
B

3/31/00 B-1

CSE 142
Programming I

Variables, Values,
and Types

© 2000 UW CSE

3/31/00 B-2

Chapter 2 Overview

• Chapter 2: Read Sections 2.1-2.6, 2.8.
– Long chapter, short snippets on many topics
– Later chapters fill in detail

• Specifically:
– Types, variables, values
– Expressions, assignment
– Input / Output (scanf, printf)
– Programming style

• You’ll learn enough to write a simple but useful C
program!

3/31/00 B-3

Review:
What’s a Computer?

Central
Processing

Unit

Main
Memory

Monitor

Network

Disk

Keyboard
mouse

3/31/00 B-4

Inside the CPU and Memory
• We’ve talked about what the CPU does

– Executes instructions one at a time
– Series of instructions constitute “programs”

• The memory holds information for use by the
CPU
– Organized as a numbered series of “locations”
– Each location holds one unit of information

• All information in the CPU or memory is a series
of ‘bits’: 1’s and 0’s
– Known as ‘binary’ data
– Amazingly, all kinds of data can be represented in

binary: numbers, letters, sounds, pictures, etc.

3/31/00 B-5

Memory
A Program

(CPU Instructions)
01101110

00000000

00000001

10001000

11111111

01110111

00010110

Address Contents

0:

1:

2:

3:

4:

5:

6:

1. Set location 4 to 00000001

2. Set location 5 to 00000010

3. Add the contents of locations
4 and 5 and put the result in
location 2

4. Print the contents of location
2 as an integer

3/31/00 B-6

Variables
• If programmers had to do everything in

binary… they would go crazy!
• If programmers had to remember the memory

locations of the data… they would go crazy!
• Fortunately, programming languages give you

a way around these details:
– a “variable” is a name for a location in memory.
– variables have “types,” which lets us think about

the values in human rather than binary terms

• Puzzle: why do programmers still go crazy?

B

3/31/00 B-7

How to Say It in C
#include <stdio.h>
int main(void) {

int firstOperand;
int secondOperand;
int thirdOperand;

firstOperand = 1;
secondOperand = 2;
thirdOperand = firstOperand + secondOperand;
printf(“%d”, thirdOperand);

return 0;
}

Key

Stuff you need in any C program

Memory allocation
(“Declarations of variables”)

Directions for CPU
(“Executable instructions” or
“C statements”)

3/31/00 B-8

Memory
A Program

(CPU Instructions)
01101110

00000000

00000001

10001000

11111111

01110111

00010110

Address Contents

0:

1:

2:

3:

4:

5:

6:

1. Set location 4 (firstOperand) to
00000001 (decimal 1)

2. Set location 5 (secondOperand) to
00000010 (decimal 2)

3. Add the contents of locations
4 and 5 and put the result in
location 2 (thirdOperand)

4. Print the contents of location
2 (thirdOperand) as an integer

(firstOperand)

(secondOperand)

(thirdOperand)

3/31/00 B-9

Important Points
1. A memory location is reserved by declaring a C variable

2. You can give the variable a name that helps someone else
reading the program understand what it is used for in that
program

3. Once all variables have been assigned memory locations,
program execution begins

4. Instructions are executed one at a time, in order of their
appearance in the program

5. You should initialize variables before trying to use their values

3/31/00 B-10

Another Example
#include <stdio.h>
int main(void) {

int rectangleLength;
int rectangleWidth;
int rectangleArea;

rectangleLength = 10;

rectangleWidth = 3;
rectangleArea = rectangleLength * rectangleWidth ;
printf(“%d”, rectangleArea);

return 0;
}

3/31/00 B-11

“Hand Simulation”

3/31/00 B-12

In a Little More Depth

• Declarations:
– Choosing variable names
– Reserved words
– Variable types

• The assignment statement

B

3/31/00 B-13

Variable Names
• "Identifiers" are names for things in a program

• for examples, names of variables

• In C, identifiers follow certain rules:
• use letters, numerals, and underscore (_)
• do not begin with a numeral
• cannot be “reserved words”
• are "case-sensitive"
• can be arbitrarily long but...

• Style point: Good choices for identifiers can be
extremely helpful in understanding programs
• Often useful: noun or noun phrase describing variable

contents 3/31/00 B-14

Reserved words
• Certain words have a "reserved"

(permanent, special) meaning in C
– We’ve seen int already
– Will see a couple of dozen more eventually

• These words always have that special
meaning, and cannot be used for other
purposes.
– Cannot be used names of variables
– Must be spelled exactly right
– Sometimes also called “keywords”

3/31/00 B-15

“Types”

• Each C variable names a memory location in the computer

• Each memory location contains a set of bits (0’s and 1’s)

• The value the 0’s and 1’s represent in the C program depend on
the type of the variable

• Examples of three C types (all we’ll see for quite a while)

Binary C Variable Type (Example)Value

01010001 int 161

char ‘A’

double 10.73

3/31/00 B-16

Declaring Variables
int months;

Integer variables represent whole numbers:

1, 17, -32, 0 Not 1.5, 2.0, ‘A’

double pi;
Floating point variables represent real numbers:

3.14, -27.5, 6.02e23, 5.0 Not 3

char first_initial, middle_initial, marital_status;
Character variables represent individual keyboard
characters:

'a', 'b', 'M', '0' , '9' , '#' , ' ' Not "Bill"

3/31/00 B-17

Assignment Statements

int area, length, width;
length = 16;
width = 32;
area = length * width;

•An assignment statement places a value into a
variable.
•The assignment may specify a simple value to be
stored, or an expression

•Operation: CPU will store the value of the expression on
the right into the variable on the left.

/* declaration of 3 variables */
/* "length gets 16" */
/* "width gets 32" */
/* "area gets length times width" */

3/31/00 B-18

my_age = my_age+1

•This is a “statement”, not an equation. Is there a
difference?
•The same variable may appear on both sides of
an assignment statement!

my_age = my_age + 1 ;
balance = balance + deposit ;

•The old value of the variable is used to compute
the value of the expression, before the variable is
changed.
•You wouldn’t do this in math!

B

3/31/00 B-19

Initializing variables
• Initialization means giving something a

value for the first time.
• Anything which changes the value of a

variable is a potential way of initializing it.
– For now, that means assignment statement

• General rule: variables have to be
initialized before their value is used.
– Failure to initialize is a common source of

bugs.

• Variables in a C program are not
automatically initialized to 0! 3/31/00 B-20

Declaring vs Initializing

int main (void) {
double income; /*declaration of income,

not an assignment,
not an initialization*/

income = 35500.00; /*assignment to income,
initialization of income,
not a declaration.*/

printf ("Old income is %f", income);
income = 39000.00; /*assignment to income,

not a declaration,
not an initialization */

printf ("After raise: %f", income);
}

3/31/00 B-21

Problem Solving and
Program Design (Review)

•Clearly specify the problem
•Analyze the problem
•Design an algorithm to solve the problem
•Implement the algorithm (write the
program)
•Test and verify the completed program

•The test-debug cycle
•Maintain and update the program

3/31/00 B-22

Example Problem:
Fahrenheit to Celsius
Problem (specified):

Convert Fahrenheit temperature to Celsius

Algorithm (result of analysis):

Celsius = 5/9 (Fahrenheit - 32)

What kind of data (result of analysis):

double fahrenheit, celsius;

3/31/00 B-23

Fahrenheit to Celsius (I)
An actual C program
#include <stdio.h>
int main(void)
{

double fahrenheit, celsius;

celsius = (fahrenheit - 32.0) * 5.0 / 9.0;

return(0);
}

3/31/00 B-24

Fahrenheit to Celsius (II)
#include <stdio.h>

int main(void)
{

double fahrenheit, celsius;
printf("Enter a Fahrenheit temperature: ");
scanf("%lf", &fahrenheit);
celsius = (fahrenheit - 32.0) * 5.0 / 9.0;
printf("That equals %f degrees Celsius.",

celsius);
return(0);

}

B

3/31/00 B-25

Running the Program

Enter a Fahrenheit temperature: 45.5
That equals 7.500000 degrees Celsius

Program “trace:”
fahrenheit celsius

after declaration ? ?
after first printf ? ?
after scanf 45.5 ?
after assignment 45.5 7.5
after second printf 45.5 7.5

3/31/00 B-26

Fahrenheit to Celsius (III)
#include <stdio.h>

int main(void)
{

double fahrenheit, celsius;
printf("Enter a Fahrenheit temperature: ");
scanf("%lf", &fahrenheit);
celsius = fahrenheit - 32.0 ;
celsius = celsius * 5.0 / 9.0 ;
printf("That equals %f degrees Celsius.",

celsius);
return(0);

}

3/31/00 B-27

celsius = (fahrenheit-32.0) * 5.0 / 9.0 ;

1. Evaluate right-hand side

a. Find current value of fahrenheit 72.0

b. Subtract 32.0 40.0

b. Multiply by 5.0 200.0

c. Divide by 9.0 22.2

2. Assign 22.2 to be the new value of celsius

(any old value of celsius is lost.)

Assignment step-by-step

3/31/00 B-28

Note on lecture examples
• Slides often leave out important details

my_age = my_age + 1;
• This is a legal C statement only if:

– my_age has previously been declared in the
program

– my_age has a proper type (e.g. int)
– the statement occurs in a legal position;
– the full program has “int main (void)”, etc., etc.

• Use your creative powers and common sense
to deduce what’s missing in the examples!

3/31/00 B-29

Does Terminology Matter?
• Lots of new terminology today!

– "variable", "reserved word", "initialization",
"declaration", “statement”, "assignment", etc., etc.

• You can write a complicated program without
using these words

• But you can’t talk about your programs
without them!

• Learn the exact terminology as you go, and
get in the habit of using it.
– Your TAs, consultants, and tutors will bless you…
– … and will be able to better help you 3/31/00 B-30

Compilers, Linkers, etc.

library
(ANSI)

header
(stdio.h)

executable

program

debugger

c

o

m

p

i

l

e

r

l

i

n

k

e

r

source
code

object
code

010
110

.c file

