
Q

Q-15/29/00

CSE 142
Programming I

Input/Output,
Libraries,
and Files

© 2000 UW CSE

Q-25/29/00

Textbook Readings
• Loose ends; combination of review and

scattered textbook material

• Libraries:
– Chapter 2 (here and there)
– Chapter 13.2 (skim)

• Files:
– Chapter 2.7 pp. 72-74
– Chapter 5.5 pp. 234-236
– Chapter 12.1

Q-35/29/00

Review: what’s
input/output?

Central
Processing

Unit

Main
Memory

Monitor

Network

Disk (files)

Keyboard
mouse

Q-45/29/00

Why File I/O?

•Large volume of input data

•Large volume of output data

•More permanent storage of data

•Transfer to other programs

•Multiple simultaneous input and/or
output streams

Q-55/29/00

Files
• A "file" is a collection of data on disk

– managed by the user and the operating system
– permanent

• A "file name" is how the user and OS know
the file
– follows OS naming rules (DOS: 8.3)

• We’ll review the files used in compiling
• We’ll review keyboard I/O
• We’ll look at using text files in a C program
• First we’ll look at data files

Q-65/29/00

DATA FILES

• Business Data: customer files, payroll files, …

• Scientific Data: weather data, environmental
data, topographic maps, …

• Image Data: web images, satellite images,
medical images, …

• Web Data: HTML, GIF, JPEG, PNG, XML, …

Q

Q-75/29/00

Business Data File

NAME SSN BIRTH ADDRESS

John Jones 532456895 7/1/75 916 4th NE, Seattle 98105

Sally Smith 872996547 9/3/79 526 5th NE, Seattle 98105

Q-85/29/00

Scientific Data File

X Y ELEVATION RAINFALL

300 450 1900 3.45

275 900 300 12.62

Q-95/29/00

Review: Files Used in Compiling
•Source Files

–.c files: C programs and functions
–.h ("header") files: fragments of C code
real-world projects may contain hundreds
of source files!

•Compiled Files (system-dependent
names)

–object files: compiled C code ready to link
–libraries: collections of compiled C
functions
–executable files: linked machine-language,
ready to load into memory

Q-105/29/00

Header files (.h)
•Fragments of C code:

–Function Prototypes

–Symbolic Constants

–Global Variable Declarations

–Type Definitions (typedef)

compiler

linker

stdio.h hw.c GP142.h

ANSI lib

compiler

GP142.c

.exe file

other libs

Q-115/29/00

Libraries

Files of compiled, pre-written functions

Why?

Reuse existing code

Enhance portability

Hide system
dependencies

ANSI C
Standard

Libraries

MSCV
libraries

local
libraries

Q-125/29/00

Keyboard I/O Dangers
What happens if the user types A in the following
situation?

int score ;

scanf(“%d”, &score) ;

while (score != 0) { input buffer

printf(“%d \n”, score) ; A ...

scanf(“%d”, &score) ;

}

Q

Q-135/29/00

scanf’s Return Value
•scanf returns an int

–tells the number of values successfully read: see
Section 5.5.

–Can be used to see if the number of values read is the
number expected. If not, there must have been an error.

int status, id, score ;
double grade ;
status = scanf(“%d %lf %d”, &id, &grade, &score) ;
if (status < 3)

printf(“Error in input \n”) ;
Q-145/29/00

More Robust Input
/* Robustly read an integer, consuming nondigits */

int read_int (void)
{

int status, input ;
char junk ;
status = scanf(“%d”, &input) ;
while (status < 1) { /* unsuccessful read */

scanf(“%c”, &junk) ; /* consume 1 char */
status = scanf(“%d”, &input) ; /* try again */

}
return(input) ;

}

Q-155/29/00

Files as Streams of Characters

keyboard/screen are special cases

input / output streams of characters

Multiple streams can be used simultaneously

In reality, stream flows through a buffer rather
than directly into or out of variables.

program
variables

abc12 12

hx119 8s

error\n

12, 13, 13

Q-165/29/00

Files as Records with Fields

Business and Scientific Data

program
structure

merged file

data file 2

data file 1

Q-175/29/00

Files vs. File Variables
• Reminders:

– A file is a collection of data on disk
– A file name is how the user and OS know

the file
• permanent name, follows OS naming rules

• A file variable is a variable in the C
program which represents the file
– temporary: exists only when program runs
– follows C naming rules

Q-185/29/00

What’s in stdio.h?

•Prototypes for I/O functions.
•Definitions of useful #define constants

–Example: EOF for End of File

•Definition of FILE struct to represent
information about open files.

–File variables in C are pointers to the FILE
struct.
FILE *myfile;

Q

Q-195/29/00

Opening A File

• "Opening" a file: making a connection
between the operating system (file
name) and the C program (file variable)
– library function fopen
– specify "r" (read, input) or "w" (write,

output)
• NB String “r”, not char ‘r’ !

• Files must be opened before they can
be used

• Files stdin/stdout (used by scanf/printf)
are automatically opened & connected
to the keyboard and display

Q-205/29/00

File Open Example

/*usually done only once in a program*/

/*usually done near beginning of program*/

FILE *infilep, *outfilep; /*file variables*/
char ch;

/* Open input and output files */
infilep = fopen (“Student_Data”, “r”) ;
outfilep = fopen (“New_Student_Data”, “w”) ;

Q-215/29/00

Closing A File
•Usually done only once in a program
•Usually done near end of program
•Closing an output file is essential, or data may be
lost!

FILE *infilep; /*file variable*/
...
infilep = fopen (“Student_Data”, “r”) ;
.../*process the file */

.../*when completely done with the file:*/
fclose (infilep);

Q-225/29/00

End of File (EOF)

•defined in stdio.h
•#define EOF (some negative value)

–Usually -1 (but don’t depend on its value)
–I/O library routines use EOF in various ways
to signal end of file.
–Your programs can check for EOF

•EOF is a status, not an input value

Q-235/29/00

Four Essential Functions for
Text I/O
•fopen and fclosed: already discussed

•fscanf: works just like scanf, but 1st parameter is a file
variable

status = fscanf (filepi, “%...”, &var, ...) ;

/* fscanf returns EOF on end of file */

•fprintf: works just printf, but 1st parameter is a file
variable

fprintf (filepo, “%...”, var, ...) ;

•File must already be open before before fscanf or fprintf is
used!

Q-245/29/00

Building Applications with
Files
•With fopen, fclose, fprintf, and fscanf you can
write lots of useful programs involving files

•Many errors and exceptions can arise when
using files

–A robust program must handle errors

•Lecture packet has a few examples

–not necessarily complete

•See textbook for more examples

Q

Q-255/29/00

File Copy Example
/* Problem: copy an input file to an output file */

/* Technique: loop, copying one char at a time until EOF*/

/* files must already be open before this*/

status = fscanf (infilep, “%c”, &ch);
while (status != EOF) {

fprintf (outfilep, “%c”, ch) ;
status = fscanf (infilep, “%c”, &ch);
}

printf (“File copied.\n”) ;
fclose (infilep) ;
fclose (outfilep) ; Q-265/29/00

File Copy (Compact Edition)
/* Many C programmers use this style*/

...
while (fscanf (infilep, “%c”, &ch) != EOF)

fprintf (outfilep, “%c”, ch) ;

printf (“File copied.\n”) ;
fclose (infilep) ;
fclose (outfilep) ;

Q-275/29/00

File Example: Implementing a Database Query

#include <stdio.h>

int main(void)
{ FILE *inp, *outp;

int age, j;
char name[20], ssn[9], ch;

inp = fopen (“db_file”, “r”) ;
outp = fopen (“result_file”, “w”) ;

/* loop till the end-of-file * /
while (fscanf (inp, “%c”, &name[0]) != EOF) {

/* read name, ssn, age * /
for (j = 1; j < 20; j++) fscanf(inp, “%c”, &name[j]);
for (j = 0; j < 9; j++) fscanf(inp, “%c”,&ssn[j]);
fscanf(inp, “%d”, &age);
/* read line feed character */
fscanf(inp, “%c”, &ch);

/* copy name, ssn to output if age > 20 */
if (age > 20) {

for (j = 0; j < 20; j++) fprintf(outp, “%c”, name[j]);
for (j = 0; j < 9; j++) fprintf(outp, “%c, ssn[j]);
fprintf(outp, ”\n”);

}
}
fclose (inp) ; fclose (outp) ;
return (0);

}

Equivalent query in SQL
database language:

SELECT NAME, SSN
FROM DB_FILE
WHERE AGE > 20;

Q-285/29/00

File Example:
Expanding tabs

#include <stdio.h>
int main(void)
{ FILE *infilep, *outfilep;

char ch;
int column = 0;

/* Open input and output files */
infilep = fopen (“prog.c”, “r”) ;
outfilep = fopen (“tabless-prog.c”, “w”) ;

/* process each input character */
while (fscanf (infilep, “%c”, &ch) != EOF){

if (ch == ‘\n’ || ch == ‘\r’) {
/* end of line: reset column counter */
column = 0;
fprintf (outfilep, “%c”, ch) ;

} else if (ch == ‘\t’) {
/* tab: output one or more spaces, */
/* to reach the next multiple of 8. */
do {

fprintf (outfilep, “%c”, ‘ ‘) ;
column++;

} while ((column % 8) != 0);
} else {

/* all others: count it, and copy it out */
column ++;
fprintf (outfilep, “%c”, ch) ;

}
}
fclose (infilep) ;
fclose (outfilep) ;
return 0;

}

Input: a b \t c
d \t e f

Output: a b c
d e f

Q-295/29/00

File Example: Merging two sorted files

#include <stdio.h>
#define MAXLINE 10000 /*ASSUMES no line longer*/
int main(void)
{ FILE *in1p, * in2p, *outp;

char buffer1[MAXLINE], buffer2[MAXLINE];
char *stat1, *stat2;

in1p = fopen (“sorted-file1”, “r”) ;
in2p = fopen (“sorted-file2”, “r”) ;
outp = fopen (“merged-file”, “w”) ;

stat1 = fgets(buffer1, MAXLINE, in1p);
stat2 = fgets(buffer2, MAXLINE, in2p);
while (stat1 != NULL && stat2 != NULL) {

if (strcmp(buffer1, buffer2) < 0) {
fprintf (outp, “%s”, buffer1) ;
stat1 = fgets(buffer1, MAXLINE, in1p);

} else
fprintf (outp, “%s”, buffer2) ;
stat2 = fgets(buffer2, MAXLINE, in2p);

}
}
while(stat1 != NULL) {

fprintf (outp, “%s”, buffer1) ;
stat1 = fgets(buffer1, MAXLINE, in1p);

}
while(stat2 != NULL) {

fprintf (outp, “%s”, buffer2) ;
stat2 = fgets(buffer2, MAXLINE, in2p);

}
fclose (in1p) ; fclose (in2p) ; fclose (outp) ;
return 0;

}

really should CHECK
that no line is longer
than MAXLINE

