
P-1

P-1

CSE 142
Computer Programming I

Linear & Binary Search

©2001 UW CSE P-2

Concepts This Lecture

Searching an array
Linear search
Binary search
Comparing algorithm performance

P-3

Searching

Searching = looking for something
Searching an array is particularly

common
Goal: determine if a particular value is

in the array

We’ll see that more than one
algorithm will work

P-4

Searching Problem: Specification

Let
b be the array to be searched,
n be the size of the array, and
x be the value being searched for (the
"target")

The question is, "Does x occur in b?"
If x appears in b[0..n-1], determine its index,

i.e., find the k such that b[k]==x.
If x not found, return –1

P-5

Searching as a Function
The array b, the size n, and the target x are the

parameters of the problem.
None of the parameters are changed by the function

Function outline:

int search (int b[], int n, int x) {
...
}
The details of the function depend upon the algorithm

used.
P-6

Linear Search

int search (int b[], int n, int x) {
int index = 0;
while (index < n && b[index] != x)

index++;
if (index < n)

return index;
else return -1;

}

Algorithm: start at the beginning of the array and
examine each element until x is found, or all
elements have been examined

P-2

P-7

Linear Search

Test:
search(v, 8, 6) while (index < n && b[index] != x)

index++;

3 12 -5 6 142 21 -17 45b

Found It! P-8

Linear Search

Test:
search(v, 8, 15) while (index < n && b[index] != x)

index++;

3 12 -5 6 142 21 -17 45b

Ran off the end! Not found.

P-9

Linear Search

Note: The loop condition is written so
b[index] is not accessed if index>=n.

while (index < n && b[index] != x)

(Why is this true? Why does it matter?)

3 12 -5 6 142 21 -17 45b

P-10

Can we do better?

Time needed for linear search is proportional to
the size of the array.

An alternate algorithm, "Binary search," works if
the array is sorted
1. Look for the target in the middle.
2. If you don’t find it, you can ignore half of

the array, and repeat the process with the
other half.

Example: Find first page of pizza listings in the
yellow pages

P-11

Binary Search Strategy
What we want: Find split between values

larger and smaller than x:

<= x > x

0 L R n

b

<= x > x?

0 L R n

b

Situation while searching:

General strategy: shrink the green region;
grow the blue and/or pink region

P-12

Binary Search Strategy
More precisely: at any time,

Values in b[0..L] <= x
Values in b[R..n-1] > x
Values in b[L+1..R-1] are unknown,
but sorted

<= x > x?

0 L R n

b

P-3

P-13

Binary Search Strategy

<= x > x?

0 L R n

b

Making progress:

Step: Look at b[(L+R)/2]. Move L or R
to the middle depending on test.

This shrinks the green region, and
increases either the blue or the pink.

P-14

Binary Search
/* If x appears in b[0..n-1], return its location, i.e.,

return k so that b[k]==x. If x not found,
return -1 */

int bsearch (int b[], int n, int x) {
int L, R, mid;
___________________ ;
while (_______________) {

}
_________________ ;

}

<= x > x?
0 L R n

b

P-15

Binary Search
/* If x appears in b[0..n-1], return its location, i.e.,

return k so that b[k]==x. If x not found, return -1 */
int bsearch (int b[], int n, int x) {

int L, R, mid;
___________________ ;
while (_______________) {

mid = (L+R) / 2;
if (b[mid] <= x)

L = mid;
else R = mid;

}
_________________ ;

}
<= x > x?

0 L R n
b

P-16

Loop Termination
/* If x appears in b[0..n-1], return its location, i.e.,

return k so that b[k]==x. If x not found,
return -1 */

int bsearch (int b[], int n, int x) {
int L, R, mid;
___________________ ;
while (L+1 != R) {

mid = (L+R) / 2;
if (b[mid] <= x)

L = mid;
else R = mid;

}
_________________ ;

}

<= x > x?
0 L R n

b

P-17

Initialization
/* If x appears in b[0..n-1], return its location, i.e.,

return k so that b[k]==x. If x not found, return -
1 */

int bsearch (int b[], int n, int x) {
int L, R, mid;
L = -1; R = n;
while (L+1 != R) {

mid = (L+R) / 2;
if (b[mid] <= x) L = mid;
else R = mid;

}
_________________ ;

}

<= x > x
0 L R n

b
P-18

Return Result
/* If x appears in b[0..n-1], return its location, i.e.,

return k so that b[k]==x. If x not found, return -1 */
int bsearch (int b[], int n, int x) {

int L, R, mid;
L = -1; R = n;
while (L+1 != R) {

mid = (L+R) / 2;
if (b[mid] <= x) L = mid;
else R = mid;

}
if (L >= 0 && b[L] == x)

return L
else return -1;

}
<= x > x

0 L R n
b

P-4

P-19

Binary Search

Test: bsearch(v,8,3);

-17 -5 3 6 12 21 45 142b

0 1 2 3 4 5 6 7

L Rmid

L = -1; R = n;
while (L+1 != R) {

mid = (L+R) / 2;
if (b[mid] <= x)

L = mid;
else

R = mid;
}

RmidL midL

P-20

Binary Search

Test: bsearch(v,8,17);

-17 -5 3 6 12 21 45 142b

L Rmid

L = -1; R = n;
while (L+1 != R) {

mid = (L+R) / 2;
if (b[mid] <= x)

L = mid;
else

R = mid;
}

midmidL RL

0 1 2 3 4 5 6 7

P-21

Binary Search

Test: bsearch(v,8,143);

-17 -5 3 6 12 21 45 142b

L Rmid

L = -1; R = n;
while (L+1 != R) {

mid = (L+R) / 2;
if (b[mid] <= x)

L = mid;
else

R = mid;
}

midmidmidL L L L

0 1 2 3 4 5 6 7

P-22

Binary Search

Test: bsearch(v,8,-143);

-17 -5 3 6 12 21 45 142b

L Rmid
L = -1; R = n;
while (L+1 != R) {

mid = (L+R) / 2;
if (b[mid] <= x)

L = mid;
else

R = mid;
}

midmid RRR

0 1 2 3 4 5 6 7

P-23

Is it worth the trouble?

Suppose you had 1000 elements
Ordinary search would require maybe 500

comparisons on average
Binary search

after 1st compare, throw away half, leaving
500 elements to be searched.

after 2nd compare, throw away half, leaving
250. Then 125, 63, 32, 16, 8, 4, 2, 1 are left.

After at most 10 steps, you’re done!
What if you had 1,000,000 elements??

P-24

How Fast Is It?

Another way to look
at it: How big an
array can you
search if you
examine a given
number of array
elements?

……
1,02411

……

1,048,57621

1288
647
326
165
84
43
22
11

Array size# comps

P-5

P-25

Time for Binary Search

Key observation: for binary search: size
of the array n that can be searched with
k comparisons: n ~ 2k

Number of comparisons k as a function
of array size n: k ~ log2 n

This is fundamentally faster than linear
search (where k ~ n)

P-26

Summary

Linear search and binary search are two
different algorithms for searching an
array

Binary search is vastly more efficient
But binary search only works if the array

elements are in order

Looking ahead: we will study how to sort
arrays, that is, place their elements in
order

P-27

QOTD: Multiple Madness

Sometimes more than one array
element will match what we are
looking for.

Sometimes we want to get all of
those matches.

Try this: design a function that
searches an array of students and
“returns” everyone who got a
score of 100 on the midterm

