What is this?

And... what doesit have to
do with types and variables?

CSE142
Computer Programming |

Variables

Or... making the best of abunch of bits.

Cc2

What is this?

Look at it oneway and it sawolf...
Look at it another way and it'sjust a
bunch of characters.

It'sall in the way you look at it.
...and think about it.

...and changeit.

..and useit.

Computers Store Bits
(and that’s it!)

A bitisabinary digit: a0 or al
— any data can be represented by enough bits
— bits are easy to represent in hardware
— bits are an incredible pain to deal with...

Today’s Outline

Memory structure of computers
Types

Variables and identifiers
Assignment statements

Tracing programs

C5

01000011 The information

01010011 inthe bitsisall

01000101 in how we (and

00110001 the computer)

00110100 look at them!

00110010 c4
Review:

Computer Organization

%} | Central I Monitor
Processing
Disk Unit

Main

mouse
Memory Keyboard

| Netw ork

C6

Memory

Memory is a collection of |ocations
Each location is a group of bits

To make use of these we need: M
. . . emory
—away of interpreting alocation 01000011
. 01010011
|
We use types to do this! 01000101

—away to reference locations of interest [0p110001

We give the locations names (identifiers), 00110100

and use these names to refer to them. 00110010

Cc7

Tools:

Types

A typeisaway of interpreting a memory
location

— describes the kind of information it can contain
— affects the way we can operate on it

Basic typesinclude
integers: whole numbers: 17, -42 “int” inC
real numbers: 3.14159, 6.02e23 “double” inC
character data: 'a, '?, 'N', "', '9' “char” inC s

Type Example

_—>01000011

ASCI| Table

ASCII (American Standard Code for | nformation Exchange)
defines the most common char interpretation for bits.

00111111

Memory asachar

01000011
01010011 c
01000101
00110001 128s 8s 4s 2s
00110100 NN T
1000111044ﬁmannnr'~4»1000f110

142

c9

Identifiers

(a fancy word for “names”)

"ldentifiers" let us name memory locations
(and lots of other things! more later...)
Using these names we can refer to the
contents of memory locations.

')
VIEMOory

csel42_grade|00000000

01010011

01000101 What's missing that

00000001 would tell usthe size of
letter grade|/00110100 these locations?

my_initial[I0001I110 cu

) 63 ?
Asiippetfrom g1 01000000 @
the ASClI table. 65 01000001 A
66 01000010 B
67 01000011 C
68 01000100 D

N C-10

Rules:

Variables and Types in C

Variable declarations in C (set aside location)
<type><name>;

int count; What's

P __— missing from
double gasPrice; / this picture?
char bang;

3

count (int)
Picture: | gasPrice |:|(doub|e)
ban h

Initialization Values

Variable declarations in C (set aside location)
<type><name> = <initial_value>;
int count = 12;
double gasPrice = 1.799;

char bang ="!";
count 12 (int)
Picture: | gasPrice [1.799]@ouble)
ban h
o[e |

Typesin C

int months;
“Integer” variables represent whole numbers:
1,17,-32,0 Not 1.5, 2.0, 'A’

double student_gpa;
Floating point variables represent real numbers:
3.14,-27.5, 6.022e23, 5.0 Not 5, 'A

char middle_initial, y_or_n_answer;
Represent individual keyboard characters:
‘a,'d,'M,'0",'9,H#, " Not“Bill”, 0 caa

Identifier Rules

Y our book covers this beautifully! Read it.
Briefly, identifiers:
— contain only letters, digits, and underscore (‘_")
— do not start with digits
— cannot be “reserved words’ (like int)

— are“cAsSE-SEnSitIVe”
One way to describe C identifiersis by “ grammar rules’ :
letter = aorbor...orzorAor...orZor_
digit >0orlor...or9
identifier = letter (letter or digit) (letter or digit) ... c1s

The Way: Identifiers (1 of 2)

Any sequence of letters and numbers starting

with anumber isavalid identifier:
g, thx1138, _a_Random_varaibel

But, not every sequence of letters and
numbers is an equally good identifier!

You need to understand, remember, and type
them.

So do others reading your code!

The Way: Identifiers (2 of 2)

The Way of variables means:
— use meaningful names: ¢ vs. count
— name with a descriptive noun
— don't use similar variable names:
never num_parts and num_parks
— most important: be consistent!
never, ever, ever numParts and num_parts
Are we exempt? No!
—if you find us straying from the way, say sO cur

But what do variables DO?

We can now declare variables, but how do we
use them?
There are two things we might want to do
with avariable:
“access’ (find out), .

inti

its value ”

setitsvalue 3

Assignment Statements

total = first_part + second_part;

An assignment statement does both of these.
— the expression on theright is evaluated
(formulaof #sand vars.) (cdculated out)
— evauding avariable on the right accesses its value
— thevariable ontheleft is set:
its vaue becomes the va ue from the right

Total Example

double total = 1.0;

double first_part = 2.5;

double second_part = 2.0;

total =first_part + second_part;

first_part

Variables Everywhere:
my_age =my_age + 1;
How can that be read?

“My ageis equa to my age plus one.”

That'simpossible!
Fortunately, it's also not what this really says.

“Set my agetoits current value plus 1.”
Ah... that's much better. | believe in life again!

Assignments calculate the right side and store
the result on the left. It's not like algebral

So, the same variable can appear on both sidesk:

Some Examples in MSVC

This space accidentally
|eft blank.

Putting It All Together:
Sequential Execution

First, al variables are given memory locations

— each variable declaration reserves (sets aside) a
location

— adherents of The Way use names that Make Sense
Next, program execution begins.

“Control” of the CPU flows from one statement
to the next.

Each statement is executed in sequence, one at a
time. ..for now. c23

An Example

/* calculate and print area of 10x3 rectangle */
#include <stdio.h>
int main(void) {
int rectangle_length; /*stores length */
int rectangle_width; /* stores width */
int rectangle_area; /* stores result (area) */
rectangle_length = 10;
rectangle_width = 3;
rectangle_area = rectangle_length * rectangle_width ;
printf("%d", rectangle_area);
return 0;

Hand Simulation (Trace)

A useful practiceisto simulate by hand the operation of
the program, step by step.

This program has three variables, which we can depict by
drawing boxes or making atable.

We mentdly execute each of the instructions, in sequence,
and refer to the variables to determine the effect of the
instruction

Tracing the Program

rectangle_length rectangle_width rectangle_area

after declaration | ? ? ?

after statement 1 | 10 ? ?

Tracing the Program

rectangle_length rectangle_width rectangle_area
after declaration | ? ? ?
after statement 1 | 10 ? ?
after statement 2 | 10 3 ?
after statement 3 | 10 3 30

Initializing Variables

Initialization means giving something a value
for the first time.

Anything which changes the value of a
variableis a potential way of initiaizing it.
—initial value in adeclaration: inti=7
— assignment statement: count =0;

Initialization Rule

Generd rule: variables have to be initialized
beforetheir valueisused.

Failuretoinitiaize...
— isacommon source of bugs
— isasemantic error, not a syntax error

Why isthis? What' s the problem?
What might variables“ start” as?

Cc-29

Declaring vs Initializing

int main (void) {

double income; /*declaration of income not an
assignment or initialization */
income = 35500.00; /* assignment to income,

initialization of income,
not a declaration.*/
printf ("Old income is %f", income);
income = 39000.00; /* assignment to income nota
declaration,or initialization */
printf (“After raise: %f", income);

return 0;

Example Problem:
Fahrenheit to Celsius

Problem (specified):
Convert Fahrenheit temperature to Celsius

Algorithm (result of analysis):
Celsius = 5/9 (Fahrenheit - 32)

What kind of data (result of analysis):
double fahrenheit, celsius;

Fahrenheit to Celsius (I)
An actual C program

#include <stdio.h>
int main(void)

{
double fahrenheit, celsius;
celsius = (fahrenheit - 32.0) *5.0/ 9.0;
return O;

}

Any problems?

c32

Fahrenheit to Celsius (Il)

#include <stdio.h>

int main(void)

double fahrenheit, celsius;

printf("Enter a Fahrenheit temperature: ");

scanf("%lf", &fahrenheit);
celsius = (fahrenheit - 32.0) *5.0/ 9.0;

printf(" That equals %f degrees Celsius.",
celsius);

return O;

Running the Program

Enter a Fahrenheit temperature: 45.5
That equals 7.500000 degrees Celsius

Program trace
fahrenheit celsius

after declaration ? ?
after first printf ? ?
after scanf 45.5 ?
after assignment 455 7.5
after second printf 455 7.5

C-34

Assignment step-by-step

celsius = (fahrenheit-32.0) *5.0/9.0 ;

1. Evauate right-hand side
a. Find current value of fahrenheit 72.0

b. Subtract 32.0 40.0
b. Multiply by 5.0 200.0
c. Divide by 9.0 22.2

2. Assign 22.2 to be the new vaue of celsius
(the old value of celsiusislost.)

Fahrenheit to Celsius (lll)

#include <stdio.h>

int main(void)

double fahrenheit, celsius;

printf("Enter a Fahrenheit temperature: ");

scanf("%lf", &fahrenheit);

celsius = fahrenheit - 32.0 ;

celsius = celsius *5.0/9.0;

printf("That equals %f degrees Celsius.",
celsius);

return O;

Does Terminology Matter?

Lots of new terminology today!

Variable, type, reserved word, initiaization, declaration,
statement, assignment, etc., etc.

Y ou can write a complicated program without using
these words...

But you can't talk about your programs without
them!

Learn the exact terminology as you go, and get in the
habit of using it.

Next Lecture: Expressions

Each lecture builds on the previous ones, so...
be sure you' re solid with this material
before going on!

Can you make these creative, funny, or subtle?

QOTD: the Good, the Bad, and

the Ugly
For each of the situations A variable to store the
ontheright, givea user’s middle initial.

variable namethat is... A variable that stores the
Good: legd, followsthe Way number of times the

Bad: illega user hitsthe ‘*’ key.
Ugly: legd, strays from the A variable that stores the
Way URL of your section’'s
home page.

