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Announcement

Next week, June 2nd: Project presentations
• Every team presents their project
• 10 minutes / team
• I will post the order soon
• I will post some guidelines
• Use your laptop OR my google slides
• Please come to the lecture room!
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https://docs.google.com/presentation/d/1w2cQi7XKW9LdX8csReD4gWHRetDEC2bzYvvSrD_XFOg/edit?usp=sharing


Summary

• Cockroach Lab
• Cascades
• Redshift
• Bigquery
• Teradata
• Snowflake
• RelationalAI
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Cockroach Lab
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Cockroach Lab
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A Real CockroachDB Deployment
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Cockroach Lab
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CockroachDB’s First Optimizer
● Not an optimizer

● Used heuristics (rules) to choose execution plan

● E.g. “if an index is available, always use it”

● E.g. “always use the index, except when the table is very small or we expect to 
scan more than 75% of the rows, or the index is located on a remote machine”

● Sort of works for OLTP, but customers run everything



Cockroach Lab
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Phases of plan generation

Parse Optbuild Normalize Explore DistSQL 
Planning



Cockroach Lab
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Phases of plan generation

Parse Optbuild Normalize Explore DistSQL 
Planning



Cockroach Lab
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Normalization rules
● Transformation rules create a logically equivalent relational expression
● Normalization (or “rewrite”) rules are “always a good idea” to apply
● Examples

• Eliminate unnecessary operations: NOT (NOT x) -> x
• Canonicalize expressions: 5 = x -> x = 5
• Constant folding: length(‘abc’) -> 3
• Predicate push-down*
• De-correlation of subqueries*
• ...

* Not always a good idea, but almost always



Cockroach Lab
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Phases of plan generation

Parse Optbuild Normalize Explore DistSQL 
Planning



Cockroach Lab
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Explore: GenerateLookupJoins
Group ❶ InnerJoin ❷ ❸ b=c InnerJoin ❸ ❷ b=c MergeJoin ❷ ❸ b,c LookupJoin ❷ cd

Group ❷ Select ❹ b>1 Scan ab@b [/2 - ]

Group ❸ Select ❺ c>1 Scan cd [/2 - ]

Group ❹ Scan ab@primary Scan ab@b

Group ❺ Scan cd@primary

...

CREATE TABLE ab (a INT PRIMARY KEY, b INT, INDEX (b));
CREATE TABLE cd (c INT PRIMARY KEY, d INT);
SELECT * FROM ab JOIN cd ON b=c WHERE b>1



Cockroach Lab
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Calculate Statistics
Group ❶ InnerJoin ❷ ❸ b=c InnerJoin ❸ ❷ b=c MergeJoin ❷ ❸ b,c

Group ❷ Select ❹ b>1 Scan ab@b [/2 - ]

Group ❸ Select ❺ c>1 Scan cd [/2 - ]

Group ❹ Scan ab@primary Scan ab@b

Group ❺ Scan cd@primary

...

CREATE TABLE ab (a INT PRIMARY KEY, b INT, INDEX (b));
CREATE TABLE cd (c INT PRIMARY KEY, d INT);
SELECT * FROM ab JOIN cd ON b=c WHERE b>1

Rows: 
4000Hist(c)

Rows: 
1500

Hist(c)

Rows: 
4000

Hist(b)

Rows: 
500

Hist(b)

Rows: 
500

Hist(b,c)



Cascades
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Cascades
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Simplified optimization pipeline

Parsing Algebrization Simplification/
Normalization Pre-exploration Exploration 

(cascades) Post-optimization

Project 
normalization AutoStats Initial CE Join collapsing Trivial plan

TP Plan Quick Plan / parallel Full / parallel

Subquery 
removal …Redundant 

Gb via FDs

Empty 
results… Outer to 

inner joins

CUBE 
reduction …Pushing 

filters

Engine 
specific

CSE spools

Unsorted scans

Scalar evaluation 
placement



Cascades
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Rules & Properties

• Execution strategies for SQL subqueries
• Orthogonal optimization of subqueries and aggregation

Bitmaps



Cascades
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Statistics
Taxonomy
• Single-column ‘MaxDiff’ histograms
• Multi-column density information
• Average column lengths
• Tries
• HLL / Heavy Hitter sketches (DW / Partitioned tables)
• Skew (Cosmos)

Data sources
• Base tables (including computed columns)
• Filtered indexes
• Materialized views

Create / Update mechanics
• Creation: manual, implicit, automatic
• Update: manual, automatic with mod counts
• Block-level sampling (optional cross-validation)



Cascades
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Costing

• CPU (e.g., filters) and I/O (e.g., spilling aggs)
• Information: CE, DV, outliers, row sizes, DOP, 

memory, sorted-ness, etc.
• 3 cost lines: Initial / rewind / rebind

Bottom-up calculation…

• Row goals
• Bitmap filters
• Estimated rewinds/rebinds

… with top-down context



Decouple Logical / Physical

Logical optimization = equality saturation (Egg)
Physical optimization:
• Optimize(A join B)

– A MergeJoin B:
• Optimize(A, sort, cost < infty)
• Optimize(B, sort, cost < infty)
• Total cost = 100

– A HashJoin B
• Optimize(A, -, cost < 100)
• Optimize(B, -, cost < 100)
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Redshift
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Redshift
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Redshift
Compute
Cluster

Executing a query in Amazon Redshift

JDBC/ODBC/Data API

query1.cpp

qu
er
y1
.o

Min/max pruning 
SIMD scans from 
local-attached SSDs
AZ64 encoding

SCAN + FILTER SCAN SCAN + FILTER

HASH JOIN

AGG

SORT + 
LIMIT

HASH JOIN

Co-located Join

Compute
Node

Compute
Node

Leader
Node

Compute
Node

Compute
Node

Parser

Rewriter

Catalog/
Statistics

Optimizer

Redshift
Managed
Storage

AWS Nitro



Redshift
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Compilation-as-a-Service

Leader Node

Compute 
Node 1

Compute 
Node 2

Compute 
Node 3

Redshift Cluster

Compute 
Node N

1

JDBC/ODBC/psql

query1.cpp
2

qu
er
y1
.o

3
Compilation Service
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Leader Node

Compute 
Node 1

Compute 
Node 2

Compute 
Node 3

Redshift Cluster

Compute 
Node N

Leader Node

Compute 
Node 1

Compute 
Node 2

Compute 
Node 3

Redshift Cluster

Compute 
Node N

Leader Node

Compute 
Node 1

Compute 
Node 2

Compute 
Node 3

Redshift Cluster

Compute 
Node N
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Global Cache



Detour: Push v.s. Pull

𝜎!"

𝜎!#

𝑅

Γ$,&'((*)

for x in R do:
if P1(x) then

if P2(x) then
insert(x,hashtable)

repeat      // Gamma asks for next()
repeat    // sigma_p2 asks for next()
repeat  // sigma_p1 asks for next()
x = R.next()

until x == NULL or P1(x)
until x == NULL or P2(x)
if x != NULL: insert(x,hashtable)

until x == NULL

Push Pull



Redshift
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Ingesting and Querying Semistructured Data
with the SUPER encoding & the PartiQL Query Language

• Rapid insertion of flexible, 
schemaless JSON data

• Efficient, navigation-friendly 
Redshift SUPER encoding

• Flexible PartiQL queries for 
discovery

• PartiQL extends SQL with “first 
class citizen” nested data and 
dynamic typing

• PartiQL materialized views extract, 
load & transform (ELT) from SUPER

{
"id":1, 
"name":{"given":"Jane", "family":"Doe"},
"phone":[{"type":"work", "num": "9252364000"},

{"type":"cell", "num": 6501234444}]
}
{
"id":2, 
"name":{"given":"Graham", "family":"Bell"},
"phone":[{"type":"work", "num": 5106101234}]
}

SELECT name.given AS firstname, ph.num
FROM customers c, c.phone ph
WHERE ph.type = 'cell';

firstname | num
----------+---------------
"Jane"    | 6501234444



BigQuery
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BigQuery



BigQuery
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BigQuery



Teradata
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Teradata

29

• Even distribution results in scalable 
performance

• Done in real-time as data are loaded, 
appended, or changed.

• Hash map defined and maintained by the 
system
• 2**32 hash codes, 1,048,576 buckets distributed 

to AMPs

Teradata Data Management

Property of Teradata

AMP1

Table A Table B Table C

AMP2 AMP3 AMP4 AMPn…………………………………………

Teradata Parallel Hash Function RowHash (Hash Bucket) Data Fields

Primary Index

Rows automatically distributed evenly by hash partitioning

• Primary Index (PI) column(s) are hashed
• Hash is always the same - for the same 

values
• No reorgs, repartitioning, space 

management

Data 
Management



Teradata
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Defining a Table in Teradata

Property of Teradata



Teradata
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Base Table Row Formats



Teradata
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Query 
Execution

• Gateway
• Connect sessions to outside world
• Balance external traffic workload across 

nodes

• Parsing Engine (PE)
• Parse & Optimize
• Dispatcher to AMPs

• AMP (Access Module Processor)
• Execution engine
• Logs & locks
• Data dictionary
• I/O management

• “Vprocs”
• Virtual “processors” sharing one physical 

node

What’s on a Node

Property of Teradata

Parser

AMP 1

SMP Node

Virtualized!Gateway

AMP n

Parser



Teradata
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Query Parallelization

• Query parsing, management is 
fully distributed across the nodes
• No head node/coordinator node

• All operations fully parallel
• No single threaded operations
• Scans, Joins, Index access, 

Aggregation, Sort, Insert, Update, 
Delete

• Ordered Analytics
• Extensibility functions
• Result return

Property of Teradata

Query 
Execution

“Conditional 
Parallelism”

Teradata
“Unconditional 

Parallelism”

Final Result Set

Join

Aggregate

Sort

Convergence

Query Starts

Query Optimization

Scan



Snowflake
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Snowflake
TRADITIONAL DATABASE ARCHITECTURES

Limited Scalability, Not Elastic

Shared-diskShared-nothing

• Distributed Storage
• Single Cluster
• Adopted by Gamma, Teradata, 

Redshift, Vertica, Netezza, …

• Centralized Storage
• Single Cluster
• Adopted by Oracle, Hadoop



Snowflake
SNOWFLAKE REGION ARCHITECTURE 

Multi-cluster, Shared-data 

Cloud 
Object
Store

Virtual Warehouse

Virtual Warehouse

Virtual Warehouse

Virtual Warehouse

Transaction
Manager SecurityOptimizerInfrastructure 

manager

Authentication & access control

Metadata

ODBC, JDBC, Web UI, 
Python, NodeJS, Spark, …

REST

Client(s)

Compute/Storage Layers

Cloud Services



Snowflake
STORAGE TIER

Cloud Object
Store

● Immutable Storage
○ Each table is automatically partitioned horizontally
○ Partition size is kept very small, generally 16MB
○ Each partition is backed by an immutable file
○ Partitions are columnar organized, compressed, encrypted
○ Partitions are the unit of change for transactions

● Semi-structured 
○ Variant data type used to store schemaless semi-structured data
○ Automatic columnarization of semi-structured attributes

● Partition Metadata
○ Out-of-box, metadata is automatically stored for all columns/sub-

columns in a partition
○ Leverage that metadata to perform partition pruning
○ Re-clustering service to improve pruning 
○ Track all table mutations to provide full ACID support



Snowflake
COMPUTE TIER

● Virtual warehouse
○ Snowflake Entity used to manage the set of compute resources used by a workload
○ Made of one or more compute clusters
○ Cluster size range from one to several hundred nodes
○ Workloads are fully isolated from each other

● Just-in-time Compute
○ Sub-second auto-resume when associated workload starts
○ Online resize up and down possible while workload runs
○ Auto-suspend when workload is no longer running
○ Snowflake charges usage by second of compute resource used

è FAST is free!

● Partition Cache 
○ Node local memory and SSD storage used to cache partitions
○ Only columns/sub-columns which are accessed are cached
○ Highly available, fully stateless



Snowflake
CLOUD SERVICES

Cloud 
services

Transaction
Manager SecurityOptimizer

Infrastructure 
manager

Authentication & access control

Metadata

REST

● Control Plane of a Snowflake Region
○ Connection Management
○ Infrastructure Provisioning and Management
○ Metadata storage (use FDB) & management
○ Query planning and optimization
○ Transaction management
○ Security management

● Self-managed
○ Self-upgrade of both software and hardware
○ Self-healing: replacement of failed servers and 

transparent re-execution of any failed queries
○ Highly available over multiple availability zone
○ Stateless: persistent sessions for load-balancing and 

transparent fail-over



Snowflake

© 2019 Snowflake Inc. All Rights Reserved

SNOWFLAKE DATABASE SHARING

18

SH1CREATE SHARE SH1;
GRANT … TO SHARE SH1
….;

CREATE DATABASE DB1
FROM SHARE SH1;

Warehouse(s)

Consumer Account(s)Provider Account

SELECT …
FROM             ;

Cross-database/account joinExecute SP; Sharing code



Final Thoughts

• Common themes: 
– Optimization
– Execution
– parallelism

• New directions:
– Tensors
– ML
– Global Distribution
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