
L

L-1
5/12/00

CSE 142
Programming I

Sorting

© 2000 UW CSE

L-2
5/12/00

Sorting
•The problem: put things in order

•Usually smallest to largest: “ascending”

•Could also be largest to smallest: “descending”

•More formally:
•Given an array a[0], a[1], ... a[n-1],
reorder entries so that
a[0] <= a[1] <= ... <= a[n-1]

•Shorthand for these slides: the notation
array[i..k] means all of the elements
array[i],array[i+1]...array[k]

•This is not C syntax!

•This means the entire array above: a[0..n-1]

L-3
5/12/00

Sorting
•Lots of applications

•ordering hits in web search engine
•preparing lists of output
•merging data from multiple sources
•to help solve other problems

•faster search (allows binary search)

•too many to mention!
•Sorting has been intensively studied for
decades
•Many different ways to do it! We’ll look at
two algorithms

•More in CSE143, CSE373, CSE326... L-4
5/12/00

Sorting Problem
• What we want: Data sorted in order

• Initial conditions

sorted: a[0]<=a[1]<=…<=a[n-1]

0 n

a

unsorted

0 n

a

L-5
5/12/00

• General situation

• Step:
– Find smallest element x in a[k..n-1]
– Swap smallest element with a[k], then

increase k

smallest elements, sorted

“Selection Sort”

0 k n

a remainder, unsorted

smallest elements, sorted

0 k n

a x

L-6
5/12/00

Subproblem: Find Smallest
/* Yield location of smallest element in a[k..n-1] */
/* Assumption: k < n */
/* Returns index of smallest, does not return the

smallest value itself */
int min_loc (int a[], int k, int n) {

int j, pos; /* a[pos] is smallest element */
/* found so far */

pos = k;
for (j = k + 1; j < n; j = j + 1)

if (a[j] < a[pos])
pos = j;

return pos;
}

L

L-7
5/12/00

Code for Selection Sort
/* Sort a[0..n-1] in non-decreasing order (rearrange

elements in a so that a[0]<=a[1]<=…<=a[n-1]) */
void sel_sort (int a[], int n) {

int k, m;
for (k = 0; k < n - 1; k = k + 1) {

m = min_loc(a,k,n);
swap(&a[k], &a[m]);

}
}

L-8
5/12/00

Example

3 12 -5 6 142 21 -17 45a

-17 12 -5 6 142 21 3 45a

-17 -5 12 6 142 21 3 45a

L-9
5/12/00

Example (cont)

-17 -5 3 6 142 21 12 45a

-17 -5 3 6 12 21 142 45a

-17 -5 3 6 142 21 12 45a

L-10
5/12/00

Example (concl)

-17 -5 3 6 12 21 45 142a

-17 -5 3 6 12 21 142 45a

L-11
5/12/00

Sorting Analysis
•How many steps are needed to sort n things?
•For each swap, we have to search the
remaining array

•length is proportional to original array length n
•Need about n search/swap passes
•Total number of steps proportional to n2

•Conclusion: selection sort is pretty expensive
(slow) for large n

L-12
5/12/00

Can We Do Better Than n2?

•Sure we can!
•Selection, insertion, bubble sorts are all
proportional to n2

•Other sorts are proportional to n log n
•Mergesort
•Quicksort
•etc.

•As the size of our problem grows, the time to
run a n2 sort will grow much faster than a n log n
one.

L

L-13
5/12/00

“Mergesort”

•We may see how to write this later, but for now
we’ll see no code.
•Basic idea:

•Start with some small sorted pieces: “runs”
•Merge pairs of runs together to make larger sorted
runs
•When we finish merging the final pair, then we have
sorted our array.

•Basic operation is the merge.

L-14
5/12/00

Subproblem: Merge

a b1 6 12 3 4 13

a b1 6 12 3 4 13

? ? ? ? ? ?

1 ? ? ? ? ?

L-15
5/12/00

Subproblem: Merge

a b1 6 12 3 4 13

a b1 6 12 3 4 13

1 3 ? ? ? ?

1 3 4 ? ? ?

L-16
5/12/00

Subproblem: Merge

a b1 6 12 3 4 13

a b1 6 12 3 4 13

1 3 4 6 ? ?

1 3 4 6 12 ?

L-17
5/12/00

Subproblem: Merge

a b1 6 12 3 4 13

1 3 4 6 12 13

•We only used n comparisons and n copies so
the amount of work we did was proportional to n.
•This is not a sorting algorithm yet!

•How did we get the small runs to begin with?

L-18
5/12/00

Turning Merge into a Sort

•We need to have runs to merge them. Where
do we find them?
•Answer: Individual elements are just little runs.
•Mergesort:

•Merge runs of length 1 into runs of length 2
•Merge the new runs of length 2 into runs of length 4
•Merge the new runs of length 4 into runs of length 8
•Continue until done

L

L-19
5/12/00

Example

a

a

a

3 12 -5 6 142 21 -17 45

3 12 -5 6 21 142 -17 45

-5 3 6 12 -17 21 45 142

Merge into runs of 2

Merge into runs of 4

L-20
5/12/00

Example

a -17 -5 3 6 12 21 45 142

Merge into run of 8

•Of course, now we’re done.
•Each merge step took time proportional to n.
•How many merges steps did we use?

•In this case 3.
•In general we use log2n merge steps because we
double the size of our runs during each merge step.

•Total time is nlog2n. (Or just n log n)

L-21
5/12/00

L-22
5/12/00

L-23
5/12/00

Any better than n log n?
•In general, no.
•In special cases, we can do even better:

•Example: Sort exams by score: drop each exam in
one of 101 piles; work is proportional to n

•Curious fact: efficiency can be studied and
predicted mathematically, without using a
computer at all!
•This branch of mathematics is called complexity
theory and has many interesting, unsolved
problems.

L-24
5/12/00

Comments about Efficiency
•Efficiency means doing things in a way
that saves resources

•Usually measured by time or memory used
•Many small programming details have
little or no measurable effect on efficiency
•The big differences comes with the right
choice of algorithm and/or data structure

