CSE 311: Foundations of Computing
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Lecture 8: Predicate Logic Proofs
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COORDINATES (%, Y. IF \JE—

/

I AVEW T




Last class: Propositional Inference Rules

Two inference rules per binary connective, one to eliminate
it and one to introduce it

Elim A AnB A:B
= Intro A
“AB ~AAB
Elim v AvB : —A Intro V A
- B ~AvVB,BvA
Modus Ponens A;A—>B DirelgtlperOOf

. B

Not like other rules



Last Class: To Prove An Implication: A — B

A—=B
* We use the direct proof rule ~A—>B

 The “pre-requisite” A = B for the direct proof rule
is a proof that “Given A, we can prove B.”

* The direct proof rule:
If you have such a proof then you can conclude
that A — B is true




To Prove An Implication: A - B

A—=B
* We use the direct proof rule ~A—>B

 The “pre-requisite” A = B for the direct proof rule
is a proof that “Given A, we can prove B.”

* The direct proof rule:

If you have such a proof then you can conclude
that A — B is true

Example: Prove p — (p v Q). proof subroutine
Indent proof_, [ 1.1. p Assumption ]
Subroutine 1.2. pvq Intro v: 1

1. p—>{Pvq) Direct Proof Rule



Proofs using the direct proof rule

Show that p — r follows fromqand (p A q) —> r

1. q Given
2. (prq)—>1r Given

Thisisa [3-1. P Assumption If we k
we know p is true...

ofp—r 3.3. 1 MP:2,3.2 r is true
3. por Direct Proof Rule




Example

Prove: (p v q)

There MUST be an application of the
Direct Proof Rule (or an equivalence)
to prove this implication.

Where do we start? We have no givens...



Example

Prove: (p A q) — (p v Q)



Example

Prove: (p Aq) — (p Vv Q)

1.1. prq Assumption

1.2 pvq
1. (pANgq)—> (pVvq) Direct Proof Rule



Example

Prove: (p Aq) — (p Vv Q)

1.1. prq Assumption
1.2. p Elim A: 1.1
1.2 pvq

1. (pANgq)—> (pVvq) Direct Proof Rule



Example

Prove: (p Aq) — (p Vv Q)

1.1. prq Assumption
1.2. p Elim A: 1.1
1.3. pvqg Intro v: 1.2

1. (pANgq)—> (pVvq) Direct Proof Rule



One General Proof Strategy

1. Look at the rules for introducing connectives to
see how you would build up the formula you want
to prove from pieces of what is given

2. Use the rules for eliminating connectives to break
down the given formulas so that you get the
pieces you need to do 1.

3. Write the proof beginning with what you figured
out for 2 followed by 1.



Example

Prove: (p—>a)A(q—r1)—>(p—r)



Example

Prove: (p—>a)A(q—r1)—>(p—r)

1.1. (p - qg) N (q — r) Assumption

1?2 p-or

1. (p->qg@Ar(@—71))—> (p—71) Direct Proof Rule



Example

Prove: (p—>a)A(q—r1)—>(p—r)

1.1. (p - qg) N (q — r) Assumption
1.2. p—q A Elim: 1.1
1.3. qg—r A Elim: 1.1

1?2 p-or
1. (p->qg@Ar(@—71))—> (p—71) Direct Proof Rule



Example

Prove: (p—>a)A(q—r1)—>(p—r)

1.1. (p - qg) N (q — r) Assumption

1.2. p—q A Elim: 1.1

1.3. qg—r A Elim: 1.1
141 p Assumption
1.4°? r

14. p-or Direct Proof Rule

1. (p->qg@Ar(@—71))—> (p—71) Direct Proof Rule



Example

Prove: (p—>a)A(q—r1)—>(p—r)

1.1. (p - qg) N (q — r) Assumption

1.2. p—q A Elim: 1.1

1.3. qg—r A Elim: 1.1
141 p Assumption
1.42. q MP:1.2,14.1
1.43. r MP: 1.3,1.4.2

14. p-or Direct Proof Rule

1. (p->qg@Ar(@—71))—> (p—71) Direct Proof Rule



Inference Rules for Quantifiers: First look

Intro 3 P(C) for >0Mme ¢ Elim V \V/X P(X)
dx P(X) P(a) (for any a)
Elim 3 x P(X) Intro V

= P(c) for some special** c

** By special, we mean that cis a
name for a value where P(c) is true.
We can’t use anything else about that
value, so c has to be a NEW name!




P(c) for some c

My First Predicate Logic Proof e
.y Vx P(x)
Prove (Vx P(x)) — (3x P(x)) - Plalforany

The main connective is implication

5. (Vx P(x))> 3x P(x)) @ so Direct Proof Rule seems good



P(c) for some c

My First Predicate Logic Proof e
Elim V VX P(X)
Prove Vx P(x) — 3x P(x) = Flal e

1.1. VxP(x) Assumption

We need an 3 we don’t have
so “intro 3” rule makes sense

1.5. Jx P(x) ©

1. Vx P(x)— 3dx P(x) Direct Proof Rule



P(c) for some c

My First Predicate Logic Proof e
.y Vx P(x)
Prove Vx P(x) — 3x P(x) = Flal e

1.1. VxP(x) Assumption

We need an 3 we don’t have
so “intro 3” rule makes sense

Th ires P
15. 3xPx)  toI:@) s
1. Vx P(x)— 3dx P(x) Direct Proof Rule



P(c) for some c

My First Predicate Logic Proof T 3P
Elim V VX P(X)
Prove Vx P(x) — 3x P(x) SIESESE
1.1. VxP(x) Assumption

1.2. Let a be an object.

1.5. dx P(x) Intro 3: @
1. Vx P(x)— dx P(x) Direct Proof Rule



P(c) for some c

My First Predicate Logic Proof T 3P
Elim V VX P(X)
Prove Vx P(x) — 3x P(x) SIESESE
1.1. VxP(x) Assumption

1.2. Let a be an object.

1.4. P(a) @

1.5. dx P(x) Intro 3: 1.4
1. Vx P(x)— dx P(x) Direct Proof Rule



P(c) for some c

My First Predicate Logic Proof T 3P
Prove Vx P(X) 5 9x P(X) e o
1.1. VxP(x) Assumption

1.2. Let a be an object.

1.4. P(a) Elim V: 1.1
1.5. dx P(x) Intro 3: 1.4

1. Vx P(x)— dx P(x) Direct Proof Rule



P(c) for some c

My First Predicate Logic Proof e T 3 P)

Prove Vx P(x) — dx P(x)

1.1.
1.2.
1.3.
1.4.

Vx P(x)

Elim V

=~ P(a) for any a

Vx P(x) Assumption
Let a be an object.

P(a) Elim V: 1.1

dx P(x) Intro 3: 1.3

1. Vx P(x)— dx P(x) Direct Proof Rule

Working forwards as well as backwards:

In applying “Intro 3” rule we didn’t know what expression
we might be able to prove P(c) for, so we worked forwards
to figure out what might work.



Predicate Logic Proofs

e Can use

— Predicate logic inference rules
whole formulas only

— Predicate logic equivalences (De Morgan’s)
even on subformulas

— Propositional logic inference rules
whole formulas only

— Propositional logic equivalences
even on subformulas



Predicate Logic Proofs with more content

* |n propositional logic we could just write down
other propositional logic statements as “givens”

* Here, we also want to be able to use domain
knowledge so proofs are about something specific

* Example: Domain of Discourse
Integers

* Given the basic properties of arithmetic on integers,
define:

Predicate Definitions
Even(x) :=3y (x = 2-y)
pdd(x) =dy (x =2y + 1))




A Not so Odd Example

Domain of Discourse| |Predicate Definitions
Integers ) |Even(x) :=3y (x = 2-y)
Odd(x) :=3y (x=2-y+1)

Prove “There is an even number”
Formally: prove dx Even(x)



A Not so Odd Example

Domain of Discourse| |Predicate Definitions
Integers ) |Even(x) :=3y (x = 2-y)
Odd(x) :=3y (x=2-y+1)

Prove “There is an even number”
Formally: prove dx Even(x)

1. 2=21 Algebra

2. dy(2=2y) Intro3:1

3. Even(2) Definition of Even: 2
4, dx Even(x) Intro 4: 3



A Prime Example

Domain of Discourse| [Predicate Definitions
Integers

Even(x) :=3y (x = 2-y)

Odd(x) :=3dy (x=2-y + 1)

Prime(x) := “x > 1 and x#a-b for

\_ all integers a, b with 1<a<x” /

Prove “There is an even prime number”
Formally: prove dx (Even(x) A Prime(x))



A Prime Example

Domain of Discourse

rPredicate Definitions

Integers

Even(x) :=3y (x = 2-y)

Odd(x) :=3dy (x =2y + 1)
Prime(x) := “x > 1 and x#a-b for
\_ all integers a, b with 1<a<x”

Prove “There is an even prime number”
Formally: prove dx (Even(x) A Prime(x))

AL N

2=21

dy (2 = 2-y)

Even(2)

Prime(2)*

Even(2) A Prime(2)

dx (Even(x) A Prime(x))

Algebra

Intro 3: 1

Def of Even: 3
Property of integers
Intro A: 2, 4

Intro 4: 5

* Later we will further break down “Prime” using quantifiers to prove statements like this



Inference Rules for Quantifiers: First look

— P(c) for some c — Vx P(x)
dx P(X) P(a) (for any a)
Elim 3 Ix P(x) —— ] Let a be arbitrary*”...P(a)
= P(c) for some special** c Vx P(x)

*in the domain of P

** By special, we mean that cis a
name for a value where P(c) is true.
We can’t use anything else about that
value, so c has to be a NEW name!




Even(x) :=3dy (x=2y)

Even and Odd Odd(x) =3y (x=2y+1)
Domain: Integers
——| Let a be arbitrary*”...P(a) | [Elim 3 3x P(x)
Vx P(x) . P(c) for some special** c

Prove: “The square of any even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

3. Vx (Even(x)—Even(x?)) @



Even(x) :=3dy (x=2y)

Even and Odd Odd(x) =3y (x=2y+1)
Domain: Integers
——| Let a be arbitrary*”...P(a) | [Elim 3 3x P(x)
Vx P(x) . P(c) for some special** c

Prove: “The square of any even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

1. Let a be an arbitrary integer

2. Even(a)—Even(a?) @
3. Vx (Even(x)—Even(x?)) Intro V: 1,2



Even(x) :=3dy (x=2y)
Even and Odd Odd(x) :=3y (x=2y+1)

Domain: Integers

2.1 Even(a) Assumption d. Let a be an arbitrary integer
2.4 Even(a) Assumpt ion
2.6 Even(a?) 2.6 Even(a?)
2. Even(a)-—>Even(a?) Direct proof rule 2. Even(a)—>Even(aZ?) Direct proof rule
3. Vx (Even(x)—>Even(x?)) Intro V: 1,2 3. Vx (Even(x)—>Even(x?)) Intro V: 1,2

Prove: “The square of any even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

1. Let a be an arbitrary integer
2.1 Even(a) Assumption

2.6 Even(a?) @

2. Even(a)—Even(a?) Direct proof rule
3. Vx (Even(x)—Even(x?)) Intro V: 1,2



Even(x) :=3dy (x=2y)

Even and Odd Odd(x) =3y (x=2y+1)
Domain: Integers
——| Let a be arbitrary*”...P(a) | [Elim 3 3x P(x)
Vx P(x) . P(c) for some special** c

Prove: “The square of any even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

1. Let a be an arbitrary integer

2.1 Even(a) Assumption

2.2 3dy(a=2y) Definition of Even

2.5 3Ty (a?=2y) @

2.6 Even(a?) Definition of Even
2. Even(a)—Even(a?) Direct proof rule

3. Vx (Even(x)—Even(x?)) Intro V: 1,2



Even(x) :=3dy (x=2y)

Even and Odd Odd(x) =3y (x=2y+1)
Domain: Integers
——| Let a be arbitrary*”...P(a) | [Elim 3 3x P(x)
Vx P(x) . P(c) for some special** c

Prove: “The square of any even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

1. Let a be an arbitrary integer

2.1 Even(a) Assumption
2.2 3dy(a=2y) Definition of Even
Need a2 =2
2.5 Ty (a?=2y) Intr.o .El.rule: © fof(’;o;e . ‘
2.6 Even(a?) Definition of Even
2. Even(a)—Even(a?) Direct proof rule

3. Vx (Even(x)—Even(x?)) Intro V: 1,2



Even(x) :=3dy (x=2y)

Even and Odd Odd(x) =3y (x=2y+1)
Domain: Integers
——| Let a be arbitrary*”...P(a) | [Elim 3 3x P(x)
VX P(x) . P(c) for some special** c

Prove: “The square of any even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

1. Let a be an arbitrary integer

2.1 Even(a) Assumption
2.2 3dy(a=2y) Definition of Even
2.3 a=2b Elim3: b
2.5 3y (a2=2y) Intro 3 rule: &) :)?Zirfezczc
2.6 Even(a?) Definition of Even
2. Even(a)—Even(a?) Direct proof rule

3. Vx (Even(x)—Even(x?)) Intro V: 1,2



Even(x) :=3dy (x=2y)

Even and Odd Odd(x) =3y (x=2y+1)
Domain: Integers
——| Let a be arbitrary*”...P(a) | [Elim 3 3x P(x)
VX P(x) . P(c) for some special** c

Prove: “The square of any even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

1. Let a be an arbitrary integer

2.1 Even(a) Assumption
2.2 3dy(a=2y) Definition of Even
2.3 a=2b Elim3: b
2.4 a’=4b’=2(2b?) Algebra
2.5 3y (a?=2y) Intro 3 rule | Used a’ = 2cfor c=2b°
2.6 Even(a?) Definition of Even
2. Even(a)—Even(a?) Direct proof rule

3. Vx (Even(x)—Even(x?)) Intro V: 1,2



These rules need more caveats...

There are extra conditions on using these rules:

oy L Let a be arbitrary*”...P(a)  [Elim3 3x P(x) _
Vx P(x) . P(c) for some special** c
*in the domain of P ** ¢ has to be a NEW name.

Over integer domain: Vx dy (y = x) is True but JyVx (y = x) is False

BAD “PROOF”

1. Vx3dy(y=x) Given

2. Let a be an arbitrary integer
3. 3dy(y=a) ElimV: 1

4, b=>a Elim3: b

5. Vx(b=x) Intro V: 2,4
6. dyVx(y=x) Introd: 5



These rules need more caveats...

There are extra conditions on using these rules:

oy L Let a be arbitrary*”...P(a)  [Elim3 3x P(x)
Vx P(x) . P(c) for some special** c
*in the domain of P ** c has tobe a NEW name.

Over integer domain: Vx dy (y = x) is True but JyVx (y = x) is False

BAD “PROOF”

1. Vx3dy(y=x) Given

2. Let a be an arbitrary integer
3. 3dy(y=a) ElimV: 1
4, b=>a Elim3: b

5. Vx(b=>=x) Intro V: 2,4
r’ 6. dyVx(y=x) Introd: 5

Can’t get rid of a since another name in the same line, b, depends on it!



These rules need more caveats...

There are extra conditions on using these rules:

oy L Let a be arbitrary*”...P(a)  [Eliim3 dx P(x)
=~ P(c) for some special** c

*in the domain of P. No other ** cisa NEW name.
name in P depends on a List all dependencies for c.

Over integer domain: Vx dy (y = x) is True but JyVx (y = x) is False

BAD “PROOF”

1. Vx3dy(y=x) Given

2. Let a be an arbitrary integer

3. 3dy(y=a) ElimV: 1

4. b=>a Elim 3: b special depends on a

T V'X:(“Dzj:):—-( :llirOW
ﬁ 6. dyVx(y=x) Introd: 5

Can’t get rid of a since another name in the same line, b, depends on it!



Inference Rules for Quantifiers: Full version

P(c) for some ¢ . Vx P(x)
Intro 3 Elim V
Ix P(x) = P(a) for any a
Elim 3 IxPlx) ——"| Let a be arbitrary*”...P(a)
= P(c) for some special** c Vx P(x)
** cisa NEW name. *in the domain of P. No other

List all dependencies for c. name in P depends on a




English Proofs

* We often write proofs in English rather than
as fully formal proofs

— They are more natural to read

* English proofs follow the structure of the
corresponding formal proofs

— Formal proof methods help to understand how
proofs really work in English...

... and give clues for how to produce them.



