
CSE 311: Foundations of Computing

Lecture 7: Logical Inference



Last Class: Quantifiers

We use quantifiers to talk about collections of objects.

"x P(x)
P(x) is true for every x in the domain

read as “for all x, P of x”

$x P(x) 
There is an x in the domain for which P(x) is true

read as “there exists x, P of x”



De Morgan’s Laws for Quantifiers

¬"x P(x) º $x ¬ P(x)
¬ $x P(x) º "x ¬ P(x)

¬ $x (P(x) Ù R(x))  º "x (P(x) ®¬ R(x))
¬"x (P(x) ® R(x)) º $x (P(x) Ù ¬ R(x))

Remain true when domain restrictions are used:



Nested Quantifiers

• Bound variable names don’t matter

"x $y P(x, y) º "a $b P(a, b)

• Positions of quantifiers can sometimes change
"x (Q(x) Ù $y P(x, y)) º "x $y (Q(x) Ù P(x, y))

• But:   order is important...



Quantifier Order Can Matter

“There is a number greater than or equal to all numbers.”

GreaterEq(x, y) ::= “x ≥ y”
Predicate Definitions

x

y
1   2   3   4

1
2
3
4

T F F F

T T F F

T T T F

T T T T

$x "y GreaterEq(x, y)))

{1, 2, 3, 4}
Domain of Discourse



Quantifier Order Can Matter

“There is a number greater than or equal to all numbers.”

GreaterEq(x, y) ::= “x ≥ y”
Predicate Definitions

“Every number has a number greater than or equal to it.”

y
1   2   3   4

1
2
3
4

T F F F

T T F F

T T T F

T T T T

$x "y GreaterEq(x, y)))

"y $x GreaterEq(x, y)))

{1, 2, 3, 4}
Domain of Discourse

x



Quantifier Order Can Matter

“There is a number greater than or equal to all numbers.”

GreaterEq(x, y) ::= “x ≥ y”
Predicate Definitions

“Every number has a number greater than or equal to it.”

y
1   2   3   4

1
2
3
4

T F F F

T T F F

T T T F

T T T T

The purple statement requires an entire row to be true.
The red statement requires one entry in each column to be true.

$x "y GreaterEq(x, y)))

"y $x GreaterEq(x, y)))

Important: both include the case x = y

Different names does not imply different objects!

{1, 2, 3, 4}
Domain of Discourse

x



Quantification with Two Variables

expression when true when false

"x " y P(x, y) Every pair is true. At least one pair is false.

$ x $ y P(x, y) At least one pair is true. All pairs are false.

" x $ y P(x, y) We can find a specific y for 
each x.
(x1, y1), (x2, y2), (x3, y3)

Some x doesn’t have a 
corresponding y.

$ y " x P(x, y) We can find ONE y that 
works no matter what x is.
(x1, y), (x2, y), (x3, y)

For any candidate y, there is 
an x that it doesn’t work for.

1   2   3   4
1
2
3
4

T F F F
T T F F
T T T F
T T T T



Logical Inference

• So far we’ve considered:
– How to understand and express things using 

propositional and predicate logic
– How to compute using Boolean (propositional) logic
– How to show that different ways of expressing or 

computing them are equivalent to each other

• Logic also has methods that let us infer implied 
properties from ones that we know
– Equivalence is a small part of this



New Perspective

Rather than comparing P and Q as columns,
zooming in on just the rows where P is true:

p q P Q
T T T

T F T

F T F

F F F



New Perspective

Rather than comparing P and Q as columns,
zooming in on just the rows where P is true:

Given that P is true, we see that Q is also true. 

p q P Q
T T T T

T F T T

F T F

F F F

P ⇒ Q



New Perspective

Rather than comparing P and Q as columns,
zooming in on just the rows where P is true:

When we zoom out, what have we proven?

p q P Q
T T T T

T F T T

F T F ?

F F F ?



New Perspective

Rather than comparing P and Q as columns,
zooming in on just the rows where P is true:

When we zoom out, what have we proven?

p q P Q P ® Q
T T T T T

T F T T T

F T F T T

F F F F T

(P ® Q) º T



New Perspective

Equivalences
P º Q and (P « Q) º T are the same

Inference
P ⇒ Q and (P ® Q) º T are the same

Can do the inference by  zooming in 
to the rows where P is true



Applications of Logical Inference

• Software Engineering
– Express desired properties of program as set of logical 

constraints
– Use inference rules to show that program implies that 

those constraints are satisfied
• Artificial Intelligence
– Automated reasoning 

• Algorithm design and analysis
– e.g.,  Correctness, Loop invariants.

• Logic Programming, e.g. Prolog
– Express desired outcome as set of constraints
– Automatically apply logic inference to derive solution



Proofs

• Start with given facts (hypotheses)
• Use rules of inference to extend set of facts
• Result is proved when it is included in the set



An inference rule:  Modus Ponens

• If A and A ® B are both true, then B must be true

• Write this rule as

• Given: 
– If it is Wednesday, then you have a 311 class today. 
– It is Wednesday.

• Therefore, by Modus Ponens:  
– You have a 311 class today.

A ; A ® B
∴ B



My First Proof!

Show that r follows from p, p ® q, and q ® r

1.  𝒑 Given
2. 𝒑 → 𝒒 Given
3. 𝒒® 𝒓 Given
4.
5.

Modus Ponens



My First Proof!

Show that r follows from p, p ® q, and q ® r

1.  𝒑 Given
2. 𝒑 → 𝒒 Given
3. 𝒒® 𝒓 Given
4. 𝒒 MP: 1, 2
5. 𝒓 MP: 3, 4

Modus Ponens



1. 𝒑 → 𝒒 Given
2. ¬𝒒 Given
3. ¬𝒒®¬𝒑 Contrapositive: 1
4. ¬𝒑 MP: 2, 3

Proofs can use equivalences too

Show that ¬p follows from p ® q and ¬q

Modus Ponens



Inference Rules

A  ;  B 
∴ C  ,  D

A  ;  A ® B   
∴ B   

Requirements:
Conclusions:

If A is true and B is true ….

Then, C must 
be true

Then D must 
be true

Example (Modus Ponens):

If I have A and A ® B both true,
Then B must be true.



Axioms:  Special inference rules

∴ C  ,  D

∴ A Ú¬A 

Requirements:
Conclusions:

If I have nothing…

Example (Excluded Middle):

A Ú¬A must be true.

Then D must 
be true

Then, C must 
be true



Simple Propositional Inference Rules

Two inference rules per binary connective,
one to eliminate it and one to introduce it

A Ù B
∴ A, B

A ; B   
∴ A Ù B 

A              x
∴ A Ú B, B Ú A

A ; A ® B
∴ B

A Þ B  
∴ A ® B

Not like other rules

Elim ∧ Intro  ∧

A Ú B ; ¬A
∴ B

Elim ∨ Intro  ∨

Modus Ponens Direct Proof



Proofs

Show that r follows from p, p ® q and (p ∧	q) ® r

A ; A ® B
∴ B

How To Start:
We have givens, find the ones that go 
together and use them.  Now, treat new
things as givens, and repeat.

A Ù B
∴ A, B

A ; B   
∴ A Ù B 



Proofs

Show that 𝒓 follows from 𝒑, 𝒑 → 𝒒, and 𝒑 ∧ 𝒒 → 𝒓

1. 𝒑 Given
2. 𝒑 → 𝒒 Given
3. 𝒒 MP: 1, 2
4. 𝒑 ∧ 𝒒 Intro Ù: 1, 3
5. 𝒑 ∧ 𝒒 → 𝒓 Given
6. 𝒓 MP: 4, 5

𝒒𝒑 ;
𝒑 ∧ 𝒒 ; 𝒑 ∧ 𝒒 → 𝒓

𝒓

MP
Intro Ù

MP

Two visuals of the same proof.
We will use the top one, but if 
the bottom one helps you 
think about it, that’s great!

𝒑 ; 𝒑 → 𝒒



Prove that ¬r follows from p Ù s, q ® ¬r, and ¬s Ú q.

Proofs

1. 𝒑 ∧ 𝒔 Given
2. 𝒒 → ¬𝒓 Given
3. ¬𝒔 ∨ 𝒒 Given

20. ¬𝒓 Idea: Work backwards!

First: Write down givens 
and goal



Prove that ¬r follows from p Ù s, q ® ¬r, and ¬s Ú q.

Proofs

1. 𝒑 ∧ 𝒔 Given
2. 𝒒 → ¬𝒓 Given
3. ¬𝒔 ∨ 𝒒 Given

20. ¬𝒓 MP: 2,

Idea: Work backwards!

We want to eventually get ¬𝒓.  How?
• We can use 𝒒 → ¬𝒓 to get there.
• The justification between 2 and 20 

looks like “elim →” which is MP.



Prove that ¬r follows from p Ù s, q ® ¬r, and ¬s Ú q.

Proofs

1. 𝒑 ∧ 𝒔 Given
2. 𝒒 → ¬𝒓 Given
3. ¬𝒔 ∨ 𝒒 Given

19. 𝒒
20. ¬𝒓 MP: 2, 19

Idea: Work backwards!

We want to eventually get ¬𝒓.  How?
• Now, we have a new “hole”
• We need to prove 𝒒…

• Notice that at this point, if we 
prove 𝒒, we’ve proven ¬𝒓…



Prove that ¬r follows from p Ù s, q ® ¬r, and ¬s Ú q.

Proofs

1. 𝒑 ∧ 𝒔 Given
2. 𝒒 → ¬𝒓 Given
3. ¬𝒔 ∨ 𝒒 Given

19. 𝒒
20. ¬𝒓 MP: 2, 19

This looks like or-elimination.



Prove that ¬r follows from p Ù s, q ® ¬r, and ¬s Ú q.

Proofs

1. 𝒑 ∧ 𝒔 Given
2. 𝒒 → ¬𝒓 Given
3. ¬𝒔 ∨ 𝒒 Given

18. ¬¬𝒔
19. 𝒒 ∨ Elim: 3, 18
20. ¬𝒓 MP: 2, 19

¬¬𝒔 doesn’t show up in the givens but
𝒔 does and we can use equivalences



Prove that ¬r follows from p Ù s, q ® ¬r, and ¬s Ú q.

Proofs

1. 𝒑 ∧ 𝒔 Given
2. 𝒒 → ¬𝒓 Given
3. ¬𝒔 ∨ 𝒒 Given

17. 𝒔
18. ¬¬𝒔 Double Negation: 17
19. 𝒒 ∨ Elim: 3, 18
20. ¬𝒓 MP: 2, 19 



Prove that ¬r follows from p Ù s, q ® ¬r, and ¬s Ú q.

Proofs

1. 𝒑 ∧ 𝒔 Given

2. 𝒒 → ¬𝒓 Given

3. ¬𝒔 ∨ 𝒒 Given

17. 𝒔 ∧ Elim: 1

18. ¬¬𝒔 Double Negation: 17

19. 𝒒 ∨ Elim: 3, 18

20. ¬𝒓 MP: 2, 19 

No holes left!  We just 
need to clean up a bit.



Prove that ¬r follows from p Ù s, q ® ¬r, and ¬s Ú q.

Proofs

1. 𝒑 ∧ 𝒔 Given
2. 𝒒 → ¬𝒓 Given
3. ¬𝒔 ∨ 𝒒 Given
4. 𝒔 ∧ Elim: 1
5. ¬¬𝒔 Double Negation: 4
6. 𝒒 ∨ Elim: 3, 5
7. ¬𝒓 MP: 2, 6 



• You can use equivalences to make substitutions
of any sub-formula.
e.g.  𝒑® 𝒓 Ú 𝒒 ≡ ¬𝒑 Ú 𝒓 Ú 𝒒

• Inference rules only can be applied to whole 
formulas (not correct otherwise).

e.g. 1.  𝒑 → 𝒓 given
2.  (𝒑 Ú 𝒒)® 𝒓 intro Ú from 1.

Important: Applications of Inference Rules

Does not follow! e.g . p=F, q=T, r=F



To Prove An Implication: 𝐴 → 𝐵

• We use the direct proof rule
• The “pre-requisite” A Þ B for the direct proof rule 

is a proof that “Given A, we can prove B.”
• The direct proof rule:

If you have such a proof then you can conclude        
that A ® B is true

A Þ B  
∴ A ® B



To Prove An Implication: 𝐴 → 𝐵

• We use the direct proof rule
• The “pre-requisite” A Þ B for the direct proof rule 

is a proof that “Given A, we can prove B.”
• The direct proof rule:

If you have such a proof then you can conclude        
that A ® B is true

Example: Prove p ® (p Ú q).
1.1. 𝒑 Assumption
1.2.   𝒑 Ú 𝒒 Intro Ú: 1                             

1.   𝒑® (𝒑 Ú 𝒒) Direct Proof Rule

proof subroutine

Indent proof
subroutine ⇒

A Þ B  
∴ A ® B



Proofs using the direct proof rule

Show that p ® r follows from q and (p Ù q) ® r

1.   𝒒 Given
2. (𝒑 Ù 𝒒)® 𝒓 Given

3.1. 𝒑 Assumption
3.2.   𝒑 Ù 𝒒 Intro Ù: 1, 3.1
3.3.   𝒓 MP: 2, 3.2

3.    𝒑 → 𝒓 Direct Proof Rule

This is a 
proof

of 𝒑 → 𝒓

If we know 𝒑 is true…
Then, we’ve shown     

r is true



Prove:  (p Ù q) ® (p Ú q)

Example

There MUST be an application of the
Direct Proof Rule (or an equivalence)

to prove this implication.

Where do we start?  We have no givens…



Example

Prove:  (p Ù q) ® (p Ú q)



Example

Prove:  (p Ù q) ® (p Ú q)

1.1. 𝒑 Ù 𝒒 Assumption
1.2.   𝒑 Elim Ù: 1.1
1.3.   𝒑 Ú 𝒒 Intro Ú: 1.2

1. (𝒑 ∧ 𝒒)® (𝒑 Ú 𝒒) Direct Proof Rule



One General Proof Strategy

1. Look at the rules for introducing connectives to 
see how you would build up the formula you want 
to prove from pieces of what is given

2. Use the rules for eliminating connectives to break 
down the given formulas so that you get the 
pieces you need to do 1.

3. Write the proof beginning with what you figured 
out for 2 followed by 1.


