
F

F-14/12/00

CSE / ENGR 142
Programming I

Functions, Part I

© 2000 UW CSE

F-24/12/00

Chapter 3

Read All!

3.1: Reusing program parts

3.2: Built-in math functions

3.3: Top-Down Design

3.4: Functions with no parameters

3.5: Functions with parameters

F-34/12/00

“conditionals,” which pick
one of two (or sometimes
more) next statements

“Control Flow”

We mentioned that there are two ways to indicate non-sequential
control flow

“procedures” / “subroutines” /
“functions”, which allows you
to “visit” a chunk of code and
then come back

F-44/12/00

Why? (Example Problem)

• Suppose we are writing a program that
displays messages on the screen, and…

• We'd like to display two rows of asterisks (‘*’s)
to separate sections of output.

#include <stdio.h>
int main(void)
{

/* produce some output */
...
/* print banner lines */
printf(“********************\n”);
printf(“********************\n”);

/* produce more output */
...
/* print banner lines */
printf(“********************\n”);
printf(“********************\n”);

/* produce even more output */
...
/* print banner lines */
printf(“********************\n”);
printf(“********************\n”);

/* produce final output */
...
return (0) ;

}

A Solution

F-64/12/00

What’s “Wrong” With This?

The answer has to do with how hard it would be
change the program in the future (to do something
expected), not how hard it is to write it now.

What might we expect to want to change?
• The number of rows of asterisks

• The number of asterisks per row

• Use hyphens instead of asterisks

• Print the date and time with each separator

• ...

F

F-74/12/00

… have to edit every “copy” of the code in the
program.

… it’s easy to overlook some.

… it can be hard to find them all (because they
might not be written identically).

… it can be hard to find them all because code
written identically may not serve the same
logical purpose.

If We Want to Change Anything

F-84/12/00

• Identify a “sub-problem” that has to be
solved in your program

• Write the code that solves the sub-problem
only once

• Give that code a name
• Whenever you need to solve the sub-

problem, use the name to say “go to that
code now to solve this problem, and don’t
come back until it’s solved”

One (Big) Idea Behind Functions

#include <stdio.h>
int main(void)
{

/* produce some output */
...

PrintBannerLines();

/* produce more output */
...

PrintBannerLines();

/* produce even more output */
...

PrintBannerLines();

/* produce final output */
...
return (0) ;

}

Back to Our Banner Example

printf(“********************\n”);

printf(“********************\n”);

The code named PrintBannerLines

What do we have to do now if
we want to change the banner?

F-104/12/00

Parameterized Procedures
• Suppose I now want to change the program to print 5

rows of asterisks when it starts and when it finishes

• I could write another procedure that prints 5 rows of
asterisks, or…

• I could generalize the function of PrintBannerLines
from

SULQW�WZR�URZV�RI�DVWHULVNV
to

SULQW�1�URZV�RI�DVWHULVNV
and tell it what the value of N I want “this time” when I
call it

#include <stdio.h>
int main(void)
{

PrintBannerLines(5);

/* produce some output */

PrintBannerLines(2);

/* produce more output */

PrintBannerLines(2);

/* produce even more output */

PrintBannerLines(2);

/* produce final output */
…
PrintBannerLines(5);

return (0) ;
}

Back to Our Banner Example

“print N lines of asterisks”

The code PrintBannerLines(N)

The value in the parentheses is called
the “parameter” of this call.

N.B. We don’t’ have to know how a

function works to use it!

5

F-124/12/00

Returned Values
• Parameters are a way for the calling routine to “send

data” to the function

• Return values are the opposite, a way for the function
to send data back to the calling routine

• One (but only one) reason you might want to send
values back is return codes

• If something unexpected happens in the function, it should let
the caller know that it didn’t manage to do its job

F

F-134/12/00

Return Code Example: scanf

scanf “returns” the number of input items it read successfully

Example:
scanf(“%lf %d”, &zeroToSixtyTime, &numberOfCylinders);

There are two input items in the list for this example.

Therefore, the return value could be 2, 1, or 0.

• In general, the value may be any integer from 0 up to the
number of “%” format controls in the control string

• The return value is a “status” code that describes the
operation of scanf.

• Note carefully that the return value is not, NOT, NOT the
value that the user typed in!

F-144/12/00

What’s the Use of scanf’s Return Value?

• A function that returns a value is an expression, so…
scanfCount = scanf(“%lf %d”, &zeroToSixtyTime, &numberOfCylinders);

• If everything works, scanfCount will contain 2.

• If scanfCount is not 2, something went wrong

•Probably the user typed in something that scanf
couldn’t interpret as a number

A conditional statement can test for this and take action:

if (scanfCount != 2) {

printf (“Hey, somebody goofed! \n”);

...

}

F-154/12/00

The Big Picture

•You’ve now seen 4 colossal concepts:
1. Functions 3. Parameterized functions
2. Function call control flow 4. Functions that return a value

•What’s next?

• See it and say it in C

• More, giant-sized, concepts that make sense only once we get a
little further into the details

F-164/12/00

Some C Functions
We have already seen and used several functions:

int main (void)

{

return(0);

}

printf (“control”, list);

scanf (“control”, &list);

Function
definition
for main()

Calls to the functions
printf() and scanf()

F-174/12/00

Pre-written functions

• Pre-written functions are commonly packaged
in "libraries”

• Every standard C compiler comes with a set of
standard libraries

• Remember #include <stdio.h>?
• Tells the compiler you intend to use the "standard I/O

library” functions

• printf and scanf are in the standard I/O library
• So are lots of other I/O related functions

• There are (many) other useful functions in
other libraries

F-184/12/00

Writing the (Simplest)
PrintBannerLines Function

void PrintBannerLines (void)
{

printf(“***************\n”);
printf(“***************\n”);

}

First, make this function definition

F

F-194/12/00

Using PrintBannerLines
#include <stdio.h>

void PrintBannerLines (void)

{

printf(“***************\n”);

printf(“***************\n”);

}

int main (void)
{

/* produce some output */
…
PrintBannerLines();
...
return(0);

}

Empty () is required
when a parameter-less
function is called.

The definition of the
function must precede
all calls to it in the file.

F-204/12/00

What Did We Just Do?

•You define a function by giving its
name and writing the code that is
executed when the function is called.

/* write separator line on output*/

void PrintBannerLines (void)

{

printf(“***************”);

printf(“***************\n”);

}

function body
(statements to be
executed).
A function can have
ANY number of ANY
kind of statements.

function name

heading comment

F-214/12/00

void

• The keyword void has two different
rolls in this function definition.

/* write separator line on output*/

void PrintBannerLines (void)

{

printf(“***************”);

printf(“***************\n”);

}

indicates that the function
expects no parameters.

indicates that the function does
not return an output value.

F-224/12/00

Function Type and Value
• A function can return a value.

• Like all values in C, a function return value has a type.

• The function is said to have the type of its returned value.

/* return a “random” number. */
double GenRandom (void)
{

double result;
result = ...
return result;

}

function type (type of returned value).
We say “GenRandom() is a function of
type double” or “GenRandom()
returns a double.”

return statement

returned value

local variable – exists only while
function is executing

F-234/12/00

Calling a Non-Void Function

A value-returning function can be used anywhere
an expression of the same type can be used

int main (void)
{

double firstRandom, secondRandom;
double result;
firstRandom = GenRandom();
secondRandom = GenRandom();
result = firstRandom + secondRandom;
printf(“the value of %f + %f is %f.”,

firstRandom, secondRandom, result);
return 0;

}

F-244/12/00

More on return
• For void functions:

return;

• Simply causes control flow to return to the statement
following the call in the caller

• For functions that return a value:
return expression;

• Control flow returns to caller

• The function call is “replaced” with the returned value

• Note: no parentheses are needed on the expression

• return is a C statement. It is not a function!

F

F-254/12/00

return in void functions
/* print banner line */
void print_banner (void)
{

printf(“***************”);
printf(“***************\n”);
return;

}
optional

/* do something */
void example (void)
{

int no_reason_to_continue;
...
if (no_reason_to_continue) {

return;
}
...

}

terminate function execution
before reaching the end

F-264/12/00

Discussion Questions

1. Can you have more than one return inside a function?
2. Does a return statement have to be the last statement

of a function?
3. If a function starts off as

double cosine (double angle) {…

could it contain this statement?
return;

4. If a function starts off as
void printfBankBalance (double currentBalance) {…

could it contain this statement?
return currentBalance;

F-274/12/00

Function Parameters
• It is very often useful if a function can operate on

different data values each time it is called. Such
values are called (input) parameters

• "input" here is not I/O as we defined it earlier

• The function specifies its inputs as parameters in the
function declaration.

/* Yield area of circle with radius r */
double area (double r)
{

return 3.14 * r * r;
}

parameter

F-284/12/00

Arguments
• The function call must include a matching argument

for each parameter.

• When the function is executed, the value of the
argument becomes the initial value of the parameter.

int main (void)

{ ...

z = 98.76;

x = 34.575 * area (z/2.0);

…

return 0;

}

/* Yield area of circle with radius r */

double area (double r)

{

return 3.14 * r * r;

}

parameter passing

F-294/12/00

Yet More Terminology

• Many people (including the textbook authors) use
the term formal parameter instead of parameter
and actual parameter instead of argument. We
will try to stick to parameter and argument for
simplicity, but the other terminology will probably
slip in from time to time.

• People often refer to replacing a parameter with
the argument in a function call as “passing the
argument to the function”.

F-304/12/00

Control and Data Flow
•When a function is called: (1) control transfers to
the function body; (2) argument values are copied;
(3) the function executes; (4) control and return
value return to the point of call.

int main (void)
{

double x, y, z;
y = 6.0;
x = area(y/3.0) ;
....
....
....
z = 3.4 * area(7.88) ;
....
return 0;

}

/* Yield area of circle with radius r */

double area (double n)

{ return 3.14 * r * r; }2.0

12.56
7.88

194.976...

F

F-314/12/00

Style Points
• The comment above a function must give a complete

specification of what the function does, including the
significance of all parameters and any returned value.

• Someone wishing to use the function should be able
to cover the function body and find everything they
need to know in the function heading and comment.

/* Yield area of circle with radius r */
double area (double r)
{

return 3.14 * r * r;
}

F-324/12/00

Multiple Parameters

• a function may have more than one parameter
• arguments must match parameters in number,

order, and type

double avg (double total, int count)

{

return total / (double) count ;

}

double gpt, gpa;

gpt = 3.0+3.3+3.9;

gpa = avg (gpt, 3);

...

arguments

parameters

F-334/12/00

Rules for Using Functions

• Arguments must match parameters:

• in number

• in order

• in type

• A function can only return one value.

• but it might contain more than one return statement

• In a function with return type T, the returned
expression must be of type T.

• A function with return type T can be used
anywhere an expression of type T can be used.

F-344/12/00

/* Yield area of circle with radius r */
double CircleArea (double r)
{

double x, area1;
x = r * r ;
area1 = 3.14 * x ;
return(area1);

}

Local Variables
• A function can define its own local variables.

• The locals have meaning only within the function.

• Local variables are created when the function is called

• Local variables cease to exist when the function returns

• Parameters are also local.

local variables
parameter

F-354/12/00

Order in the Program

Review: In general in C, identifiers (names of
things) must be declared before they are used.

– Variables:
int turnip_trucks;
…
turnip_trucks = total_weight / weight_per_truck;

– #define constants:
#define TAX_RATE 0.07
…
tax_owed = TAX_RATE * income;

If the order of these lines were reversed, there
would be a syntax error

F-364/12/00

Order for Functions in the .c File
Function names are identifiers, so… they too must
be declared before they are used:

#include <stdio.h>

void fun2 (void) { ... }

void fun1 (void) { ...; fun2(); ... }

int main (void) { ...; fun1(); ... return 0; }

fun1 calls fun2, so fun2 is defined before fun1, etc.

F

F-374/12/00

Function Prototypes

• Insisting that all the code of each function precede all
calls to that function is sometimes:

• Impossible: function A calls B, and B calls A

• Inconvenient: printf() is a function, but we don’t want
it’s code in our program

• But the ordering rule requires that the function names be
declared before they can be used (in a call).

• Function prototypes allow us to define the name, so that it
can be used, without giving the code for the function.

F-384/12/00

Function Prototypes
• A function prototype gives the function name, return type,

and the types of all the parameters (if any), but no code.
In place of the { } code block, there is a semicolon.

void Useless(void);
void PrintInteger(int value);
double CalculateTax (double amount, double rate);

• Write prototypes for your functions near the top of the
program
– Can use the function anywhere thereafter

• Fully define the function later, wherever convenient
• Highly recommended to aid program organization

F-394/12/00

#include <stdio.h>

• The “#include” means “go get the file stdio.h
and insert what’s in it right here (as if it had
been typed here)”

• stdio.h contains function prototypes for scanf
and printf and the other functions in the
standard I/O library

• The actual code for them is NOT there, just prototypes.
The (result of compiling) the code is in a library that is
combined with your code at “link time.”

F-404/12/00

Compilers, Linkers, etc.

library
(ANSI)

header
(stdio.h)

executable

program

debugger

c

o

m

p

i

l

e

r

l

i

n

k

e

r

source
code

object
code

010
110

.c file

F-414/12/00

Example: Washer Area

/* Yield area of washer with given */
/* inner and outer radius. */
double WasherArea (double inner, double outer)
{

double innerArea, outerArea, areaOfWasher ;

innerArea = CircleArea (inner) ;
outerArea = CircleArea (outer) ;
areaOfWasher = outerArea - innerArea;
return areaOfWasher ;

}

#include <stdio.h>
#define PI 3.0
double CircleArea(double r)
{

double y, area;

y = r * r ;
area = PI * y ;
return area;

}

double WasherArea(double inner, double outer)
{

double innerArea, outerArea, areaOfWasher;

innerArea = CircleArea(inner) ;
outerArea = CircleArea(outer) ;
areaOfWasher = outerArea - innerArea ;
return areaOfWasher ;

}

int main(void)
{

double inner, outer, y ;

printf (“Input inner radius and outer diameter: ”) ;
scanf (“ %lf %lf ”, &inner, &outer) ;
y = WasherArea (inner, outer/2.0) ;

printf (“ %f ”, y) ;

return 0 ;
}

Local Variables: putting it all together

F-42

F

F-434/12/00

Showing How
Functions are Related

main

WasherArea

CircleArea

printf scanf

This "static call graph" shows who calls who
F-444/12/00

Local Variables of main

main
inner outer y

F-454/12/00

WasherArea

inner outer innerArea outerArea areaOfWasher

Parameters and local variables of WasherArea

F-464/12/00

CircleArea

r y area

Parameters and local variables of CircleArea

F-474/12/00

CircleArea

r y area

Parameters and local variables of CircleArea

F-484/12/00

Local Variables:
Summary
(Formal) parameters and variables declared in a
function are local to it:

cannot be accessed (used) by other functions
(except by being passed as actual parameters or return values)

Allocated (created) on function entry.

De-allocated (destroyed) on function return.

(Formal) parameters initialized by copying value of
argument (actual parameter). (“Call-by-value”)

A good idea? YES!

localize information; reduce interactions.

F

F-494/12/00

Surgeon General’s Warning

• C lets you define variables that are not inside
any function.

– Called "global variables."

• In this course: global variables are verboten!
– Only local variables are allowed in HW programs

– Note: #define symbols are not variables

• Global variables have legitimate uses, but
often are

– a crutch to avoid using parameters

– bad style
F-504/12/00

Functions: Summary

• May take several parameters, or none.

• May return one value, or none.

• Why?

• A tool for program structuring.

• Provide abstract services: the caller cares what
the functions do, but not how.

• Make programs easier to write, debug, and
understand.

