
K

K-15/7/00

CSE 142
Programming I

Arrays

© 2000 UW CSE

K-25/7/00

Chapter 8

8.1 Declaration and Referencing

8.2 Subscripts

8.3 Loop through arrays

8.4 & 8.5 Arrays arguments and parameters

8.6 Example

8.7 Multi-Dimensional Arrays

K-35/7/00

Motivation: Sorting

Input: 10 15 4 25 17 3 12 36 48 32 9 21

Desired output:
3 4 9 10 12 15 17 21 25 32 36 48

How can this be done?

If we had lots of variables we could store each
input in a variable.

But think about what the program would be like.

Is there a better way?

K-45/7/00

Another Motivation -
Averaging Grades
double grade1, grade2, grade3, grade4, grade5,

grade6, grade7, total ;

/* initialize grades somehow...*/

total = grade1 + grade2 + grade3 + grade4
+ grade5 + grade6 + grade7 ;

printf(“average = %f \n”, total / 7.0) ;

What if we had 500 grades to add up instead of 7?

K-55/7/00

Data Structures

• Functions give us a way to organize programs.
• Data structures are needed to organize data,

especially:
– large amounts of data
– variable amounts of data
– sets of data where the individual pieces are related to

one another
• In this course, we will structure data using

– arrays
– structs
– combinations of arrays and structs

K-65/7/00

Arrays
•Definition: A named, ordered collection of values of
identical type

•Name the collection (grade); number the elements (0
to 6)

•Example: grades for 7 students

C expressions:

grade[0] is 3.0

grade[6] is 3.2

2.0∗grade[3] is 4.0

...

0

6

.

.

.

3.0
3.8
1.7
2.0
2.5
2.1
3.2

double
grade[7];

1

K

K-75/7/00

Averaging Grades II
#define MAXGRADES 7
double grade[MAXGRADES], total ;
int index;

... /* initialize grades somehow... then:

total = grade[0] + grade[1] + grade[2] + grade[3]
+ grade[4] + grade[5] + grade[6];

or here’s how we really would do it: */

total = 0;
for(index=0; index<MAXGRADES; index++) {

total = total + grade[index];
}
printf(“average = %f \n”, total / MAXGRADES) ;

K-85/7/00

Array Terminology

type name[size];

double grade[7];

– grade is of type array of double with size 7.

– grade[0], grade[1], ... , grade[6] are the elements of the
array grade. Each is a variable of type double.

– 0,1, ... , 6 are the indices of the array. Also called
subscripts.

– The bounds are the lowest and highest values of the
subscripts (here: 0 and 6).

array declaration

size must be an int constant

K-95/7/00

Array names are identifiers

• Therefore:
– They follow the all usual rules for C

identifiers (start with a letter, etc.)
– They must be declared before they are

used

• If you see x[y] in a program, then you
know that
– x should be the name of an array
– y should have an integer value

K-105/7/00

Index Rule
Rule: An array index must evaluate to an int
between 0 and n-1, where n is the number of
elements in the array. No exceptions!

Example:
grade[i+3+k] /* OK as long as 0 ≤ i+3+k ≤ 6 */

The index may be very simple
grade[0]

or incredibly complex
grade[(int) (3.1 * fabs(sin (2.0*PI*sqrt(29.067))))]

K-115/7/00

C Array Bounds are Not Checked
#define CLASS_SIZE 7

double grade[CLASS_SIZE] ;
int index ;
index = 9 ;
...
grade[index] = 3.5 ; /* Is i out of range?? */

if (0 <= index && index < CLASS_SIZE) {
grade[index] = 3.5 ;

} else {
printf(“Array index %d out of range. \n”, index) ;

}
K-125/7/00

Element Rule
Rule: An array element can be used wherever
a simple variable of the same type can be
used. No exceptions!

•Examples:

scanf (“%lf”, &grade[i]) ;

grade[i] = sin (2.0 * PI * sqrt(29.067))

K

K-135/7/00

Samples of Using Array Elements
double grade[7]; int i=3; /*declarations*/

printf(“Last two are %f, %f”, grade[5], grade[6]);

grade[5] = 0.0 ;

grade[i] = 2.0 ∗ grade[i+1] ;

scanf(“%lf”, &grade[0]);

swap(&grade[i], &grade[i+1]);

K-145/7/00

Things You Can and Can’t Do
• You can’t

use = to assign one entire array to another.

• You can’t
use == to directly compare entire arrays

• You can’t
directly scanf or printf entire arrays

But you can do these things on array elements!

And you can write functions to do them

K-155/7/00

Averaging Grades III
#define CLASS_SIZE 7

double grade[CLASS_SIZE];
double total;
int student ;

printf (“Enter %d grades \n”, CLASS_SIZE) ;
for (student = 0 ; student < CLASS_SIZE ; student ++)

scanf (“%lf”, &grade[student]) ;

total = 0.0;
for (student = 0; student < CLASS_SIZE ; student++) {

printf (“The %d-th grade is %f \n”, student, grade[student]) ;
total = total + grade[student] ;

}
printf (“average = %f \n”, total / (double) CLASS_SIZE) ;

K-165/7/00

Are Arrays Really Necessary?
/*Solve the grade average problem without arrays:*/
#define CLASS_SIZE 7

double next_grade, total ;
int i ;

/* read, print, and total grades */
printf (“Enter %d grades \n”, CLASS_SIZE) ;
total = 0.0 ;
for (i = 0 ; i < CLASS_SIZE ; i = i + 1) {

scanf (“%lf”, &next_grade) ;
printf (“The %d-th grade is %f \n”, i, next_grade) ;
total = total + next_grade ;

}
printf (“average = %f \n”, total / (double) CLASS_SIZE) ;

Do we ever really need to store all of the grades?

K-175/7/00

Average Grades IV
/* read grades, print ones above average only*/

double grade[CLASS_SIZE], average, total ;
int i ;
total = 0.0 ;
for (i = 0 ; i < CLASS_SIZE ; i = i + 1) {

scanf (“%lf”, &grade[i]) ;
total = total + grade[i] ;

}
average = total / (double) CLASS_SIZE ;
for (i = 0 ; i < CLASS_SIZE ; i = i + 1)

if (grade[i] > average)
printf(“Grade %d is high:%f \n”, i, grade[i]);

K-185/7/00

“Parallel” Arrays
A set of arrays may be used in parallel when more than
one piece of information must be stored for each item.

Example: each student has a midterm grade, final exam
grade, and average score: 3 pieces of information for
each item (student).

#define MT_WEIGHT 0.30

#define FINAL_WEIGHT 0.70

#define MAX_STUDENTS 200

int num_student,

midterm[MAX_STUDENTS],

final[MAX_STUDENTS] ;

double score[MAX_STUDENTS] ;

K

K-195/7/00

Parallel Arrays

/* Suppose we have input the value of num_students,
read student i’s grades for midterm and final, and
stored them in midterm[i] and final[i]. Now:

Store a weighted average of exams in array score.

*/

for (i = 0 ; i < num_student ; i = i + 1) {

score[i] = MT_WEIGHT * midterm[i] +

FINAL_WEIGHT * final[i] ;

}

K-205/7/00

Reading Array Elements
/* Read in student midterm and final grades and

store them in two (parallel) arrays

*/

#define MAX_STUDENTS 200

int midterm [MAX_STUDENTS] ;

int final [MAX_STUDENTS] ;

int num_student ; /* actual number of students */

int i, done, s_midterm, s_final ;

K-215/7/00

Reading Arrays
printf(“Input number of students: ”) ;
scanf(“%d”, &num_student) ;

if (num_student > MAX_STUDENTS) {

printf(“Too many students”) ;

} else {

for (i = 0 ; i < num_student ; i = i+1) {

scanf(“%d %d”, &midterm[i], &final[i]) ;

}

}

K-225/7/00

Reading Arrays II

scanf(“%d %d”, &s_midterm, &s_final) ;
num_student = 0 ;
while (s_midterm != -1 && num_student < MAX_STUDENTS){

midterm[num_student] = s_midterm ;
final[num_student] = s_final ;
scanf(“%d %d”, &s_midterm, &s_final) ;
num_student++;

}

Terminate input
with “sentinel” -1, -1

K-235/7/00

Keeping Track of the Elements In-Use

• Since the array has to be declared a fixed size, you often declare
it bigger than you think you’ll really need

#define MAXSTUDENTS 750
int final[MAXSTUDENTS];

• How do you know which elements in the array actually hold
data, and which are unused extras?

1. Keep the valid entries together at the front
2. Record number of valid entries in a separate variable

K-245/7/00

Keep the valid entries together

final
0

MAXSTUDENTS - 1

6
7

numStudents
7

for (student=0; student < numStudents; student++) {
…

}

!!!!!

K

K-255/7/00

Shifting Array Elements

/* Shift x[0], x[1], ..., x[n-1] one position upwards
to make space for a new element at x[0].

Insert the value new at x[0].

Update the value of n.

*/

for (k = n ; k >= 1 ; k = k - 1)

x[k] = x[k-1] ;

x[0] = new ;

n = n+1 ;

K-265/7/00

Shifting Array Elements

n = 3; new = 6;4 7 5 ?

4 7 5 5

4 7 7 5

4 4 7 5

6 4 7 5

1

2

3

4

5

K-275/7/00

Review: initializing variables

• "Initialization" means giving
something a value for the first time.
– General rule: variables have to be

initialized before their value is used.

• Various ways of initializing
– initializer when declaring
– assignment statement
– scanf (or other function call using &)
– parameters are initialized with actual

values
K-285/7/00

Initialization Quiz

void init_example (int a) { /*line 1*/

int b, c, d=10, e[5]; /*line 2*/

b=5; /*line 3*/

d=6; /*line 4*/

scanf("%d %d", &b, &c); /*line 5*/

}
Q: Where is each of a, b, c, d, and e initialized?

K-295/7/00

Array Initializers
int w[4] = {1, 2, 30, -4};

/*w has size 4, all 4 are initialized */

char vowels[6] = {‘a’, ‘e’, ‘i’, ‘o’, ‘u’},
/*vowels has size 6, only 5 have initializers */
/* vowels[5] is uninitialized */

Cannot use this notation in assignment
statement:

w = {1, 2, 30, -4}; /*SYNTAX ERROR */

K-305/7/00

Incomplete Array Size

double x[] = {1.0, 3.0, -15.0, 7.0, 9.0};
/*x has size 5, all 5 are initialized */

But:
double x[]; /* ILLEGAL */

K

K-315/7/00

Review: Array Elements as Parameters

Just apply the element rule: An array element
can be used wherever a simple variable of the
same type can be used. Examples:

printf(“Last two are %f, %f”, grade[5], grade[6]) ;

draw_house(color[i], x[i], y[i], windows[i]) ;

scanf(“%lf”, &grade[0]) ;

swap(&grade[i], &grade[i+1]) ;

K-325/7/00

Whole Arrays as Parameters
#define ARRAY_SIZE 200
double average (int a[ARRAY_SIZE]) {

int i, total = 0 ;
for (i = 0 ; i < ARRAY_SIZE ; i = i + 1)

total = total + a[i] ;
return ((double) total / (double) ARRAY_SIZE) ;

}

int x[ARRAY_SIZE] ;
...
x_avg = average (x) ;

K-335/7/00

/* Sets vsum to sum of vectors a and b. */
void VectorSum(int a[3], int b[3], int vsum[3]) {

int i ;
for (i = 0 ; i < 3 ; i = i + 1)

vsum[i] = a[i] + b[i] ;
}

int main(void) {
int x[3] = {1,2,3}, y[3] = {4,5,6}, z[3] ;
VectorSum(x , y , z);
printf(“%d %d %d”, z[0], z[1], z[2]) ;

}

Arrays as Output Parameters

note:
no *
no &

K-345/7/00

void VectorSum(int a[] , int b[] ,
int vsum[] , int length) {

int i ;
for (i = 0 ; i < length ; i = i + 1)

vsum[i] = a[i] + b[i] ;
}

int x[3] = {1,2,3}, y[3] = {4,5,6}, z[3] ;

VectorSum(x , y , z , 3);

General Vector Sum

K-355/7/00

Array Parameter Summary
Array elements:

Just like simple variables of that type, both
input & output parameters

Whole arrays:

Arrays are not passed by value, i.e. not copied

Formal parameter: type array_name [SIZE]
Or : type array_name []

no *

Actual parameter: array_name
no [] , no &

K-365/7/00

An Array as a Pointer
int A[100]; A

A[i] equivalent to *(A + i)

pointer addition

memory

A[0] equivalent to *A

