Advanced Topics
iIn Data Management

Wrap-up

CSEP590d

Announcement

Next week, June 2"9: Project presentations
* Every team presents their project

* 10 minutes / team

* | will post the order soon

* | will post some guidelines

* Use your laptop OR my google slides

* Please come to the lecture room!

CSEP590d 2

https://docs.google.com/presentation/d/1w2cQi7XKW9LdX8csReD4gWHRetDEC2bzYvvSrD_XFOg/edit?usp=sharing

Summary

Cockroach Lab
Cascades
Redshift
Bigquery
Teradata

Snowflake
RelationalAl

CSEP590d

Cockroach Lab

CSEP590d

Cockroach Lab

A Real CockroachDB Deployment

Cockroach Lab

CockroachDB's First Optimizer

e Not an optimizer
e Used heuristics (rules) to choose execution plan
e E.g. “ifanindexisavailable, always useit”

e E.g. “always use the index, except when the table is very small or we expect to
scan more than 75% of the rows, or the index is located on a remote machine”
e Sort of works for OLTP, but customers run everything

Cockroach Lab

Phases of plan generation

Optbuild ez F[,)I'StSQL }
anning

Cockroach Lab

Phases of plan generation

—[Normalize }

DistSQL
Planning

|

Cockroach Lab

Normalization rules

e Transformation rules create a logically equivalent relational expression
e Normalization (or “rewrite”) rules are “always a good idea” to apply
e Examples

« Eliminate unnecessary operations: NOT (NOT x) -> x

+ Canonicalize expressions:5 = x -> x = 5

+ Constant folding: length(‘abc’) -> 3

« Predicate push-down*

« De-correlation of subqueries*

* Not always a good idea, but almost always

Cockroach Lab

Phases of plan generation

Parse Optbuild Normalize Explore D'StSQL
Planning

Cockroach Lab

Explore: GenerateLookupJoins

Group @ |Innerdoin @ @ b=c |InnerJoin @ @ b=c E/IergeJoin (2X3) b,% [LookupJoin @ cd]
Group (2] Select @ b>1 Scan ab@b [/2 -]
Group © Select @ c>1 Scancd [/2 -]
b g) LMergeJoin 23] b,C’
Group @ | Scan ab@primary Scan ab@b / \
q h (Scan ab@b [/2 -] } [Scancd [/2 -] J
Group @ | Scan cd@primary

CREATE TABLE ab (a INT PRIMARY KEY, b INT, INDEX (b));
CREATE TABLE cd (c INT PRIMARY KEY, d INT);
SELECT * FROM ab JOIN cd ON b=c WHERE b>1

Cockroach Lab

Calculate Statistics

Hist(b,c)

Hist(b)

Hist(c)

Hist(b)

Hist(c)

Rows:
500

Rows:
500

Rows:
1500

Rows:
4000

Rows:

4000

Group (1)

Group (2]

Group @

Group (4]

Group (5)

[)

Innerdoin @ @ b=c

Innerdoin @ @ b=c

EAergeJoin (2X3) b,%

Select @ b>1 Scan ab@b [/2 -]
Select @ c>1 Scan cd [/2 -]
Scan ab@primary Scan ab@b

()

Scan cd@primary

CREATE TABLE ab (a INT PRIMARY KEY, b INT, INDEX (b));
CREATE TABLE cd (c INT PRIMARY KEY, d INT);
SELECT * FROM ab JOIN cd ON b=c WHERE b>1

Cascades

CSEP590d

13

Cascades

Simplified optimization pipeline specf

— CSE spools

Project AutoStats Initial CE Join collapsing Trivial plan S

normalization

—

— Unsorted scans
-

—_—
Scalar evaluation
placement

Parsing . Algebrization ?\;?rl:r)rlglﬁza;?:r{ Pre-exploration E()églsigzt:;? Post-optimization

Redundant Subquery
Gb via FDs removal

Outer to

inner joins Quick Plan / parallel Full / parallel

Pushing CUBE
filters reduction

Cascades

Rules & Properties 400+ rules

@ Join reordering @ Materialized views
Index plans

Large IN lists

Update plans
Halloween protection
Partitioned tables
Parallelism

Remote queries

select sum(l_extendedprice) / 7.8 as avg_yearly
from lineitem join part on p_partkey = 1 partkey = Outer joins
where .
p_brand = 'Brand#12° <:> Subqueries
and 1 quantity < (select 8.2 * avg(l quantity)
from lineitem
where 1_partkey - p_partkey) = Stars and snowflakes

Join elimination

@ Aggregation
= Union

create view V with schemabinding as
select 1 partkey, sum{l quantity) sc, count big(*) cb
from dbo.lineitem
group by 1 partkey

 Execution strategies for SQL subqueries

« Orthogonal optimization of subgueries and aggregation

Empty table simplification

2® 4® - .

| I-’:

¥ 1 E—

Compute Scalar Hash Match — Columnstore inaoex Scan
{Bggregate) ({Inner Join)

Cost: 0 %
Cost: O % Cost: 5 %

Cost: 3 &% Cost: 3 %
:rh

T NG
— Lo | — Iclustered Ind.ex Scan

I columnstore Index Scan)
Compute Scalar Filter
[lineitem] . [CCIL] Cost: 0 % Cost- 0. % [¥]. [idx]
Cost: 78 % Cost:- 12 %

*— Hash Match ¢ | Hash Match (,_
l [Inner Join) | [part] . [CCIP]

Cascades
Statistics

Taxonomy

e Single-column ‘MaxDiff” histograms
e Multi-column density information
e Average column lengths

Average_range_rows

e Tries
e HLL / Heavy Hitter sketches (DW / Partitioned tables) Matantnd
e Skew (Cosmos)

Sorted column values

Data sources

e Base tables (including computed columns)
e Filtered indexes
e Materialized views

Create / Update mechanics

e Creation: manual, implicit, automatic
e Update: manual, automatic with mod counts
e Block-level sampling (optional cross-validation)

Cascades

Costing

\nitial cost
Rebind cost

Rewind cost

Last row
FirstTow = 1 :
= Rewind COS!
Initial Cost>= Rebind Cost> Re'
ni

= cE| _ ah

Bottom-up calculation...

cardinality

e CPU (e.g., filters) and /O (e.g., spilling aggs)

¢ Information: CE, DV, outliers, row sizes, DOP,
memory, sorted-ness, etc.

p— " Clustered Index Scan (Clustered)
Top {Inner Join) [customers] . [foo] [c]
Cest: 0 % Cost: 8 & Cost: 3 %
e 3 cost lines: Initial / rewind / rebind T e —

Cost: 89 %
select top ? *

from orders o join customers c

... With top-down context [

|

= Bl iy
e Row goals

Cost: 0 % {Inner Join)

" Clustered Index Scan (Clustered)
[orders]. [foo] (o]
Cost: 0 %

atl
. Bitma p filte rS " Clustered Index Seek (Clustered)
e Estimated rewinds/rebinds

[customers 1. [fool [c]
Cost: 100 &

Decouple Logical / Physical

Logical optimization = equality saturation (EgQ)
Physical optimization:
* Optimize(A join B)
— A MergedJoin B:
* Optimize(A, sort, cost < infty)

« Optimize(B, sort, cost < infty)
» Total cost =100
— A HashJoin B
* Optimize(A, -, cost <100)
* Optimize(B, -, cost < 100)

18

Redshift

CSEP590d

Redshift

Executing a query in Amazon Redshift

JDBC/ODBC/Data API Parser
Catal

| Redshift . Y,
I Compute ! v \.f' 5 Sm{'
: Cluster :' (-: queryl.cpp ! Optimizer M
0 1 : |
d i i : AGG
: - i : ~
| o) H I | HASH JOIN
I j 2 |\ : AN
AN \ Min/max pruning ™
I o 1 SIMD scans from ~ p------- e }
| 5 :
: o'

EA264 encoding

Redshift
Managed . .

Storage —

.> ¢

:I Co-located Join
1

-
 local-attached SSDs i
:
1
1
1

aws

© 2022, Amazon Web Services, Inc. or its Affiliates.

Redshift

Compilation-as-a-Service

Leader Node
Redshift Cluster
(=]
Compute Compute O\B\

ul
Node 1 Node 2
[|

28
3
el
wE

. Leader Node O
Redshift Cluster o
.
\ —
Compute Compute Compute Comput]
Node 1 Node 2 Node 3 Node N
| | (0}
)) 8 [] Global Cache =
Leader Node
Redshift Cluster o)
Computy Compute Comput Comput
Node 1 Node 2 Node 3 Node N
| RN

Redshift Cluster

JDBC/ODBC/psql

Leader Node

@)

Compute
Node 1

A
\

Compute
Node 2

[\

queryl.cpp

Compute
Node 3

N

Compute
Node N

% B ® @

Compilation Service

© 2022, Amazon Web Services, Inc. or its Affiliates.

aws

Detour: Push v.s. Pull

Push

for x in R do:
if P1(x) then
if P2(x) then
insert(x,hashtable)

\
O-pz

Opq

R

FA,Sum(B) Pull

repeat // Gamma asks for next()
repeat // sigma_p2 asks for next()
repeat // sigma_p1 asks for next()
x = R.next()
until x == NULL or P1(x)
until x == NULL or P2(x)
if x I= NULL.: insert(x,hashtable)
until x == NULL

Redshift

Ingesting and Querying Semistructured Data

« Rapid insertion of flexible,
schemaless JSON data

« Efficient, navigation-friendly
Redshift SUPER encoding

* Flexible PartiQL queries for
discovery

« PartiQL extends SQL with “first
class citizen" nested data and
dynamic typing

* PartiQL materialized views extract,
load & transform (ELT) from SUPER

© 2022, Amazon Web Services, Inc. or its Affiliates.

{

"id":1,

"name": {"given":"Jane", "family":"Doe"},

"phone": [{"type":"work", "num": "9252364000"},
{"type":"cell", "num": 6501234444}]

}

{

"id":2,

"name": {"given":"Graham", "family":"Bell"},

"phone": [{"type":"work", "num": 5106101234}]

}

SELECT name.given AS firstname, ph.num
FROM customers c, c.phone ph

WHERE ph.type = 'cell';
firstname | num

__________ +_______________
"Jane" | 6501234444

aws

BigQuery

CSEP590d

24

BigQuery

Comparison Across Hyperscalers

Amazon Redshift

Borg

VM Cluster VM Cluster
: ; VM Cluster VM Cluster
Metadata Dremel SQL Server - Postgres :
Spark Spark
Local Storage Local Storage
Storage APls

| Stream Ingest |

| Storage Mgmt |

Colossus Azure Storage Azure Lake Storage S3

BigQuery
Flexible Query Execution

SELECT language, MAX(views) as views
Sraahiin FROM "wikipedia benchmark.WikilB"

WHERE title LIKE "G%o%"

GROUP BY 1 ORDER BY 2 DESC LIMIT 100

— Stage 3: SORT, LIMIT

| |
e ¢ @ B | s croupevsomum

; Shuffle with dynamic partitioning
Worker —— Stage 1: Partial GROUP BY

Distributed storage

BigQuery

In Memory Shuffle

In-memory values
Workers y

— Local RAM
o
S Workers
8)
o g
Local RAM §
) \ J
— & —
3
Shuffle (n - 1) g8 |5 Shuffle (n+1)
§
3 -~
e 8 —_—
§ o
g |—»
sea— g
E — |
—_— g Local Disk
8
N — —

Shuffle n

BigQuery

In Memory Shuffle Details

e In-memory shuffle coupled with compute presents bottlenecks
o Hard to mitigate quadratic scaling characteristics

o Resource fragmentation, stranding, poor isolation

e BigQuery implements a disaggregated memory-based shuffle
RAM/disk managed separately from compute tier

Reduced shuffle latency by order-of-magnitude

Enables order-of-magnitude larger shuffles

Reduced resource cost by 20%

O 0 0 ©0

e Persistence in shuffle layer
o Checkpoint query execution state
o Allows flexibility in scheduling + execution (preemption of workers)

BigQuery
Dynamic Scheduling in BigQuery

Dynamic central scheduler allocates

O SIOtS Query 4 needs less resources

Query 5 is submitted

O WOrkerS Query 4 finishes
Handles machine failure slots \, avallable slots
Fair resource distribution

between queries

BigQuery

Dynamic Partitioning

Goal: Dynamically load balance and adjust parallelism while adapting to any query or data

shape and size

Partition 1

Partition 2 Partition 3 Partition 4

Repartition

Workers start writing to Partitions 1and 2

Query Coordinator detects there is too
much data going to Partition 2

Workers stop writing to Partition 2 and
start writing to Partitions 3 and 4

Data in Partition 2 is re-partitioned into
Partitions 3 and 4

BigQuery

Broadcast Join

SELECT
c.author.name a, c2.am
FROM github_repos.commits c
JOIN (
SELECT

committer.name a,

commit
Worker & Y Left table FROM
§ Shuffle

> github_repos.commits) c2
s L ON
Right table c.commit = c2.commit
e WHERE c2.a = 'tom'
LIMIT 1000

Distributed storage

BigQuery

Shuffle Join

-
Worker Worker Hash join
— LT —— TR IR N
~ Shuffe ' Shufle - ———— Independent shuffles
\ - > . 7»,.”' —
WOIKer Sy SWOTKEr gy Worker B Worker SELECT c.author.name a, c2.a m

FROM github_repos.commits c

JOIN (SELECT committer.name a, commit
FROM github_repos.commits) c2

ON c.commit = c2.commit

LIMIT 1000

Distributed storage

BigQuery

Dynamic Join Processing Examples

Start with hash join by shuffling data on both sides
o Cancel shuffle one side finished fast and is below a broadcast size threshold

o Execute broadcast join instead (much less data transferred)
Decide number of partitions/workers for parallel join based on input data sizes
Swap join sides in certain cases

Star schema join optimizations
o Detect star schema joins

o Compute and propagate constraint predicates from dimensions to fact table

Teradata

CSEP590d

34

Teradata

Teradata Data Management

Rows automatically distributed evenly by hash partitioning

« Even distribution results in scalable * Primary Index (PI) column(s) are hashed

performance « Hash is always the same - for the same
* Done in real-time as data are loaded, values

appended, or changed. « No reorgs, repartitioning, space
» Hash map defined and maintained by the management

system

» 2**32 hash codes, 1,048,576 buckets distributed

to AMPs

Table A Table B Table C Primary Index

\/

29 teradata.
Property of Teradata

Teradata

Defining a Table in Teradata

CREATE TABLE LineItem (
e Standard SQL syntax OrderKey INTEGER NOT NULL,
PartKey INTEGER NOT NULL,
SupplierKey INTEGER,
LineNumber INTEGER,
Define the primary Quantity INTEGER NOT NULL,
index ExtendedPrice DECIMAL(13,2),

. Di t DECIMAL(13,2),
e Extra line at end of tscoun (13,2)

table definition Tax DECIMAL(13,2),

Comment VARCHAR (50)

)
PRIMARY INDEX (OrderKey) ;

31
Property of Teradata

teradata.

37

Teradata

Base Table Row Formats

'

'

'

Only If Variable Length
Columns Declared

'

VARCHAR Fixed Length Compressed | VARCHAR

RowlD RowlD | & p

= ow ow E Offsets Columns Columns Columns

= 2 i @

<x = 0 = &

® o (S |0 @ ﬁhﬂ T = %

= g |8 |¢c 5|88 cx |28 | g

ss (|3 |E|g, |5 |58 53 (583

2L |3 (322 |7 (22| 55 |52 2 _ RAnS s | o

To € |€£ |3 |k |Cm| oz |<@3 | D o B[3| 5|2 S g

2 2 4 4 1 1 2 T 2 2 2 2 lTTiD-nEmes
0-n Bytes

Data For Compressible

Columns That Are Mot
Mull, Mot Compressed,
or Are Algorithmically
Compressed

L

10848067

teradata.

Teradata

What’s on a Node

* Connect sessions to outside world

» Balance external traffic workload across
nodes

* Parsing Engine (PE)
* Parse & Optimize
« Dispatcher to AMPs

 AMP (Access Module Processor)

« Execution engine
* Logs & locks

« Data dictionary

* 1/O management

» “Vprocs”

» Virtual “processors” sharing one physical
node

Query

Execution

Virtualized!

--
- .

-
ooooo
...

teradata.
Property of Teradata

Teradata

Query Parallelization

* Query parsing, management is
fully distributed across the nodes

 No head node/coordinator node

« All operations fully parallel

* No single threaded operations

e Scans, Joins, Index access,
Aggregation, Sort, Insert, Update,
Delete

* Ordered Analytics
» Extensibility functions
* Result return

51

“Conditional

Teradata
“Unconditional

Parallelism Parallelism”

<——Query Starts ——

<— Query Optimization %

Property of Teradata teradata.

Snowflake

CSEP590d

40

Snowflake

TRADITIONAL DATABASE ARCHITECTURES
Limited Scalability, Not Elastic

Shared-nothing Shared-disk
® | PY | Py] [[[
Distributed Storage E j
Single Cluster « Centralized Storage
Adopted by Gamma, Teradata, * Single Cluster

Redshift, Vertica, Netezza, Adopted by Oracle, Hadoop

Snowflake

SNOWFLAKE REGION ARCHITECTURE
Multi-cluster, Shared-data

Virtu. Client(s) Virtual Warehouse

ODBC, JDBC, Web Ul,)]
Python, NodelS, Spark, ...

Cloud Services

Authentication & access control

Infrastructure . Transaction .
Optimizer Security
manager Manager
N S I S

Virtual Warehouse Virtual Warehouse

e O
N -

Cloud Object
Store

SN— e

Snowflake

STORAGE TIER

Immutable Storage

o

O o O O

Each table is automatically partitioned horizontally
Partition size is kept very small, generally 16 MB

Each partition is backed by an immutable file

Partitions are columnar organized, compressed, encrypted
Partitions are the unit of change for transactions

® Semi-structured

0]
0]

Variant data type used to store schemaless semi-structured data
Automatic columnarization of semi-structured attributes

Partition Metadata

o

Out-of-box, metadata is automatically stored for all columns/sub-
columns in a partition

Leverage that metadata to perform partition pruning
Re-clustering service to improve pruning
Track all table mutations to provide full ACID support

Snowflake

COMPUTE TIER

® Virtual warehouse
O Snowflake Entity used to manage the set of compute resources used by a workload
O Made of one or more compute clusters
O Cluster size range from one to several hundred nodes
O Workloads are fully isolated from each other

® Just-in-time Compute

O Sub-second auto-resume when associated workload starts

O Online resize up and down possible while workload runs

O Auto-suspend when workload is no longer running

O Snowflake charges usage by second of compute resource used

=> FAST is free!

® Partition Cache
O Node local memory and SSD storage used to cache partitions
O Only columns/sub-columns which are accessed are cached
O Highly available, fully stateless

Snowflake

CLOUD SERVICES

e Control Plane of a Snowflake Region

o Connection Management
Infrastructure Provisioning and Management
Metadata storage (use FDB) & management
Query planning and optimization
Transaction management

Authentication & access control

C|°U_d Infrastructure S Transaction S :
services manager ptimizer VT ecurity
[@ () vetassto e Self-managed

o Self-upgrade of both software and hardware

o Self-healing: replacement of failed servers and
transparent re-execution of any failed queries

o Highly available over multiple availability zone

O Stateless: persistent sessions for load-balancing and
transparent fail-over

O O O O O

Security management

Snowflake

SNOWFLAKE DATABASE SHARING

Provider Account Consumer Account(s)

Warehouse(s)

‘TEE
SEECTte. SP; Crédadagbags/account join
FROM ;

Final Thoughts

« Common themes:
— Optimization
— Execution
— parallelism

* New directions:
— Tensors
— ML
— Global Distribution

47

