is even.

"x (Even(x) ® Even(x2))



Even and Odd

Prove “The sum of two odd numbers is even.”

Even(x) º ∃𝑦 𝑥 = 2𝑦
Odd(x) º ∃𝑦 (𝑥 = 2𝑦 + 1)

Predicate Definitions

Integers
Domain of Discourse

Formally, prove  "x "y ((Odd(x) ∧ Odd(y))®Even(x+y))



Even and Odd

Prove “The sum of two odd numbers is even.”

Even(x) º ∃𝑦 𝑥 = 2𝑦
Odd(x) º ∃𝑦 (𝑥 = 2𝑦 + 1)

Predicate Definitions

Integers
Domain of Discourse

Formally, prove  "x "y ((Odd(x) ∧ Odd(y))®Even(x+y))

Let x and y be arbitrary integers.

Since x and y were arbitrary, the 
sum of any odd integers is even.

1. Let x be an arbitrary integer
2. Let y be an arbitrary integer

3.   (Odd(x) ∧	Odd(y)) ® Even(x+y)
4.   "x "y ((Odd(x) ∧	Odd(y)) ® Even(x+y)) Intro "



Even and Odd

Prove “The sum of two odd numbers is even.”

Even(x) º ∃𝑦 𝑥 = 2𝑦
Odd(x) º ∃𝑦 (𝑥 = 2𝑦 + 1)

Predicate Definitions

Integers
Domain of Discourse

Formally, prove  "x "y ((Odd(x) ∧ Odd(y))®Even(x+y))

1. Let x be an arbitrary integer
2. Let y be an arbitrary integer

3.1   Odd(x) ∧	Odd(y) Assumption

3.9  Even(x+y)

3.   (Odd(x) ∧	Odd(y)) ® Even(x+y) DPR
4.   "x "y ((Odd(x) ∧	Odd(y)) ® Even(x+y)) Intro "

Let x and y be arbitrary integers.

Suppose that both are odd.

so x+y is even.

Since x and y were arbitrary, the 
sum of any odd integers is even.



Even and Odd

Prove “The sum of two odd numbers is even.”

Even(x) º ∃𝑦 𝑥 = 2𝑦
Odd(x) º ∃𝑦 (𝑥 = 2𝑦 + 1)

Predicate Definitions

Integers
Domain of Discourse

Formally, prove  "x "y ((Odd(x) ∧ Odd(y))®Even(x+y))

1. Let x be an arbitrary integer
2. Let y be an arbitrary integer

3.1   Odd(x) ∧	Odd(y) Assumption
3.2   Odd(x)  Elim ∧: 2.1
3.3   Odd(y) Elim ∧: 2.1

3.9  Even(x+y)

3.   (Odd(x) ∧	Odd(y)) ® Even(x+y) DPR
4.   "x "y ((Odd(x) ∧	Odd(y)) ® Even(x+y)) Intro "

Let x and y be arbitrary integers.

Suppose that both are odd.

so x+y is even.

Since x and y were arbitrary, the 
sum of any odd integers is even.



English Proof: Even and Odd

Prove “The sum of two odd numbers is even.”

Even(x) º $y  (x=2y)     
Odd(x)  º $y  (x=2y+1)
Domain: Integers 

1. Let x be an arbitrary integer
2. Let y be an arbitrary integer

3.1   Odd(x) ∧	Odd(y) Assumption
3.2   Odd(x)  Elim ∧: 2.1
3.3   Odd(y) Elim ∧: 2.1

3.4   ∃z (x = 2z+1) Def of Odd: 2.2
3.5   x = 2a+1 Elim ∃: 2.4 (a dep x)

3.6   ∃z (y = 2z+1) Def of Odd: 2.3
3.7   y = 2b+1 Elim ∃: 2.5 (b dep y)

3.9 ∃z (x+y = 2z) Intro ∃: 2.4
3.10 Even(x+y) Def of Even

3.   (Odd(x) ∧	Odd(y)) ® Even(x+y) DPR
4.   "x "y ((Odd(x) ∧	Odd(y)) ® Even(x+y)) Intro "

Let x and y be arbitrary integers.

Suppose that both are odd.

Then, x = 2a+1 for some integer 
a (depending on x) and
y = 2b+1 for some integer b 
(depending on y).

so x+y is, by definition, even.

Since x and y were arbitrary, the 
sum of any odd integers is even.



English Proof: Even and Odd

Prove “The sum of two odd numbers is even.”

Even(x) º $y  (x=2y)     
Odd(x)  º $y  (x=2y+1)
Domain: Integers 

1. Let x be an arbitrary integer
2. Let y be an arbitrary integer

3.1   Odd(x) ∧	Odd(y) Assumption
3.2   Odd(x)  Elim ∧: 2.1
3.3   Odd(y) Elim ∧: 2.1

3.4   ∃z (x = 2z+1) Def of Odd: 2.2
3.5   x = 2a+1 Elim ∃: 2.4 (a dep x)

3.6   ∃z (y = 2z+1) Def of Odd: 2.3
3.7   y = 2b+1 Elim ∃: 2.5 (b dep y)

3.8   x+y = 2(a+b+1) Algebra

3.9 ∃z (x+y = 2z) Intro ∃: 2.4
3.10 Even(x+y) Def of Even

3.   (Odd(x) ∧	Odd(y)) ® Even(x+y) DPR
4.   "x "y ((Odd(x) ∧	Odd(y)) ® Even(x+y)) Intro "

Let x and y be arbitrary integers.

Suppose that both are odd.

Then, x = 2a+1 for some integer 
a (depending on x) and
y = 2b+1 for some integer b 
(depending on y).

Their sum is x+y = ... = 2(a+b+1)

so x+y is, by definition, even.

Since x and y were arbitrary, the 
sum of any odd integers is even.



Even and Odd

Prove “The sum of two odd numbers is even.”

Proof: Let x and y be arbitrary integers.
Suppose that both are odd. Then, x = 2a+1 for some 
integer a (depending on x) and y = 2b+1 for some integer 
b (depending on x). Their sum is x+y = (2a+1) + (2b+1) = 
2a+2b+2 = 2(a+b+1), so x+y is, by definition, even.
Since x and y were arbitrary, the sum of any two odd 
integers is even.

Even(x) º ∃𝑦 𝑥 = 2𝑦
Odd(x) º ∃𝑦 (𝑥 = 2𝑦 + 1)

Predicate Definitions

Integers
Domain of Discourse



Even and Odd

Prove “The sum of two odd numbers is even.”

Proof: Let x and y be arbitrary odd integers.
Then, x = 2a+1 for some integer a (depending on x) and 
y = 2b+1 for some integer b (depending on x). Their sum 
is x+y = (2a+1) + (2b+1) = 2a+2b+2 = 2(a+b+1), so x+y is, 
by definition, even.
Since x and y were arbitrary, the sum of any two odd 
integers is even.

Even(x) º ∃𝑦 𝑥 = 2𝑦
Odd(x) º ∃𝑦 (𝑥 = 2𝑦 + 1)

Predicate Definitions

Integers
Domain of Discourse

"x "y ((Odd(x) ∧ Odd(y))®Even(x+y))



Rational Numbers

• A real number x is rational iff there exist integers a
and b with b¹0 such that x=a/b.

Rational(x) := $a $b (((Integer(a) Ù Integer(b)) Ù (x=a/b)) Ù b¹0)    

Real Numbers
Domain of Discourse



Rationality

Prove: “The product of two rationals is rational.”
Rational(x) := ∃𝑎 ∃𝑏 (Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions

Real Numbers
Domain of Discourse

Formally, prove "x "y ((Rational(x) ∧ Rational(y)) ® Rational(xy))



Rationality

Prove: “The product of two rationals is rational.”

Proof: Let x and y be arbitrary rationals.

Since x and y were arbitrary, we have shown that the 
product of any two rationals is rational.

Real Numbers
Domain of Discourse

Rational(x) := ∃𝑎 ∃𝑏 (Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions



Rationality

Prove: “The product of two rationals is rational.”

Proof: Let x and y be arbitrary rationals.
Then, x = a/b for some integers a, b, where b¹0, and
y = c/d for some integers c,d, where d¹0. 

Since x and y were arbitrary, we have shown that the 
product of any two rationals is rational.

Real Numbers
Domain of Discourse

Rational(x) := ∃𝑎 ∃𝑏 (Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions



Rationality

Prove: “The product of two rationals is rational.”

Proof: Let x and y be arbitrary rationals.
Then, x = a/b for some integers a, b, where b¹0, and
y = c/d for some integers c,d, where d¹0. 
Multiplying, we get that xy = (a/b)(c/d) = (ac)/(bd). 
Since b and d are both non-zero, so is bd. Furthermore, 
ac and bd are integers. By definition, then, xy is rational.
Since x and y were arbitrary, we have shown that the 
product of any two rationals is rational.

Real Numbers
Domain of Discourse

Rational(x) := ∃𝑎 ∃𝑏 (Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions



Rationality

Prove: “The product of two rationals is rational.”
OR “If x and y are rational, then xy is rational.”

Recall that unquantified variables (not constants) 
are implicitly for-all quantified.

Real Numbers
Domain of Discourse

Rational(x) := ∃𝑎 ∃𝑏 (Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions

"x "y ((Rational(x) ∧ Rational(y)) ® Rational(xy))



Rationality

Prove: “If x and y are rational, then xy is rational.”

Proof: Let x and y be arbitrary rationals.
Suppose x and y are rational.
Then, x = a/b for some integers a, b, where b¹0, and
y = c/d for some integers c,d, where d¹0. 
Multiplying, we get that xy = (a/b)(c/d) = (ac)/(bd). 
Since b and d are both non-zero, so is bd. Furthermore, 
ac and bd are integers. By definition, then, xy is rational.
Since x and y were arbitrary, we have shown that the 
product of any two rationals is rational.

Real Numbers
Domain of Discourse

Rational(x) := ∃𝑎 ∃𝑏 (Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions



Rationality

Prove: “If x and y are rational, then xy is rational.”

Real Numbers
Domain of Discourse

Suppose x and y are rational.

Then, x = a/b for some integers
a, b, where b¹0 and y = c/d for
some integers c,d, where d¹0. 

...

1.1 Rational 𝑥 ∧ Rational 𝑦 Assumption

1.4 ∃𝑝 ∃𝑞 ( 𝑥 = 𝑝/𝑞 ∧ Integer 𝑝 ∧ Integer 𝑞 ∧ 𝑞 ≠ 0 )
Def Rational: 1.2

1.5 𝑥 = 𝑎/𝑏 ∧ Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑏 ≠ 0
Elim ∃: 1.4

1.6 ∃𝑝 ∃𝑞 𝑥 = 𝑝/𝑞 ∧ Integer 𝑝 ∧ Integer 𝑞 ∧ 𝑞 ≠ 0

Def Rational: 1.3
1.7 𝑦 = 𝑐/𝑑 ∧ Integer 𝑐 ∧ Integer 𝑑 ∧ 𝑑 ≠ 0

Elim ∃: 1.4

Rational(x) := ∃𝑎 ∃𝑏 (Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions



Rationality

Prove: “If x and y are rational, then xy is rational.”

Real Numbers
Domain of Discourse

Suppose x and y are rational.

Then, x = a/b for some integers
a, b, where b¹0 and y = c/d for
some integers c,d, where d¹0. 

...

1.1 Rational 𝑥 ∧ Rational 𝑦 Assumption

??

1.4 ∃𝑝 ∃𝑞 ( 𝑥 = 𝑝/𝑞 ∧ Integer 𝑝 ∧ Integer 𝑞 ∧ 𝑞 ≠ 0 )
Def Rational: 1.2

1.5 𝑥 = 𝑎/𝑏 ∧ Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑏 ≠ 0
Elim ∃: 1.4

1.6 ∃𝑝 ∃𝑞 𝑥 = 𝑝/𝑞 ∧ Integer 𝑝 ∧ Integer 𝑞 ∧ 𝑞 ≠ 0

Def Rational: 1.3
1.7 𝑦 = 𝑐/𝑑 ∧ Integer 𝑐 ∧ Integer 𝑑 ∧ 𝑑 ≠ 0

Elim ∃: 1.4

Rational(x) := ∃𝑎 ∃𝑏 (Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions



Rationality

Prove: “If x and y are rational, then xy is rational.”

Real Numbers
Domain of Discourse

Suppose x and y are rational.

Then, x = a/b for some integers
a, b, where b¹0 and y = c/d for
some integers c,d, where d¹0. 

...

1.1 Rational 𝑥 ∧ Rational 𝑦 Assumption
1.2 Rational 𝑥 Elim ∧: 1.1
1.3 Rational 𝑦 Elim ∧: 1.1
1.4 ∃𝑝 ∃𝑞 ( 𝑥 = 𝑝/𝑞 ∧ Integer 𝑝 ∧ Integer 𝑞 ∧ 𝑞 ≠ 0 )

Def Rational: 1.2
1.5 𝑥 = 𝑎/𝑏 ∧ Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑏 ≠ 0

Elim ∃: 1.4
1.6 ∃𝑝 ∃𝑞 𝑥 = 𝑝/𝑞 ∧ Integer 𝑝 ∧ Integer 𝑞 ∧ 𝑞 ≠ 0

Def Rational: 1.3
1.7 𝑦 = 𝑐/𝑑 ∧ Integer 𝑐 ∧ Integer 𝑑 ∧ 𝑑 ≠ 0

Elim ∃: 1.4

Rational(x) := ∃𝑎 ∃𝑏 (Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions



Rationality

Prove: “If x and y are rational, then xy is rational.”

Real Numbers
Domain of Discourse

Multiplying, we get xy = (ac)/(bd).  

...

1.5 𝑥 = 𝑎/𝑏 ∧ Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑏 ≠ 0
...

1.7 𝑦 = 𝑐/𝑑 ∧ Integer 𝑐 ∧ Integer 𝑑 ∧ 𝑑 ≠ 0

1.10 𝑥𝑦 = 𝑎/𝑏 𝑐/𝑑 = 𝑎𝑐/𝑏𝑑 = (𝑎𝑐)/(𝑏𝑑)
Algebra

Rational(x) := ∃𝑎 ∃𝑏 (Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions



Rationality

Prove: “If x and y are rational, then xy is rational.”

Real Numbers
Domain of Discourse

Multiplying, we get xy = (ac)/(bd).  

...

1.5 𝑥 = 𝑎/𝑏 ∧ Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑏 ≠ 0
...

1.7 𝑦 = 𝑐/𝑑 ∧ Integer 𝑐 ∧ Integer 𝑑 ∧ 𝑑 ≠ 0

??

1.10 𝑥𝑦 = 𝑎/𝑏 𝑐/𝑑 = 𝑎𝑐/𝑏𝑑 = (𝑎𝑐)/(𝑏𝑑)
Algebra

Rational(x) := ∃𝑎 ∃𝑏 (Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions



Rationality

Prove: “If x and y are rational, then xy is rational.”

Real Numbers
Domain of Discourse

Multiplying, we get xy = (ac)/(bd).  

...

1.5 𝑥 = 𝑎/𝑏 ∧ Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑏 ≠ 0
...

1.7 𝑦 = 𝑐/𝑑 ∧ Integer 𝑐 ∧ Integer 𝑑 ∧ 𝑑 ≠ 0
1.8  𝑥 = 𝑎/𝑏 Elim ∧: 1.5
1.9  𝑦 = 𝑐/𝑑 Elim ∧: 1.7
1.10 𝑥𝑦 = 𝑎/𝑏 𝑐/𝑑 = 𝑎𝑐/𝑏𝑑 = (𝑎𝑐)/(𝑏𝑑)

Algebra

Rational(x) := ∃𝑎 ∃𝑏 (Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions



Rationality

Prove: “If x and y are rational, then xy is rational.”

Real Numbers
Domain of Discourse

Since b and d are non-zero, so is bd.

...

1.5 𝑥 = 𝑎/𝑏 ∧ Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑏 ≠ 0
...

1.7 𝑦 = 𝑐/𝑑 ∧ Integer 𝑐 ∧ Integer 𝑑 ∧ 𝑑 ≠ 0
...

1.11  𝑏 ≠ 0 Elim ∧: 1.5*
1.12  𝑑 ≠ 0 Elim ∧: 1.7
1.13  𝑏𝑑 ≠ 0 Prop of Integer Mult

* Oops, I skipped steps here...

Rational(x) := ∃𝑎 ∃𝑏 (Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions



Rationality

Prove: “If x and y are rational, then xy is rational.”

Real Numbers
Domain of Discourse

...

1.5 𝑥 = 𝑎/𝑏 ∧ (Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑏 ≠ 0 )
...

1.7 𝑦 = 𝑐/𝑑 ∧ (Integer 𝑐 ∧ Integer 𝑑 ∧ 𝑑 ≠ 0 )
...

1.11 Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑏 ≠ 0
Elim ∧: 1.5

1.12  Integer 𝑏 ∧ 𝑏 ≠ 0 Elim ∧: 1.11
1.13  𝑏 ≠ 0 Elim ∧: 1.12

We left out the parentheses...

Rational(x) := ∃𝑎 ∃𝑏 (Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions



Rationality

Prove: “If x and y are rational, then xy is rational.”

Real Numbers
Domain of Discourse

Since b and d are non-zero, so is bd.

...

1.5 𝑥 = 𝑎/𝑏 ∧ Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑏 ≠ 0
...

1.7 𝑦 = 𝑐/𝑑 ∧ Integer 𝑐 ∧ Integer 𝑑 ∧ 𝑑 ≠ 0
...

1.13  𝑏 ≠ 0 Elim ∧: 1.5
...

1.16  𝑑 ≠ 0 Elim ∧: 1.7
1.17  𝑏𝑑 ≠ 0 Prop of Integer Mult

Rational(x) := ∃𝑎 ∃𝑏 (Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions



Rationality

Prove: “If x and y are rational, then xy is rational.”

Real Numbers
Domain of Discourse

Furthermore, ac and bd are integers.

...

1.5 𝑥 = 𝑎/𝑏 ∧ Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑏 ≠ 0
...

1.7 𝑦 = 𝑐/𝑑 ∧ Integer 𝑐 ∧ Integer 𝑑 ∧ 𝑑 ≠ 0
...

1.19 Integer 𝑎 Elim ∧: 1.5*
...

1.22 Integer 𝑏 Elim ∧: 1.5*
...

1.24 Integer 𝑐 Elim ∧: 1.7*
...

1.27 Integer 𝑑 Elim ∧: 1.7*
1.28 Integer 𝑎𝑐 Prop of Integer Mult
1.29 Integer 𝑏𝑑 Prop of Integer Mult

Rational(x) := ∃𝑎 ∃𝑏 (Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions



Rationality

Prove: “If x and y are rational, then xy is rational.”

Real Numbers
Domain of Discourse

By definition, then, xy is rational.

...

1.10 𝑥𝑦 = 𝑎/𝑏 𝑐/𝑑 = 𝑎𝑐/𝑏𝑑 = (𝑎𝑐)/(𝑏𝑑)
...

1.17  𝑏𝑑 ≠ 0 Prop of Integer Mult
...

1.28 Integer 𝑎𝑐 Prop of Integer Mult
1.29 Integer 𝑏𝑑 Prop of Integer Mult
1.30 Integer 𝑏𝑑 ∧ 𝑏𝑑 ≠ 0 Intro ∧: 1.29, 1.17
1.31 Integer 𝑎𝑐 ∧ Integer 𝑏𝑑 ∧ 𝑏𝑑 ≠ 0

Intro ∧: 1.28, 1.30
1.32 𝑥𝑦 = (𝑎/𝑏)/(𝑐/𝑑) ∧ Integer 𝑎𝑐 ∧
Integer 𝑏𝑑 ∧ 𝑏𝑑 ≠ 0 Intro ∧: 1.10, 1.31
1.33 ∃𝑝 ∃𝑞 𝑥𝑦 = 𝑝/𝑞 ∧ Integer 𝑝 ∧ Integer 𝑞 ∧ 𝑞 ≠ 0

Intro ∃: 1.32
1.34 Rational 𝑥𝑦 Def of Rational: 1.32

Rational(x) := ∃𝑎 ∃𝑏 (Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions



Rationality

Prove: “If x and y are rational, then xy is rational.”

Real Numbers
Domain of Discourse

Suppose x and y are rational.

Furthermore, ac and bd are integers.

By definition, then, xy is rational.

1.1 Rational 𝑥 ∧ Rational 𝑦 Assumption
...

1.10 𝑥𝑦 = 𝑎/𝑏 𝑐/𝑑 = 𝑎𝑐/𝑏𝑑 = (𝑎𝑐)/(𝑏𝑑)
...

1.17  𝑏𝑑 ≠ 0 Prop of Integer Mult
...

1.28 Integer 𝑎𝑐 Prop of Integer Mult
1.29 Integer 𝑏𝑑 Prop of Integer Mult
...

1.34 Rational 𝑥𝑦 Def of Rational: 1.32

And finally...

Rational(x) := ∃𝑎 ∃𝑏 (Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions



Rationality

Prove: “If x and y are rational, then xy is rational.”

Real Numbers
Domain of Discourse

Suppose that x and y are rational.

Furthermore, ac and bd are integers.

By definition, then, xy is rational.

1.1 Rational 𝑥 ∧ Rational 𝑦 Assumption
...

1.10 𝑥𝑦 = 𝑎/𝑏 𝑐/𝑑 = 𝑎𝑐/𝑏𝑑 = (𝑎𝑐)/(𝑏𝑑)
...

1.17  𝑏𝑑 ≠ 0 Prop of Integer Mult
...

1.28 Integer 𝑎𝑐 Prop of Integer Mult
1.29 Integer 𝑏𝑑 Prop of Integer Mult
...

1.34 Rational 𝑥𝑦 Def of Rational: 1.32

1. Rational 𝑥 ∧ Rational 𝑦 → Rational 𝑥𝑦
Direct Proof

Rational(x) := ∃𝑎 ∃𝑏 (Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions



Rationality

Prove: “If x and y are rational, then xy is rational.”

Proof: Suppose x and y are rational.
Then, x = a/b for some integers a, b, where b¹0, and y = 
c/d for some integers c,d, where d¹0. 
Multiplying, we get that xy = (ac)/(bd). Since b and d are 
both non-zero, so is bd. Furthermore, ac and bd are 
integers. By definition, then, xy is rational.

Real Numbers
Domain of Discourse

vs more than 35 lines of formal proof

Rational(x) := ∃𝑎 ∃𝑏 (Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions



English Proofs

• High-level language let us work more quickly
– should not be necessary to spill out every detail
– reader checks that the writer is not skipping too much
– examples so far

skipping Intro ∧ and Elim ∧
not stating existence claims (immediately apply Elim $ to name the object)
not stating that the implication has been proven (“Suppose X... Thus, Y.” says it already)

– (list will grow over time)

• English proof is correct if the reader believes they 
could translate it into a formal proof
– the reader is the “compiler” for English proofs


