CSE / ENGR 142
Programming |

Style

© 2000 UW CSE

4/6/00 E1

Aspects of Quality Software

 Getting the syntax right

— Thismay seem hard at first, but turns out to be
the easiest part of all

 Getting the logic right
— Sometimes difficult, but absolutely essential

» Today's focus: Programming with good style
— What does this mean, and why doesit matter?

4/6/00 €2

Programming Style

e A program is a document:
—Some of itis read by a computer.
—ALL of itis read by people.
—Donald Knuth: “literate programming”

» “Style” is a catch-all term for people-
oriented programming.
— comments, spacing, indentation, names
—clear, straightforward, well-organized code
—code quality

4/6/00 E3

Stylein CSE 142

* It is common for employers to have style
requirements that all programmers must
follow.

» Along the way, we will suggest and
sometimes require particular points of stylein
programs that are turned in for CSE 142.
—“Along the way” starts today!

4/6/00 E4

/* Comments */

/
Comment |* Program: Mi_To_Km
?r'gﬁf;‘ *Purpose: Miles to kilometers conversion

program |~ Author: A. Hacker, 1/18/00 Section AF (Turing)
/

/* Calculate volume of cylinder and ...
Comment

o * Inputs: radius, height, ...

ock per .

major Output: volume, ...

section * Assumes: radius, height nonnegative */

small ones | =
throughout | ,
/* Tell user it’s negative. */

4/6/00 ES

Comments

eSay why, not what:

NO: / subtract one from sheep */
sheep =sheep - 1;

° [* account for the sheep that
the big bad wolf just ate.*/
sheep =sheep - 1;

4/6/00 E6

Spaces

eUse blank lines to separate major sections.
oVertically align like things:
X =5;
y_prime=7;
z_axis =4.3;
eLeave space around operators:
No: y=slope*x+intercept;
y = slope *x + intercept;
Use parentheses for emphasis, too
y = (slope *x) + intercept;
Indentation
Like an outline, indent subordinate parts.

4/6/00 &7

Identifiers (Review)

eldentifiers name variables and other things

oL etters, digits, and underscores (_)

eCan't begin with a digit

«Not areserved word like double, return
¢“Case-sensitive”

¢VAR, Var, var, VAr are all different
eUsing all CAPITAL letters is legal...

ebut usually reserved for #define constants (soon to
be explained)

What's in a Name?

eExtremely valuable documentation.
eMicrosoft Excel has over 65,000 variables.
eHow long is just right?

em

emph

emiles_per_hour

eaverage_miles_per_hour_that_the_car_went_before_noon
eAvoid similar names: mph vs. Mph vs. mgh

4/6/00 €8

Clarity

Do “obvious” things the obvious way
No: x=(y=x)+1;

y=Xx;
X=X+1;

Don’t be tricky, cute, or clever without
GOOD reason.

If so, comment it!

4/6/00 E11

4/6/00 E8
More Examples
OK Illegal Legal, but what about
?
rectangleWidth 10TimesLength the style?
rectangle_Width My Variable a
rectangle_width int !
length_10_Rectangle 0
rectangleWidth and
rectanglewidth or
rectangle_Width
4/6/00 E10
#define
no = no ;
Named constants: .
#define Pl 3.14159265
#define AVOGADRO 6.02e23
#define LINE_WIDTH 80
#define FIELD_WIDTH 10

#define FIELDS_PER_LINE | |(LINE_WIDTH / FIELD_WIDTH)

area =Pl * radius * radius ;
lines = fields / FIELDS_PER_LINE ;
Notes:
UPPER CASE

0

4/6/00 E12

Why #define?

eCentralize changes

eNo "magic numbers" (unexplained constants)
euse good names instead

eAvoid typing errors

eAvoid accidental assignments to constants

VS.

#define Pl 3.14

PI=17.2 , <— syntax error

Putting It All Together

[+ Convert miles per hour to feet per second
* Date:

“

#include <stdio.h>

I* conversion constants. */

#define FEET_PER_MILE 5280.0
#define SECONDS PER_HOUR (60.0 * 60.0)

int main(void)

double miles_per_hour; Finput mph */
double feet_per_second; I+ corresponding feet/sec */
double feet_per_hour; I+ corresponding feet/hr */

1+ prompt user for input */
printf(* Enter anumber of miles per hour: ")
scanf('%lf”, &miles_per_hour);

[convert from miles per hour to feet per second */
feet_per_hour = miles_per_hour * FEET_PER_MILE;

feet_per_second =feet_per_hour / SECONDS_PER_HOUR;

[+ format and print results */

printf(*%f miles per hour is equal to %f feet per *
“second.\n”, miles_per_hour, feet_per_second);

return(0)
}

Many small points;
Big cumulative effect...

#include<stdio.h>

int main(void){double v1l,v2,v3,v4,v5;pr\
intf (“Enter a number of miles per hour:\
") ;scanf (“%1£”,&vl) ;v5=v1*14.6666667;pr\
intf (“%f miles per hour is equal to %f \
feet per second.\n”,vl,vs);return(o);}

Style Summary:
Clarity is Job #1

DO
eUse plenty of comments
eUse white space
eUse indentation
eChoose descriptive names
eUse named constants
«DON'T
ebe terse, tricky
eplace speed above correctness, simplicity
euse “magic numbers”

