
E

E-14/6/00

CSE / ENGR 142
Programming I

Style

© 2000 UW CSE

E-24/6/00

Aspects of Quality Software

• Getting the syntax right
– This may seem hard at first, but turns out to be

the easiest part of all

• Getting the logic right
– Sometimes difficult, but absolutely essential

• Today’s focus: Programming with good style
– What does this mean, and why does it matter?

E-34/6/00

Programming Style
• A program is a document:

– Some of it is read by a computer.
– ALL of it is read by people.
– Donald Knuth: “literate programming”

• “Style” is a catch-all term for people-
oriented programming.
– comments, spacing, indentation, names
– clear, straightforward, well-organized code
– code quality

E-44/6/00

Style in CSE 142

• It is common for employers to have style
requirements that all programmers must
follow.

• Along the way, we will suggest and
sometimes require particular points of style in
programs that are turned in for CSE 142.
– “Along the way” starts today!

E-54/6/00

/* Comments */
/**
* Program: Mi_To_Km
* Purpose: Miles to kilometers conversion
* Author: A. Hacker, 1/18/00 Section AF (Turing)
***/

/* Calculate volume of cylinder and ...
* Inputs: radius, height, ...
* Output: volume, ...
* Assumes: radius, height nonnegative */
.
.
.
/* Tell user it’s negative. */

Comment
block at
front of
program

Comment
block per
major
section

small ones
throughout

E-64/6/00

Comments
•Say why, not what:

•NO: /* subtract one from sheep */
sheep = sheep - 1;

•YES:/* account for the sheep that
the big bad wolf just ate.*/

sheep = sheep - 1;

E

E-74/6/00

Spaces

•Use blank lines to separate major sections.
•Vertically align like things:

x = 5 ;
y_prime = 7 ;
z_axis = 4.3;

•Leave space around operators:
No: y=slope*x+intercept;
Yes: y = slope * x + intercept ;

Use parentheses for emphasis, too
Yes: y = (slope * x) + intercept ;

Indentation
Like an outline, indent subordinate parts.

E-84/6/00

Identifiers (Review)

•Identifiers name variables and other things

•Letters, digits, and underscores (_)

•Can’t begin with a digit

•Not a reserved word like double, return

•“Case-sensitive”

•VAR, Var, var, vAr are all different

•Using all CAPITAL letters is legal...

•but usually reserved for #define constants (soon to

be explained)

E-94/6/00

What’s in a Name?
•Extremely valuable documentation.
•Microsoft Excel has over 65,000 variables.
•How long is just right?

•m
•mph
•miles_per_hour
•average_miles_per_hour_that_the_car_went_before_noon

•Avoid similar names: mph vs. Mph vs. mqh

E-104/6/00

More Examples

OK

rectangleWidth

rectangle_Width

rectangle_width

length_10_Rectangle

Illegal

10TimesLength

My Variable

int

Legal, but what about
the style?

a1

l

O

rectangleWidth and
rectanglewidth or
rectangle_Width

E-114/6/00

Clarity

Do “obvious” things the obvious way

No: x = (y = x) + 1 ;

Yes: y = x ;
x = x + 1;

Don’t be tricky, cute, or clever without
GOOD reason.

If so, comment it!

E-124/6/00

Named constants:

#define PI 3.14159265
#define AVOGADRO 6.02e23
#define LINE_WIDTH 80
#define FIELD_WIDTH 10
#define FIELDS_PER_LINE (LINE_WIDTH / FIELD_WIDTH)

...
area = PI * radius * radius ;
lines = fields / FIELDS_PER_LINE ;

Notes:
yes UPPER CASE

yes ()

#define
no = no ;

E

E-134/6/00

•Centralize changes

•No "magic numbers" (unexplained constants)

•use good names instead

•Avoid typing errors

•Avoid accidental assignments to constants

double pi ; vs.
pi = 3.14 ; #define PI 3.14
... ...
pi = 17.2 ; PI = 17.2 ; syntax error

Why #define?

E-144/6/00

Putting It All Together

/* Convert miles per hour to feet per second
* Author:...
* Date: ...
*/

#include <stdio.h>

/* conversion constants. */
#define FEET_PER_MILE 5280.0
#define SECONDS_PER_HOUR (60.0 * 60.0)

int main(void)
{

double miles_per_hour; /* input mph */
double feet_per_second; /* corresponding feet/sec */
double feet_per_hour; /* corresponding feet/hr */

/* prompt user for input */
printf(“Enter a number of miles per hour: ”);
scanf(“%lf”, &miles_per_hour);

/* convert from miles per hour to feet per second */
feet_per_hour = miles_per_hour * FEET_PER_MILE;

feet_per_second = feet_per_hour / SECONDS_PER_HOUR;

/* format and print results */
printf(“%f miles per hour is equal to %f feet per ”

“second.\n”, miles_per_hour, feet_per_second);

return(0);
}

E-154/6/00

Many small points;
Big cumulative effect...

#include<stdio.h>
int main(void){double v1,v2,v3,v4,v5;pr\
intf(“Enter a number of miles per hour:\
”);scanf(“%lf”,&v1);v5=v1*14.6666667;pr\
intf(“%f miles per hour is equal to %f \
feet per second.\n”,v1,v5);return(0);}

E-164/6/00

Style Summary:
Clarity is Job #1
•DO

•Use plenty of comments
•Use white space
•Use indentation
•Choose descriptive names
•Use named constants

•DON’T
•be terse, tricky
•place speed above correctness, simplicity
•use “magic numbers”

