
Advanced Topics
in Data Management

Wrap-up

CSEP590d 1

Announcement

Next week, June 2nd: Project presentations
• Every team presents their project
• 10 minutes / team
• I will post the order soon
• I will post some guidelines
• Use your laptop OR my google slides
• Please come to the lecture room!

CSEP590d 2

https://docs.google.com/presentation/d/1w2cQi7XKW9LdX8csReD4gWHRetDEC2bzYvvSrD_XFOg/edit?usp=sharing

Summary

• Cockroach Lab
• Cascades
• Redshift
• Bigquery
• Teradata
• Snowflake
• RelationalAI

CSEP590d 3

Cockroach Lab

CSEP590d 4

Cockroach Lab

CSEP590d 5

A Real CockroachDB Deployment

3

Cockroach Lab

CSEP590d 6

CockroachDB’s First Optimizer
● Not an optimizer

● Used heuristics (rules) to choose execution plan

● E.g. “if an index is available, always use it”

● E.g. “always use the index, except when the table is very small or we expect to
scan more than 75% of the rows, or the index is located on a remote machine”

● Sort of works for OLTP, but customers run everything

Cockroach Lab

CSEP590d 7

Phases of plan generation

Parse Optbuild Normalize Explore DistSQL
Planning

Cockroach Lab

CSEP590d 8

Phases of plan generation

Parse Optbuild Normalize Explore DistSQL
Planning

Cockroach Lab

CSEP590d 9

Normalization rules
● Transformation rules create a logically equivalent relational expression
● Normalization (or “rewrite”) rules are “always a good idea” to apply
● Examples

• Eliminate unnecessary operations: NOT (NOT x) -> x
• Canonicalize expressions: 5 = x -> x = 5
• Constant folding: length(‘abc’) -> 3
• Predicate push-down*
• De-correlation of subqueries*
• ...

* Not always a good idea, but almost always

Cockroach Lab

CSEP590d 10

Phases of plan generation

Parse Optbuild Normalize Explore DistSQL
Planning

Cockroach Lab

CSEP590d 11

Explore: GenerateLookupJoins
Group ❶ InnerJoin ❷ ❸ b=c InnerJoin ❸ ❷ b=c MergeJoin ❷ ❸ b,c LookupJoin ❷ cd

Group ❷ Select ❹ b>1 Scan ab@b [/2 -]

Group ❸ Select ❺ c>1 Scan cd [/2 -]

Group ❹ Scan ab@primary Scan ab@b

Group ❺ Scan cd@primary

...

CREATE TABLE ab (a INT PRIMARY KEY, b INT, INDEX (b));
CREATE TABLE cd (c INT PRIMARY KEY, d INT);
SELECT * FROM ab JOIN cd ON b=c WHERE b>1

Cockroach Lab

CSEP590d 12

Calculate Statistics
Group ❶ InnerJoin ❷ ❸ b=c InnerJoin ❸ ❷ b=c MergeJoin ❷ ❸ b,c

Group ❷ Select ❹ b>1 Scan ab@b [/2 -]

Group ❸ Select ❺ c>1 Scan cd [/2 -]

Group ❹ Scan ab@primary Scan ab@b

Group ❺ Scan cd@primary

...

CREATE TABLE ab (a INT PRIMARY KEY, b INT, INDEX (b));
CREATE TABLE cd (c INT PRIMARY KEY, d INT);
SELECT * FROM ab JOIN cd ON b=c WHERE b>1

Rows:
4000Hist(c)

Rows:
1500

Hist(c)

Rows:
4000

Hist(b)

Rows:
500

Hist(b)

Rows:
500

Hist(b,c)

Cascades

CSEP590d 13

Cascades

CSEP590d 14

Simplified optimization pipeline

Parsing Algebrization Simplification/
Normalization Pre-exploration Exploration

(cascades) Post-optimization

Project
normalization AutoStats Initial CE Join collapsing Trivial plan

TP Plan Quick Plan / parallel Full / parallel

Subquery
removal …Redundant

Gb via FDs

Empty
results… Outer to

inner joins

CUBE
reduction …Pushing

filters

Engine
specific

CSE spools

Unsorted scans

Scalar evaluation
placement

Cascades

CSEP590d 15

Rules & Properties

• Execution strategies for SQL subqueries
• Orthogonal optimization of subqueries and aggregation

Bitmaps

Cascades

CSEP590d 16

Statistics
Taxonomy
• Single-column ‘MaxDiff’ histograms
• Multi-column density information
• Average column lengths
• Tries
• HLL / Heavy Hitter sketches (DW / Partitioned tables)
• Skew (Cosmos)

Data sources
• Base tables (including computed columns)
• Filtered indexes
• Materialized views

Create / Update mechanics
• Creation: manual, implicit, automatic
• Update: manual, automatic with mod counts
• Block-level sampling (optional cross-validation)

Cascades

CSEP590d 17

Costing

• CPU (e.g., filters) and I/O (e.g., spilling aggs)
• Information: CE, DV, outliers, row sizes, DOP,

memory, sorted-ness, etc.
• 3 cost lines: Initial / rewind / rebind

Bottom-up calculation…

• Row goals
• Bitmap filters
• Estimated rewinds/rebinds

… with top-down context

Decouple Logical / Physical

Logical optimization = equality saturation (Egg)
Physical optimization:
• Optimize(A join B)

– A MergeJoin B:
• Optimize(A, sort, cost < infty)
• Optimize(B, sort, cost < infty)
• Total cost = 100

– A HashJoin B
• Optimize(A, -, cost < 100)
• Optimize(B, -, cost < 100)

18

Redshift

CSEP590d 19

Redshift

CSEP590d 20
© 2022, Amazon Web Services, Inc. or its Affiliates.

Redshift
Compute
Cluster

Executing a query in Amazon Redshift

JDBC/ODBC/Data API

query1.cpp

qu
er
y1
.o

Min/max pruning
SIMD scans from
local-attached SSDs
AZ64 encoding

SCAN + FILTER SCAN SCAN + FILTER

HASH JOIN

AGG

SORT +
LIMIT

HASH JOIN

Co-located Join

Compute
Node

Compute
Node

Leader
Node

Compute
Node

Compute
Node

Parser

Rewriter

Catalog/
Statistics

Optimizer

Redshift
Managed
Storage

AWS Nitro

Redshift

CSEP590d 21
© 2022, Amazon Web Services, Inc. or its Affiliates.

Compilation-as-a-Service

Leader Node

Compute
Node 1

Compute
Node 2

Compute
Node 3

Redshift Cluster

Compute
Node N

1

JDBC/ODBC/psql

query1.cpp
2

qu
er
y1
.o

3
Compilation Service

4

5

Leader Node

Compute
Node 1

Compute
Node 2

Compute
Node 3

Redshift Cluster

Compute
Node N

Leader Node

Compute
Node 1

Compute
Node 2

Compute
Node 3

Redshift Cluster

Compute
Node N

Leader Node

Compute
Node 1

Compute
Node 2

Compute
Node 3

Redshift Cluster

Compute
Node N

6

Global Cache

Detour: Push v.s. Pull

𝜎!"

𝜎!#

𝑅

Γ$,&'((*)

for x in R do:
if P1(x) then

if P2(x) then
insert(x,hashtable)

repeat // Gamma asks for next()
repeat // sigma_p2 asks for next()
repeat // sigma_p1 asks for next()
x = R.next()

until x == NULL or P1(x)
until x == NULL or P2(x)
if x != NULL: insert(x,hashtable)

until x == NULL

Push Pull

Redshift

CSEP590d 23
© 2022, Amazon Web Services, Inc. or its Affiliates.

Ingesting and Querying Semistructured Data
with the SUPER encoding & the PartiQL Query Language

• Rapid insertion of flexible,
schemaless JSON data

• Efficient, navigation-friendly
Redshift SUPER encoding

• Flexible PartiQL queries for
discovery

• PartiQL extends SQL with “first
class citizen” nested data and
dynamic typing

• PartiQL materialized views extract,
load & transform (ELT) from SUPER

{
"id":1,
"name":{"given":"Jane", "family":"Doe"},
"phone":[{"type":"work", "num": "9252364000"},

{"type":"cell", "num": 6501234444}]
}
{
"id":2,
"name":{"given":"Graham", "family":"Bell"},
"phone":[{"type":"work", "num": 5106101234}]
}

SELECT name.given AS firstname, ph.num
FROM customers c, c.phone ph
WHERE ph.type = 'cell';

firstname | num
----------+---------------
"Jane" | 6501234444

BigQuery

CSEP590d 24

BigQuery

BigQuery

BigQuery

BigQuery

BigQuery

BigQuery

BigQuery

BigQuery

BigQuery

Teradata

CSEP590d 34

Teradata

29

• Even distribution results in scalable
performance

• Done in real-time as data are loaded,
appended, or changed.

• Hash map defined and maintained by the
system
• 2**32 hash codes, 1,048,576 buckets distributed

to AMPs

Teradata Data Management

Property of Teradata

AMP1

Table A Table B Table C

AMP2 AMP3 AMP4 AMPn…………………………………………

Teradata Parallel Hash Function RowHash (Hash Bucket) Data Fields

Primary Index

Rows automatically distributed evenly by hash partitioning

• Primary Index (PI) column(s) are hashed
• Hash is always the same - for the same

values
• No reorgs, repartitioning, space

management

Data
Management

Teradata

31

Defining a Table in Teradata

Property of Teradata

Teradata

37

Base Table Row Formats

Teradata

49

Query
Execution

• Gateway
• Connect sessions to outside world
• Balance external traffic workload across

nodes

• Parsing Engine (PE)
• Parse & Optimize
• Dispatcher to AMPs

• AMP (Access Module Processor)
• Execution engine
• Logs & locks
• Data dictionary
• I/O management

• “Vprocs”
• Virtual “processors” sharing one physical

node

What’s on a Node

Property of Teradata

Parser

AMP 1

SMP Node

Virtualized!Gateway

AMP n

Parser

Teradata

51

Query Parallelization

• Query parsing, management is
fully distributed across the nodes
• No head node/coordinator node

• All operations fully parallel
• No single threaded operations
• Scans, Joins, Index access,

Aggregation, Sort, Insert, Update,
Delete

• Ordered Analytics
• Extensibility functions
• Result return

Property of Teradata

Query
Execution

“Conditional
Parallelism”

Teradata
“Unconditional

Parallelism”

Final Result Set

Join

Aggregate

Sort

Convergence

Query Starts

Query Optimization

Scan

Snowflake

CSEP590d 40

Snowflake
TRADITIONAL DATABASE ARCHITECTURES

Limited Scalability, Not Elastic

Shared-diskShared-nothing

• Distributed Storage
• Single Cluster
• Adopted by Gamma, Teradata,

Redshift, Vertica, Netezza, …

• Centralized Storage
• Single Cluster
• Adopted by Oracle, Hadoop

Snowflake
SNOWFLAKE REGION ARCHITECTURE

Multi-cluster, Shared-data

Cloud
Object
Store

Virtual Warehouse

Virtual Warehouse

Virtual Warehouse

Virtual Warehouse

Transaction
Manager SecurityOptimizerInfrastructure

manager

Authentication & access control

Metadata

ODBC, JDBC, Web UI,
Python, NodeJS, Spark, …

REST

Client(s)

Compute/Storage Layers

Cloud Services

Snowflake
STORAGE TIER

Cloud Object
Store

● Immutable Storage
○ Each table is automatically partitioned horizontally
○ Partition size is kept very small, generally 16MB
○ Each partition is backed by an immutable file
○ Partitions are columnar organized, compressed, encrypted
○ Partitions are the unit of change for transactions

● Semi-structured
○ Variant data type used to store schemaless semi-structured data
○ Automatic columnarization of semi-structured attributes

● Partition Metadata
○ Out-of-box, metadata is automatically stored for all columns/sub-

columns in a partition
○ Leverage that metadata to perform partition pruning
○ Re-clustering service to improve pruning
○ Track all table mutations to provide full ACID support

Snowflake
COMPUTE TIER

● Virtual warehouse
○ Snowflake Entity used to manage the set of compute resources used by a workload
○ Made of one or more compute clusters
○ Cluster size range from one to several hundred nodes
○ Workloads are fully isolated from each other

● Just-in-time Compute
○ Sub-second auto-resume when associated workload starts
○ Online resize up and down possible while workload runs
○ Auto-suspend when workload is no longer running
○ Snowflake charges usage by second of compute resource used

è FAST is free!

● Partition Cache
○ Node local memory and SSD storage used to cache partitions
○ Only columns/sub-columns which are accessed are cached
○ Highly available, fully stateless

Snowflake
CLOUD SERVICES

Cloud
services

Transaction
Manager SecurityOptimizer

Infrastructure
manager

Authentication & access control

Metadata

REST

● Control Plane of a Snowflake Region
○ Connection Management
○ Infrastructure Provisioning and Management
○ Metadata storage (use FDB) & management
○ Query planning and optimization
○ Transaction management
○ Security management

● Self-managed
○ Self-upgrade of both software and hardware
○ Self-healing: replacement of failed servers and

transparent re-execution of any failed queries
○ Highly available over multiple availability zone
○ Stateless: persistent sessions for load-balancing and

transparent fail-over

Snowflake

© 2019 Snowflake Inc. All Rights Reserved

SNOWFLAKE DATABASE SHARING

18

SH1CREATE SHARE SH1;
GRANT … TO SHARE SH1
….;

CREATE DATABASE DB1
FROM SHARE SH1;

Warehouse(s)

Consumer Account(s)Provider Account

SELECT …
FROM ;

Cross-database/account joinExecute SP; Sharing code

Final Thoughts

• Common themes:
– Optimization
– Execution
– parallelism

• New directions:
– Tensors
– ML
– Global Distribution

47

