
H1-1

H1-1

We’re Doomed! Doomed!

• Machine’s execution speed
– 10,000,000 lines of C per second

• Programmer speed
– 12 lines of working C per day

• How many days will it take to write a program
that runs for 1 second?

H1-2

CSE 142
Computer Programming I

Iteration

or… How we really get the computer to
do our work for us.

(in which we catch up with Turing!)

© 2000 UW CSE

H1-3

Outline

Iteration: why do we need it?
What are loops?
How do we write loops in C?
How do we go about writing loops?
Some examples
Nested loops
Other ways to write loops
Dangers and devices

H1-4

Chapter 5

Read Sections 5.1-5.6, 5.10

5.1 Introduction

5.2-5.3 While statement

5.4 For statement

5.5-5.6 Loop design

5.7 Nested Loops

5.11 Common errors

H1-5

Revisiting Our Paper Route

Go to house #1

Deliver a paper to #1

Go to house #2

Deliver a paper to #2

Go to house #3

Deliver a paper to #3

…

This is better than before
we had functions.

But, it’s still
cumbersome. Why?

H1-6

Revisiting Our Paper Route

For every house on
the block:

Go to the house

Deliver a paper to it

We really want to repeat
the same process for
each house in order.

We want to loop over
the houses.

H1-2

H1-7

What are Loops?
One More Type of Control Flow

When we want to repeat a block of code, we use
a loop.

Loop body
Help! I’m going round and round.
How do I get out?

H1-8

Loops

• A “loop” is a repeated (“iterated”)
sequence of statements
• Like conditionals, loops let us control the
flow of our program in powerful ways.
• Like functions, loops take code that has
been generalized and execute it many times.

H1-9

(More) Robust Input

char choice = ‘x’;
printf(“Do you want to switch doors? (y/n) ”);
scanf (“ %c”, &choice);

Test: If it didn’t work, try again until it does.

H1-10

Getting Loopy

printf(“Do you want to switch doors?\n”);
printf(“Please just enter ‘y’ or ‘n’! ”);
scanf (“ %c”, &choice);

char choice;
printf(“Do you want to switch doors? (y/n) ”);
scanf (“ %c”, &choice);

initialization

loop body
(with “update”)

loop condition while choice is neither ‘y’ nor ‘n’

H1-11

How do we write loops in C?
The while statement.

char choice;
printf(“Do you want to switch doors? (y/n) ”);
scanf (“ %c”, &choice);
while (choice != ‘y’ && choice != ‘n’) {

printf(“Do you want to switch doors?\n”);
printf(“Please just enter ‘y’ or ‘n’! ”);
scanf (“ %c”, &choice);

}

H1-12

while (condition) {

statement1;

statement2;

...

}

while Statement Syntax

Loop body:
Any statement,
or a compound
statement

Loop
condition

Psst… just like with conditionals, a while’s body is really a statement.
So, why are there two statements? And, why are those braces there?

H1-3

H1-13

choice
is not ‘y’
nor ‘n’?

get another

choice

true

false

while Loop Control Flow

get first
choice

H1-14

A Loopless Problem (?)
Problem: add 4 numbers entered at the keyboard.

int sum;
int x1, x2, x3, x4;

printf("Enter 4 numbers: ");
scanf("%d%d%d%d", &x1, &x2, &x3, &x4);
sum = x1 + x2 + x3 + x4;

This works perfectly!
But... what if we had 14 numbers? or 40? or 4000?

H1-15

How do we go about writing
loops? Generalizing!

The key to solving problems with loops is to figure out
how to do one or a few concrete steps… then generalize.

Our algorithm for adding four numbers was concrete. It
had no repeated statements at all…

But it did have some repetition buried in it.

Let’s rework the algorithm to make the repetition more
explicit… then, we can solve the general problem.

Problem: read a series of numbers entered at the
keyboard and add all of them.

H1-16

Add 4 Numbers, Repetitively
int sum, x;
sum = 0;
printf("Enter 4 numbers: ");

scanf("%d", &x);
sum = sum + x;

scanf("%d", &x);
sum = sum + x;

scanf("%d", &x);
sum = sum + x;

scanf("%d", &x);
sum = sum + x;

H1-17

Loop to Add 4 Numbers

int sum, x;
sum = 0;
printf("Enter 4 numbers:");

scanf("%d", &x);
sum = sum + x;

scanf("%d", &x);
sum = sum + x;

scanf("%d", &x);
sum = sum + x;

scanf("%d", &x);
sum = sum + x;

int sum, x;
int count;

sum = 0;
printf("Enter 4 numbers:");

count = 1;
while (count <= 4) {

scanf("%d", &x);
sum = sum + x;
count = count + 1;

} H1-18

More General Loop to Add Numbers

int sum, x, count;
int number_inputs; /* Number of inputs */

sum = 0;
printf("How many numbers? ");
scanf("%d", &number_inputs);
printf("Enter %d numbers: ", number_inputs);
count = 1;
while (count <= number_inputs) {

scanf("%d", &x);
sum = sum + x;
count = count + 1;

}

initialization

condition

update

H1-4

H1-19

Examples: Compute 7!
What is 1 * 2 * 3 * 4 * 5 * 6 * 7? (“seven factorial”)

x = 1 * 2 * 3 * 4 * 5 * 6 * 7;
printf ("%d", x) ;

Bite size pieces: More Regular: As a loop:

x = 1; x = 1; i = 2; x = 1;

x = x * 2; x = x * i; i = i + 1; i = 2;

x = x * 3; x = x * i; i = i + 1; while (i <= 7) {

x = x * 4; x = x * i; i = i + 1; x = x * i;

x = x * 5; x = x * i; i = i + 1; i = i + 1;

x = x * 6; x = x * i; i = i + 1; }

x = x * 7; x = x * i; i = i + 1;

H1-20

/* What is 1 * 2 * 3 * ...*7 */

x = 1 ; /* A */
i = 2 ; /* B */
while (i <= 7) { /* C */

x = x * i ; /* D */
i = i + 1 ; /* E */

} /* F */
printf ("%d", x) ; /* G */

Tracing the Loop
line i x i≤7?

A ? 1
B 2 1
C 2 1 T
D 2 2
E 3 2
C 3 2 T
......................
C 6 120 T
D 6 720
E 7 720
C 7 720 T
D 7 5040
E 8 5040
C 8 5040 F
G (Print 5040)

H1-21

Double Your Money
/* Suppose your $1,000 is earning interest
at 5% per year. How many years until you
double your money? */

my_money = 1000.0;
n = 0;
while (my_money < 2000.0) {

my_money = my_money *1.05;
n = n + 1;

}
printf("My money will double in %d years.", n); H1-22

printf ("Enter values to average, end with -1.0 \n") ;
sum = 0.0 ;
count = 0 ; sentinel
scanf ("%lf", &next) ;
while (next != -1.0) {

sum = sum + next ;
count = count + 1;
scanf ("%lf", &next) ;

}
if (count > 0)

printf("The average is %f. \n",
sum / (double) count);

Average Inputs

H1-23

Printing a 2-D Figure
How would you print the following diagram?

 ∗ ∗ ∗ ∗ ∗
 ∗ ∗ ∗ ∗ ∗
 ∗ ∗ ∗ ∗ ∗

repeat 3 times

print a row of 5 stars
repeat 5 times

print ∗

It seems as if a loop within a loop is needed

Is that allowed?
What can go inside loops?

H1-24

#define ROWS 3

#define COLS 5
…

row = 1;

while (row <= ROWS) {

/* print a row of COLS *’s */

…

row = row + 1;

}

Nested Loop

H1-5

H1-25

row = 1;
while (row <= ROWS) {

/* print a row of COLS *’s */
col = 1;
while (col <= COLS) {

printf("*");
col = col + 1;

}
printf("\n");
row = row + 1;

}

inner
loop:
print
one
row

outer
loop:
print 3
rows

Nested Loop

H1-26

Trace
row:

col:

output:

1

1 2 34 5

2 3 4

6 1 2 34 5 6 1 2 34 5 6

* * * * *
* * * * *
* * * * *

row = 1;
while (row <= ROWS) {

/* print a row of 5 *’s */
col = 1;
while (col <= COLS) {

printf("*");
col = col + 1;

}
printf("\n");
row = row + 1;

}

H1-27

Print a Multiplication Table
1 2 3

1 1 2 3

2 2 4 6

3 3 6 9

4 4 8 12

1 2 3

1 1 * 1 1 * 2 1 * 3

2 2 * 1 2 * 2 2 * 3

3 3 * 1 3 * 2 3 * 3

4 4 * 1 4 * 2 4 * 3

How should we start?

H1-28

1 2 3

2 4 6

3 6 9

4 8 12

1 2 3

1

2

3

4

Print Row 2

col = 1;
while (col <= 3) {

printf("%4d", 2 * col);
col = col + 1;

}
printf("\n");

row number

First, let’s try a particular row…

H1-29

row = 1;
while (row <= 4) {

col = 1;
while (col <= 3) {

printf("%4d", row * col);
col = col + 1;

}
printf("\n");
row = row + 1;

}

Now, Generalize! Print 4 rows

Print one row

H1-30

rowcol
1 1 print 1

2 print 2
3 print 3

print \n
2 1 print 2

2 print 4
3 print 6

print \n

Loop Trace
rowcol
3 1 print 3

2 print 6
3 print 9

print \n
4 1 print 4

2 print 8
3 print 12

print \n

H1-6

H1-31

Notes About Loop Conditions

They offer all the same possibilities as
conditions in if-statements
Can use &&, ||, !

Condition is reevaluated each time through
the loop

A common loop condition: checking the
number of times through the loop

H1-32

Counting Loops

A common loop condition: checking the
number of times through the loop

Requires keeping a "counter"

This pattern occurs so often there is a
separate statement type based on it: the
for-statement

H1-33

A for Loop

/* What is 1 * 2 * 3 * ... * n ? */

x = 1 ;
i = 2 ;
while (i <= n) {

x = x * i ;
i = i+1;

}
printf ("%d", x) ;

x = 1 ;

for (i = 2 ; i <= n ; i = i+1) {
x = x * i ;

}

printf ("%d", x) ;
H1-34

for Statement Syntax
for (initialization;

condition;

update expression) {

statement1;

statement2;

...

}

H1-35

for Loop Control Flow

Condition
yes

no

For Loop Body

Initialization

Update Expression H1-36

Control Flow: for

for (i=2; i <= n ; i = i + 1) {

x = x * i;

}

H1-7

H1-37

for Loops vs while Loops

Any for loop can be written as a while loop
These two loops mean exactly the same thing:

for (initialization; condition; update)
statement;

initialization;
while (condition) {

statement;
update;

} H1-38

Counting in for Loops

/* Print n asterisks */
for (count = 1 ; count <= n ; count = count + 1) {

printf ("*") ;
}

/* Different style of counting */
for (count = 0 ; count < n ; count = count + 1) {

printf ("*");
}

H1-39

#define ROWS 3

#define COLS 5

...

for (row = 1; row <= ROWS ; row = row + 1) {

for (col = 1 ; col <= COLS ; col = col + 1) {

printf("∗");

}

printf("\n");

}

“3 Rows of 5” as a Nested for Loop

inner
loop:
print
one
row

outer
loop:
print 3
rows

H1-40

Yet Another 2-D Figure
How would you print the following diagram?

 ∗
 ∗ ∗
 ∗ ∗ ∗
 ∗ ∗ ∗ ∗
 ∗ ∗ ∗ ∗ ∗

For every row (row = 1, 2, 3, 4, 5)
Print row stars

H1-41

Solution: Another Nested Loop

#define ROWS 5
...

int row, col ;
for (row = 1 ; row <= ROWS ; row = row + 1) {

for (col = 1 ; col <= row ; col = col + 1) {
printf("∗") ;

}

printf("\n");

} H1-42

Yet One More 2-D Figure
How would you print the following diagram?

∗ ∗ ∗ ∗ ∗
 ∗ ∗ ∗ ∗
 ∗ ∗ ∗
 ∗ ∗
 ∗

For every row (row = 0, 1, 2, 3, 4)

Print row spaces followed by (5 - row)) stars

H1-8

H1-43

Yet Another Nested Loop
#define ROWS 5
...

int row, col ;
for (row = 1 ; row <= ROWS; row = row + 1) {

for (col = 1 ; col <= row - 1; col = col + 1)
printf(" ") ;

for (col = row ; col <= ROWS; col = col + 1)
printf("∗") ;

printf("\n");

} H1-44

Generalizing Ever More
/* Print character ch n times */
void RepeatChars (int n, char ch) {

int i ;
for (i = 0 ; i < n ; i = i + 1)

printf ("%c", ch) ;
}

...
for (row = 1 ; row <= ROWS ; row = row + 1) {

RepeatChars (row - 1, ’ ’) ;
RepeatChars (ROWS – row + 1, '∗') ;
printf("\n");

}

H1-45

Remember PrintBannerLines?

/* Print N rows of asterisks */
void PrintBannerLines (int lines) {

int i ;
for (i = 0 ; i < lines ; i = i + 1) {

RepeatChars(20, ‘*’);
}

}

H1-46

while (sum < 10) ;
sum = sum + 2;

Some Loop Pitfalls

for (i = 1; i != 10 ; i = i + 2)
sum = sum + i ;

for (i = 1; i <= 10; i = i + 1);
sum = sum + i ;

H1-47

Double Danger

double x ;
for (x = 0.0 ; x < 10.0 ; x = x + 0.2)

printf("%.18f", x) ;

Seems harmless...
H1-48

Double Danger
What you expect: What you might get:

0.000000000000000000 0.000000000000000000
0.200000000000000000 0.200000000000000000
0.400000000000000000 0.400000000000000000
... ...
9.000000000000000000 8.999999999999999997
9.200000000000000000 9.199999999999999996
9.400000000000000000 9.399999999999999996
9.600000000000000000 9.599999999999999996
9.800000000000000000 9.799999999999999996

9.999999999999999996

H1-9

H1-49

int i ;

double x ;

for (i = 0 ; i < 50 ; i = i + 1)

{

x = (double) i / 5.0 ;

printf("%.18f", x) ;

}

Use ints as Loop Counters

H1-50

Counting in Loops
Counting up by one or down by one:

for (i = 1 ; i <= limit ; i = i+1) { . . . }

times_to_go = limit;
while (times_to_go > 0) {

• • •
times_to_go = times_to_go - 1;

}

H1-51

Counting Up or Down by 1
This pattern is so common there is special
jargon and notation for it

To "increment:" increase (often by 1)
To "decrement:" decrease (often by 1)

C operators:
Post-increment (x++): add 1
Post-decrement (x--): subtract 1 H1-52

Handy Shorthand x++ x--

Used by itself,
x++ means the same as x = x+1
x-- means the same as x = x-1

Very often used with loop counters:
for (i=1 ; i <= limit ; i++) { . . . }

times_to_go = limit;
while (times_to_go > 0) {

. . .
times_to_go-- ...

H1-53

Surgeon General’s Warning

++ and -- are unary operators.
Pre-increment (++x) and pre-decrement

(--x) exist, too.
In this course, use ++ and -- only in

isolation.
Don't combine these with other

operators in expressions! E.g., don't
try

x = y++ / (3 * --x--) H1-54

Iteration Summary

General pattern:
Initialize, test, do stuff, repeat . . .

“while” and “for” are equally general in C
Use “for” when initialize/test/update are
closely related and simple, especially
when counting

H1-10

H1-55

Looking Ahead

We’ll talk more about how to design loops

We’ll discuss complex conditional
expressions

Can be used with loops as well as in
conditional statements

We’ll see “arrays”, a powerful new way of
organizing data

Very often used with loops
H1-56

QOTD:
Counting Crows

A vital part of using loops is to understand the structure
of the data you’re looping over.
In particular, the loops we look at require “serializing” the
data: giving it an order and going through it one at a time.
Serialize the following data:

- A murder of crows on a wire
- The rooms on your house (for vacuuming!)
- The integers (to check for primes!)
- All integral, positive (x, y) coordinates

There’s something tricky about the last one.
What is it???

