# Advanced Topics in Data Management

#### **Distributed Query Processing**

1

Table

R

|     |      | <br> |
|-----|------|------|
| sid | name | <br> |
|     |      |      |
|     |      |      |
|     |      |      |
|     |      |      |
|     |      |      |
|     |      |      |
|     |      |      |
|     |      |      |
|     |      |      |
|     |      |      |
|     |      |      |
|     |      |      |
|     |      |      |
|     |      |      |
|     |      |      |
|     |      |      |
|     |      |      |
|     |      |      |

Table

| sid | name | <br> |
|-----|------|------|
|     |      |      |
|     |      |      |
|     |      |      |
|     |      |      |
|     |      |      |
|     |      |      |
|     |      |      |
|     |      |      |
|     |      |      |
|     |      |      |
|     |      |      |
|     |      |      |
|     |      |      |
|     |      |      |
|     |      |      |
|     |      |      |
|     |      |      |

R

| Table |   |
|-------|---|
| <br>  | ~ |
|       | 7 |

R

| sid | name | <br> |
|-----|------|------|
|     |      |      |
|     |      |      |
|     |      |      |
|     |      |      |
|     |      |      |
|     |      |      |
|     |      |      |
|     |      |      |
|     |      |      |
|     |      |      |
|     |      |      |
|     |      |      |
|     |      |      |
|     |      |      |
| L   |      |      |
|     |      |      |
|     |      |      |









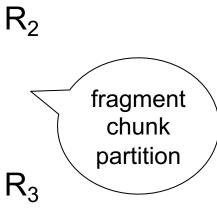




| sid | name | <br> |
|-----|------|------|
|     |      |      |
|     |      |      |
|     |      |      |
|     |      |      |

 $R_1$ 

. . .



- Block Partition, a.k.a. Round Robin:
   Partition tuples arbitrarily s.t. size(R<sub>1</sub>)≈ ... ≈ size(R<sub>P</sub>)
- Hash partitioned on attribute A:
  - Tuple t goes to chunk i, where  $i = h(t.A) \mod P + 1$
- Range partitioned on attribute A:
  - Partition the range of A into  $-\infty = v_0 < v_1 < ... < v_P = \infty$
  - Tuple t goes to chunk i, if  $v_{i-1} < t.A < v_i$

# Notations

p = number of servers (nodes) that hold the chunks

When a relation R is distributed to p servers, we draw the picture like this:





Here  $R_1$  is the fragment of R stored on server 1, etc

$$R = R_1 \cup R_2 \cup \cdots \cup R_P$$

### Uniform Load and Skew

- |R| = N tuples, then  $|R_1| + |R_2| + ... + |R_p| = N$
- We say the load is uniform when:
   |R<sub>1</sub>| ≈ |R<sub>2</sub>| ≈ ... ≈ |R<sub>p</sub>| ≈ N/p
- Skew means that some load is much larger: max<sub>i</sub> |R<sub>i</sub>| >> N/p

We design algorithms for uniform load, discuss skew later

# Parallel Algorithm

• Selection  $\sigma$ 

• Join 🖂

• Group by  $\gamma$ 

- Block partitioned:
- Hash partitioned:

• Range partitioned:

- Block partitioned:
   All servers need to scan
- Hash partitioned:

• Range partitioned:

- Block partitioned:
  - All servers need to scan
- Hash partitioned:
  - Point query: only one server needs to scan
  - Range query: all servers need to scan
- Range partitioned:

- Block partitioned:
  - All servers need to scan
- Hash partitioned:
  - Point query: only one server needs to scan
  - Range query: all servers need to scan
- Range partitioned:
  - Only some servers need to scan

# Parallel GroupBy

Data: $R(\underline{K}, A, B, C)$ Query: $\gamma_{A,sum(C)}(R)$ Discuss in class how to compute in each case:

- R is hash-partitioned on A
- R is block-partitioned or hash-partitioned on K

# Parallel GroupBy

Data: $R(\underline{K}, A, B, C)$ Query: $\gamma_{A,sum(C)}(R)$ Discuss in class how to compute in each case:

- R is hash-partitioned on A
  - Each server i computes locally  $\gamma_{A,sum(C)}(R_i)$
- R is block-partitioned or hash-partitioned on K

# Parallel GroupBy

Data: $R(\underline{K}, A, B, C)$ Query: $\gamma_{A,sum(C)}(R)$ Discuss in class how to compute in each case:

- R is hash-partitioned on A
  - Each server i computes locally  $\gamma_{A,sum(C)}(R_i)$
- R is block-partitioned or hash-partitioned on K
  - Need to reshuffle data on A first (next slide)
  - Then compute locally  $\gamma_{A,sum(C)}(R_i)$

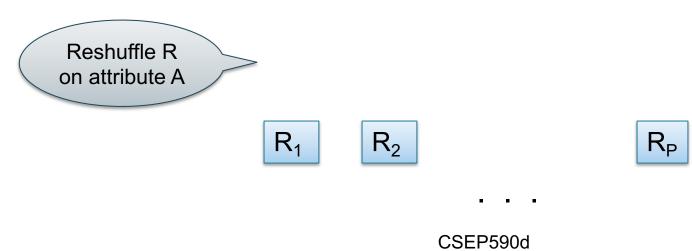
Data: R(<u>K</u>, A, B, C)

Query: γ<sub>A,sum(C)</sub>(R)

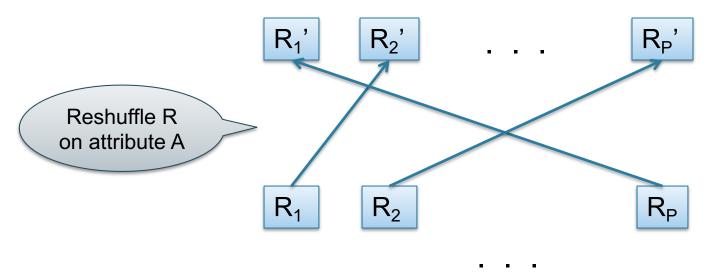


Data: R(<u>K</u>, A, B, C)

Query:  $\gamma_{A,sum(C)}(R)$ 

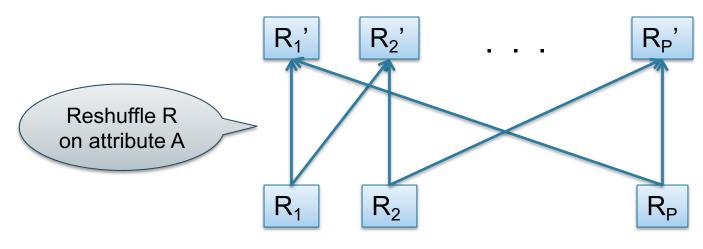


- Data: R(<u>K</u>, A, B, C)
- Query:  $\gamma_{A,sum(C)}(R)$
- R is block-partitioned or hash-partitioned on K



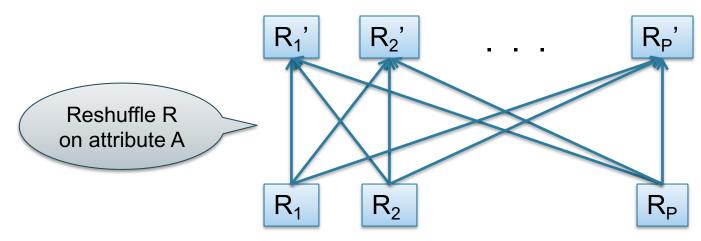
Data: R(<u>K</u>, A, B, C)

Query:  $\gamma_{A,sum(C)}(R)$ 



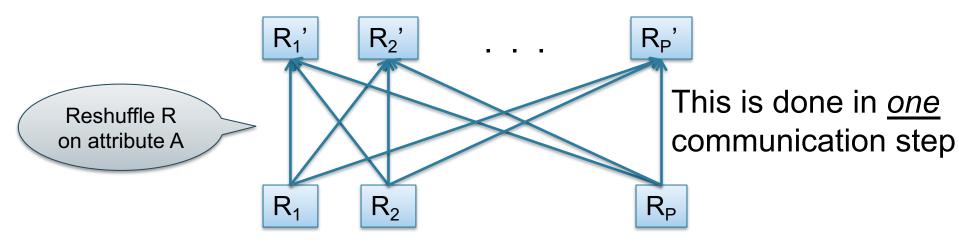
Data: R(<u>K</u>, A, B, C)

Query:  $\gamma_{A,sum(C)}(R)$ 



Data: R(<u>K</u>, A, B, C)

Query:  $\gamma_{A,sum(C)}(R)$ 



# Reshuffling

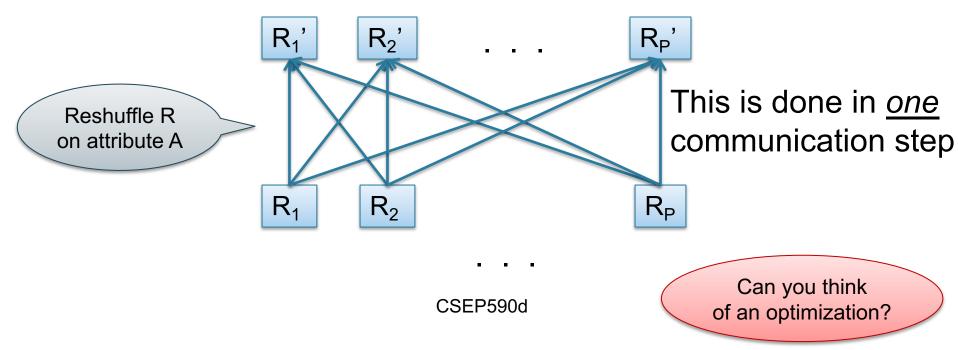
Nodes send data over the network

Many-many communications possible

- Throughput:
  - Better than disk
  - Worse than main memory

Data: R(<u>K</u>, A, B, C)

Query:  $\gamma_{A,sum(C)}(R)$ 



# **GroupBy/Union Commutativity**

| city    | <br>qant |
|---------|----------|
| Seattle | 10       |
| LA      | 20       |
| Seattle | 30       |
| NY      | 40       |

| city   | <br>qant |
|--------|----------|
| LA     | 22       |
| NY     | 33       |
| LA     | 44       |
| Austin | 55       |

| city    | <br>qant |
|---------|----------|
| Seattle | 66       |
| LA      | 77       |
| NY      | 88       |
| LA      | 99       |

SELECT city, sum(quant)

FROM R

**GROUP BY city** 

# **GroupBy/Union Commutativity**

| city    | <br>qant |
|---------|----------|
| Seattle | 10       |
| LA      | 20       |
| Seattle | 30       |
| NY      | 40       |

| city   | <br>qant |
|--------|----------|
| LA     | 22       |
| NY     | 33       |
| LA     | 44       |
| Austin | 55       |

| SELECT city, sum(quant) |
|-------------------------|
| FROM R                  |
| GROUP BY city           |

| city    | <br>qant |
|---------|----------|
| Seattle | 66       |
| LA      | 77       |
| NY      | 88       |
| LA      | 99       |

 $\gamma_{city,sum(q)}(R_1 \cup R_2 \cup R_3) =$ 

# **GroupBy/Union Commutativity**

| city    | <br>qant |
|---------|----------|
| Seattle | 10       |
| LA      | 20       |
| Seattle | 30       |
| NY      | 40       |

| city   | <br>qant |
|--------|----------|
| LA     | 22       |
| NY     | 33       |
| LA     | 44       |
| Austin | 55       |

SELECT city, sum(quant) FROM R GROUP BY city

| city    | <br>qant |
|---------|----------|
| Seattle | 66       |
| LA      | 77       |
| NY      | 88       |
| LA      | 99       |

 $\begin{array}{c} & & & \\ & & & \\ \end{array} \\ = \gamma_{city,sum(q)} \left( \gamma_{city,sum(q)}(R_1) \cup \gamma_{city,sum(q)}(R_2) \cup \gamma_{city,sum(q)}(R_3) \right) \end{array}$ 

Data: R(<u>K</u>, A, B, C) Query:  $\gamma_{A,sum(C)}(R)$ 

Data: R(<u>K</u>, A, B, C) Query:  $\gamma_{A,sum(C)}(R)$ 

**Step 0**: [Optimization] each server i computes local group-by:  $T_i = \gamma_{A,sum(C)}(R_i)$ 

Data: R(<u>K</u>, A, B, C) Query:  $\gamma_{A,sum(C)}(R)$ 

**Step 0**: [Optimization] each server i computes local group-by:  $T_i = \gamma_{A,sum(C)}(R_i)$ 

**Step 1**: partitions tuples in  $T_i$  using hash function h(A):  $T_{i,1}, T_{i,2}, ..., T_{i,p}$ then send fragment  $T_{i,i}$  to server j

Data: R(<u>K</u>, A, B, C) Query:  $\gamma_{A,sum(C)}(R)$ 

**Step 0**: [Optimization] each server i computes local group-by:  $T_i = \gamma_{A,sum(C)}(R_i)$ 

**Step 1**: partitions tuples in  $T_i$  using hash function h(A):  $T_{i,1}, T_{i,2}, ..., T_{i,p}$ then send fragment  $T_{i,i}$  to server j

**Step 2**: receive fragments, union them, then group-by  $R_{j}^{i} = T_{1,j} \cup \ldots \cup T_{p,j}$ Answer<sub>j</sub> =  $\gamma_{A, sum(C)} (R_{j}^{i})$ 

# Pushing Aggregates Past Union

Which other rules can we push past union?

- Sum?
- Count?
- Avg?
- Max?
- Median?

# Pushing Aggregates Past Union

# Which other rules can we push past union?

- Sum?
- Count?
- Avg?
- Max?
- Median?

| Distributive                                                                | Algebraic                   | Holistic  |
|-----------------------------------------------------------------------------|-----------------------------|-----------|
| $sum(a_1+a_2++a_9)=sum(sum(a_1+a_2+a_3)+sum(a_4+a_5+a_6)+sum(a_7+a_8+a_9))$ | avg(B) =<br>sum(B)/count(B) | median(B) |

# Example Query with Group By

#### SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a

# Example Query with Group By

#### SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a

γ a, sum(b)→sb | σ<sub>c>0</sub> | R

# Example Query with Group By

Machine 2

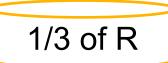
1/3 of R

#### SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a

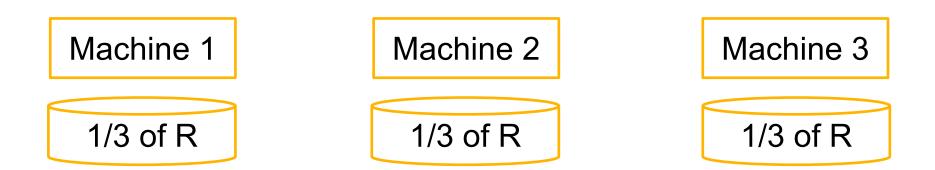
Machine 1

1/3 of R

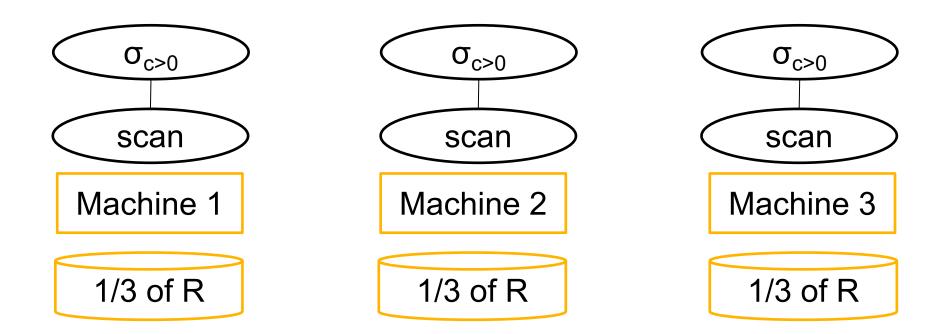
 $\gamma$  a, sum(b) $\rightarrow$ sb  $\sigma_{c>0}$ R Machine 3



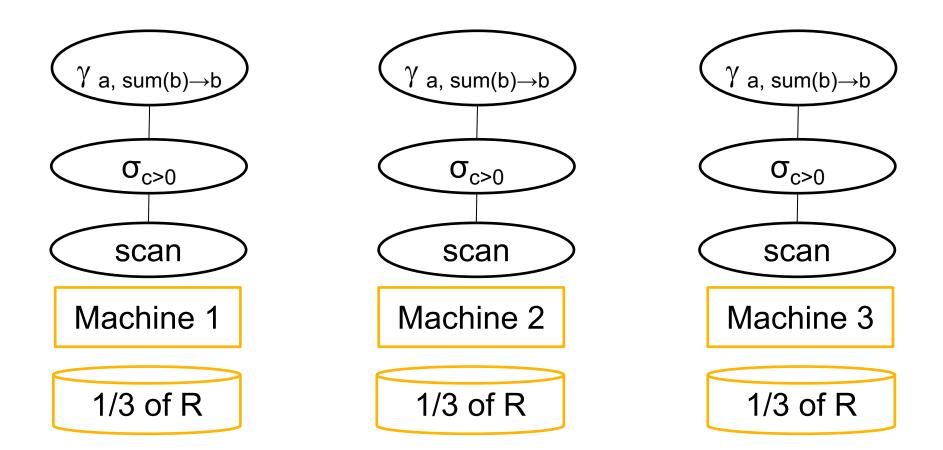
#### SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a



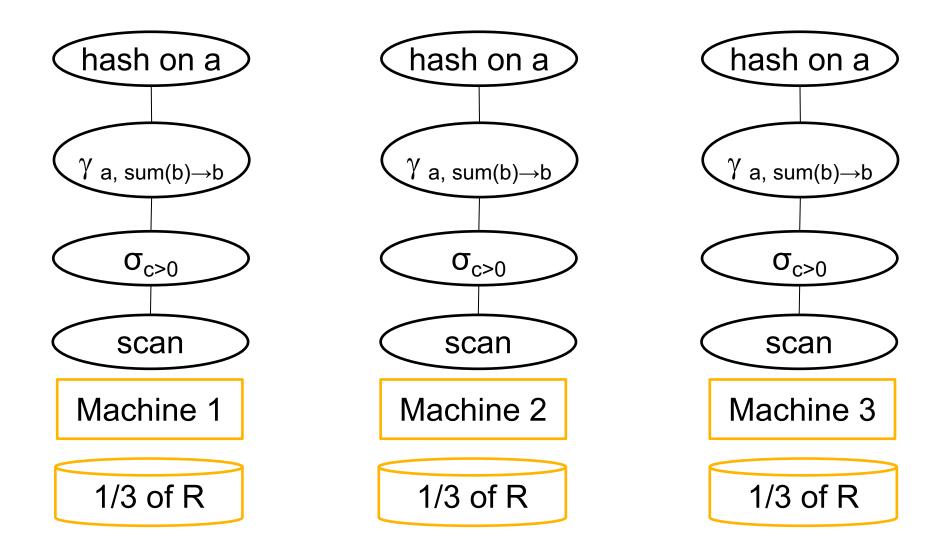
#### SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a

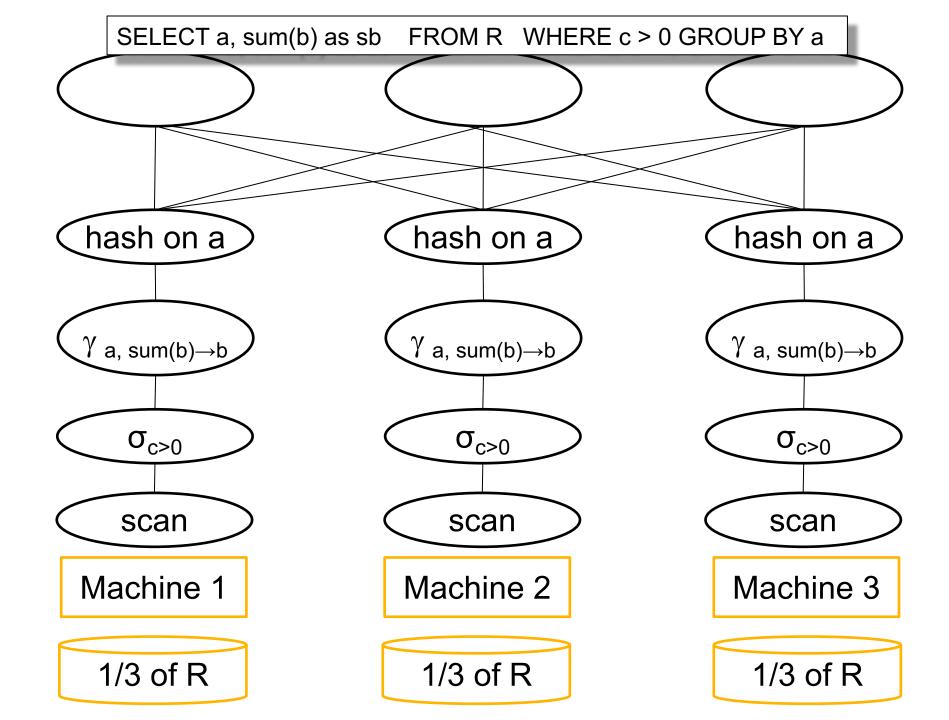


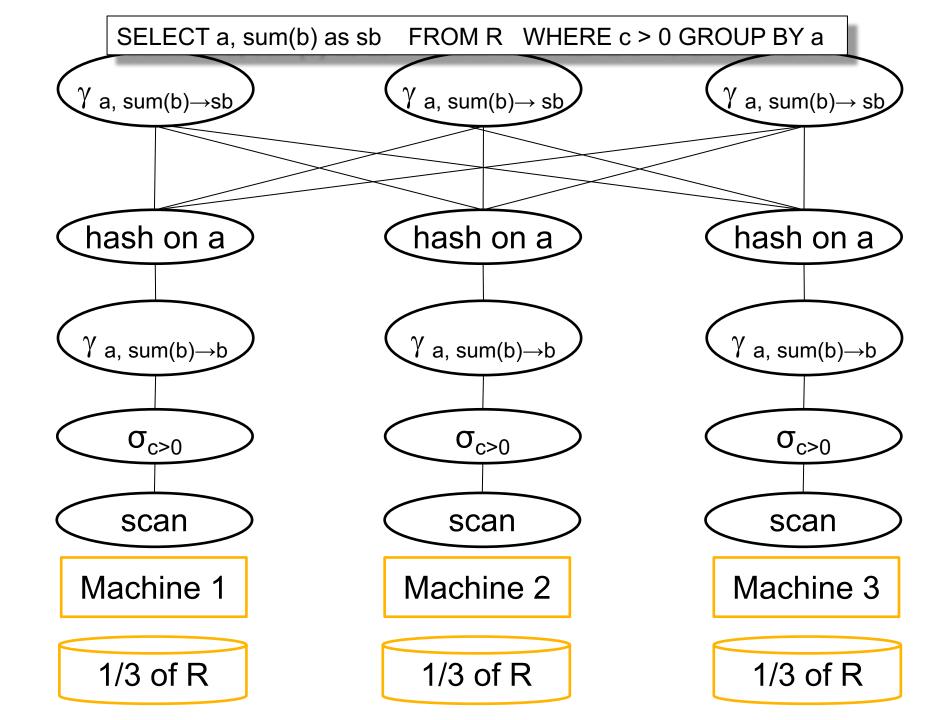
#### SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a



#### SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a







# Speedup and Scaleup

Consider the query  $\gamma_{A,sum(C)}(R)$ Assume the local runtime for group-by is linear O(|R|)

If we double number of nodes P, what is the runtime?

If we double both P and size of R, what is the runtime?

# Speedup and Scaleup

Consider the query  $\gamma_{A,sum(C)}(R)$ Assume the local runtime for group-by is linear O(|R|)

If we double number of nodes P, what is the runtime?

• Half (chunk sizes become <sup>1</sup>/<sub>2</sub>)

If we double both P and size of R, what is the runtime?

• Same (chunk sizes remain the same)

# Speedup and Scaleup

Consider the query  $\gamma_{A,sum(C)}(R)$ Assume the local runtime for group-by is linear O(|R|)

If we double number of nodes P, what is the runtime?

• Half (chunk sizes become <sup>1</sup>/<sub>2</sub>)

If we double both P and size of R, what is the runtime?

• Same (chunk sizes remain the same)

#### But only if the data is without skew!

# Parallel/Distributed Join

Three "algorithms":

Hash-partitioned

Broadcast

Combined: "skew-join" or other names

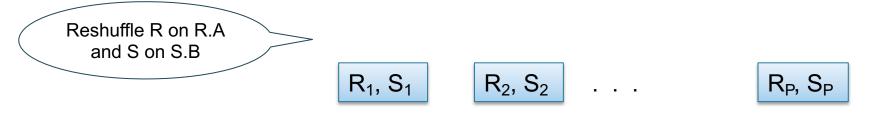
# Hash-Partitioned Join, a.k.a. Distributed Join

Data:R(A, C), S(B, D)Query: $R \bowtie_{A=B} S$ 



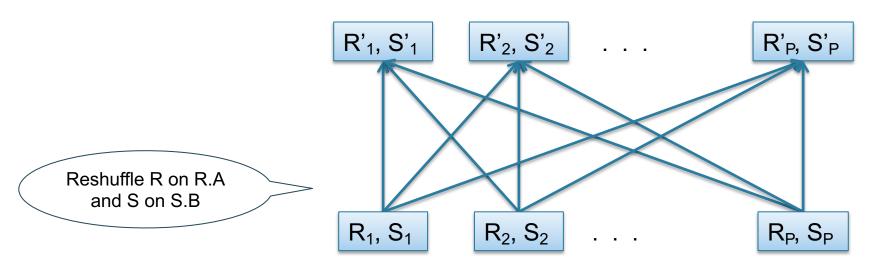
Initially, R and S are block partitioned. Notice: they may be stored in DFS (recall MapReduce)

# Data:R(A, C), S(B, D)Query: $R \bowtie_{A=B} S$



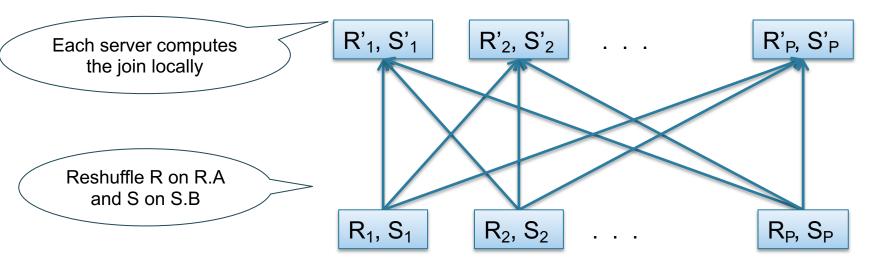
Initially, R and S are block partitioned. Notice: they may be stored in DFS (recall MapReduce)

Data:R(A, C), S(B, D)Query: $R \bowtie_{A=B} S$ 



Initially, R and S are block partitioned. Notice: they may be stored in DFS (recall MapReduce)

Data:R(A, C), S(B, D)Query: $R \bowtie_{A=B} S$ 



Initially, R and S are block partitioned. Notice: they may be stored in DFS (recall MapReduce)

- Step 1
  - Every server holding any chunk of R partitions its chunk using a hash function h(t.A)
  - Every server holding any chunk of S partitions its chunk using a hash function h(t.B)
- Step 2:
  - Each server computes the join of its local fragment of R with its local fragment of S

Broadcast Join, a.k.a. Small Join

- When joining R and S
- If |R| >> |S|
  - Leave R where it is
  - Replicate entire S relation across R-nodes
- Also called a small join or a broadcast join

Query:  $R \bowtie S$ 

### **Broadcast Join**

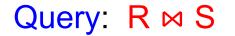




. . .

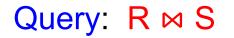


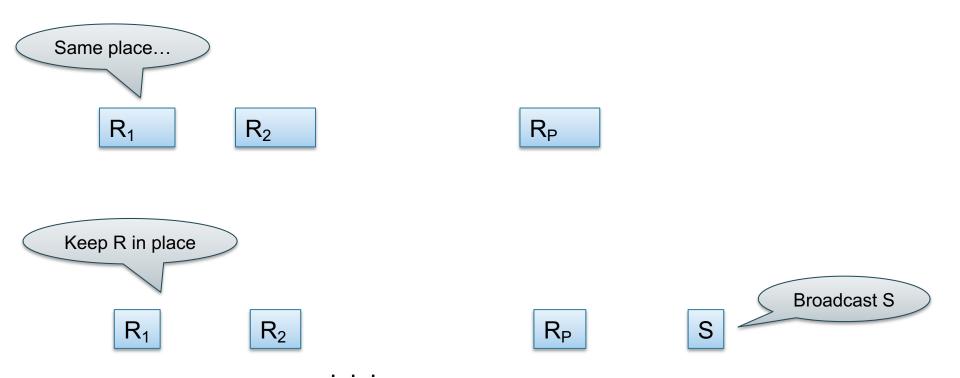


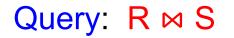


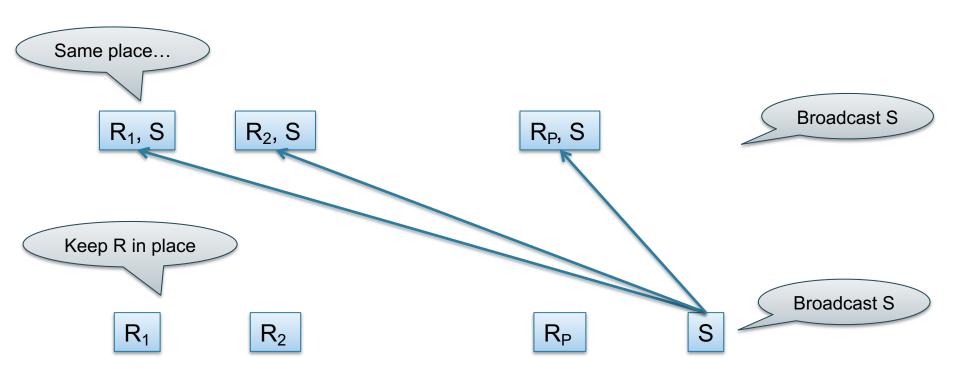


. . .









### Discussion

- Hash-join:
  - Both relations are partitioned (good)
  - May have skew (bad)

# Discussion

- Hash-join:
  - Both relations are partitioned (good)
  - May have skew (bad)
- Broadcast join
  - One relation must be broadcast (bad)
  - No worry about skew (good)

# Discussion

- Hash-join:
  - Both relations are partitioned (good)
  - May have skew (bad)
- Broadcast join
  - One relation must be broadcast (bad)
  - No worry about skew (good)
- Skew join (has other names):
  - Combine both (next)

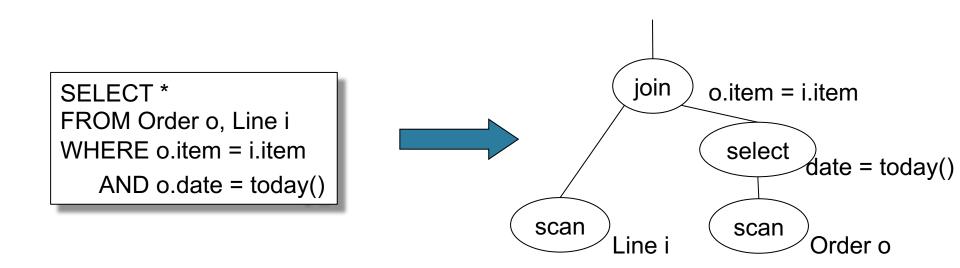
### Skew-Join

Key / foreign-key join:  $R(A,B) \bowtie S(\underline{B}, C)$ :

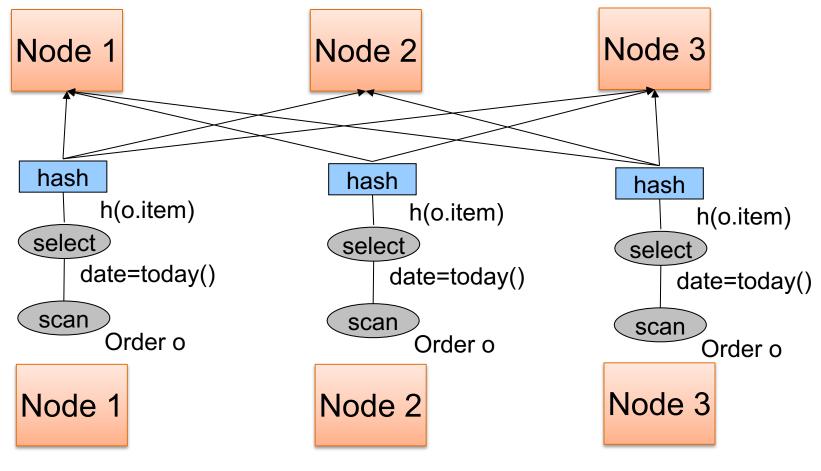
- Step 1: fix some large threshold T:
  - A value b is called *heavy-hitter* if there are >T tuples with R.B = b
  - Let H = {b1, b2, ...} the set of heavy hitters
    Note that H is small: H < |R| / T</li>
- Step 2: partitioned join on light hitters
- Step 3: broadcast join on heavy hitters

# **Example Query Execution**

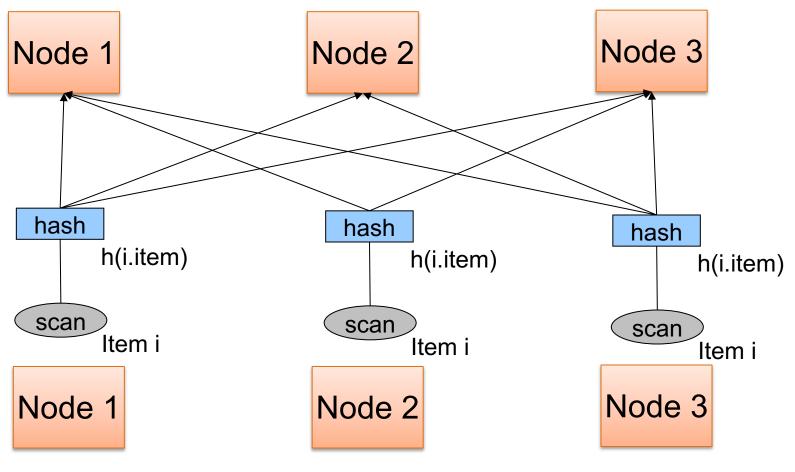
Find all orders from today, along with the items ordered



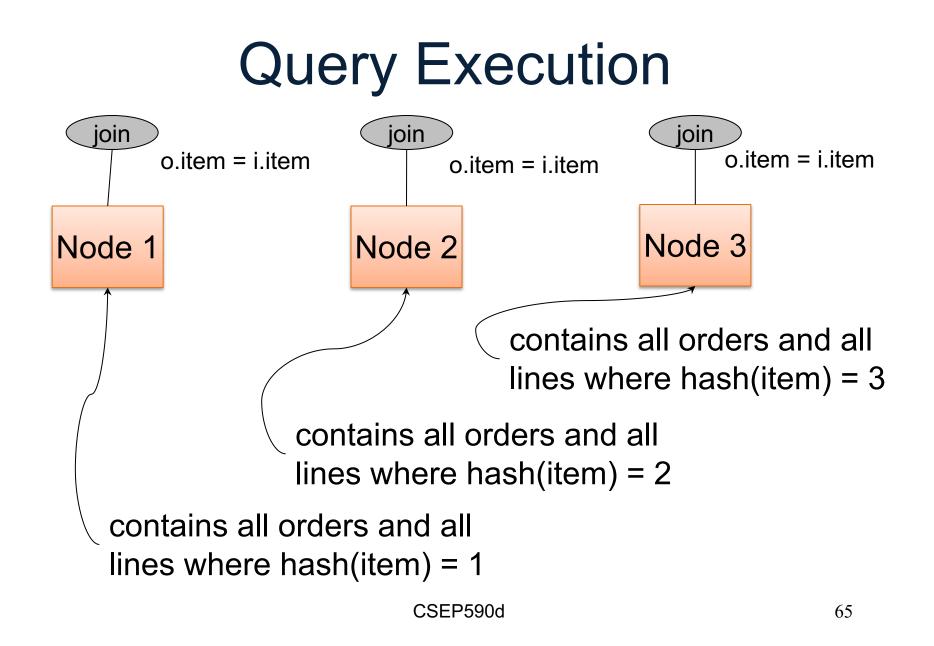






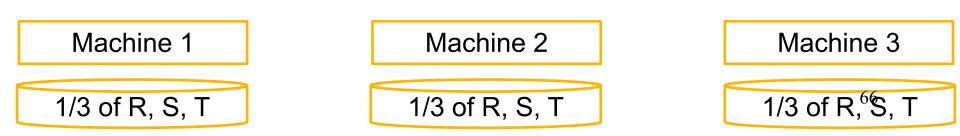


Order(oid, item, date), Line(item, ...)



#### Example 2

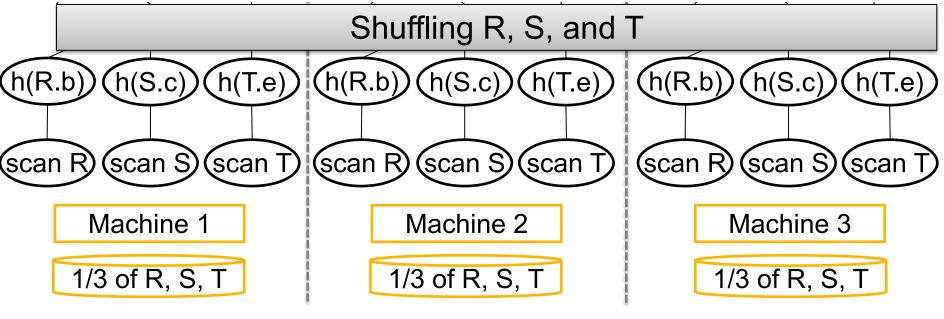
SELECT \* FROM R, S, T WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100



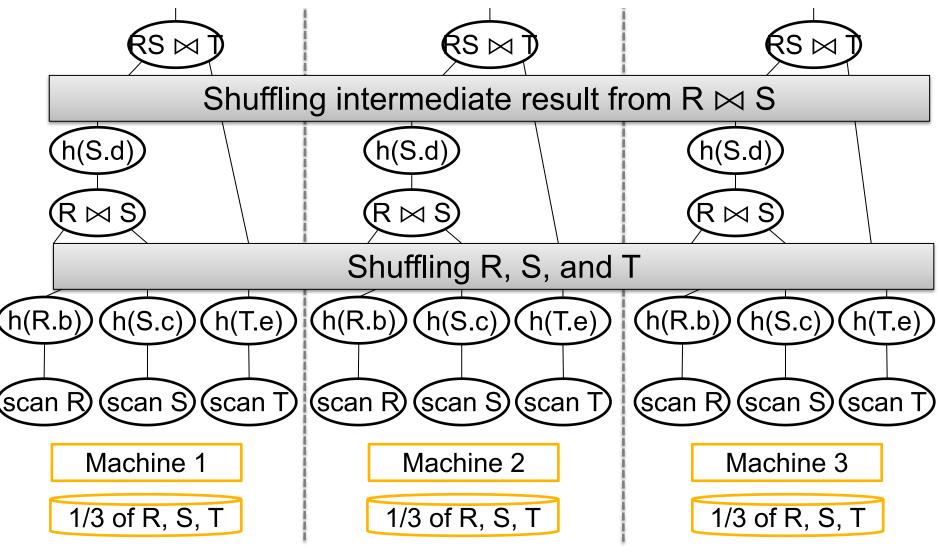
#### $\dots$ WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100



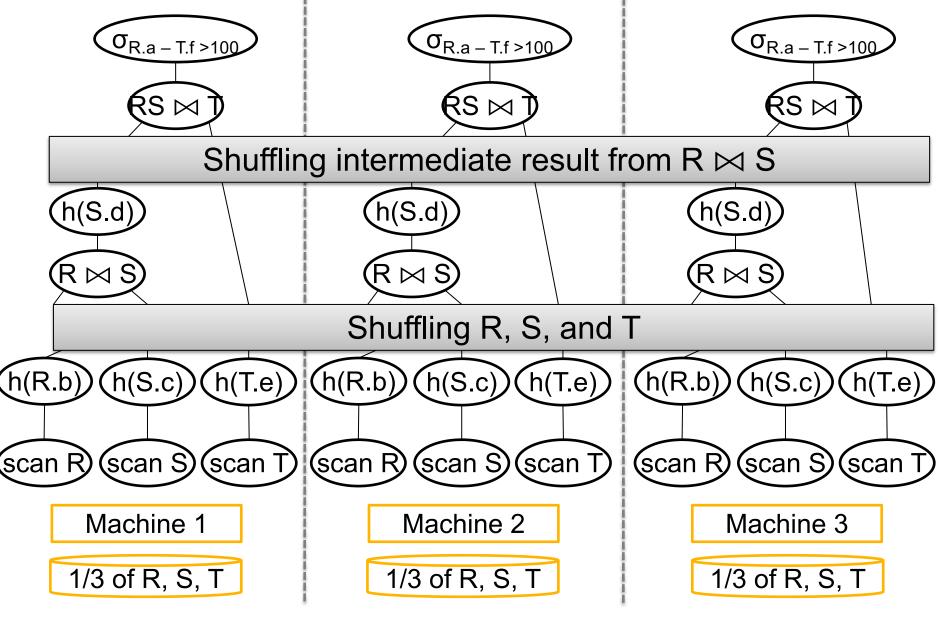
#### ... WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100



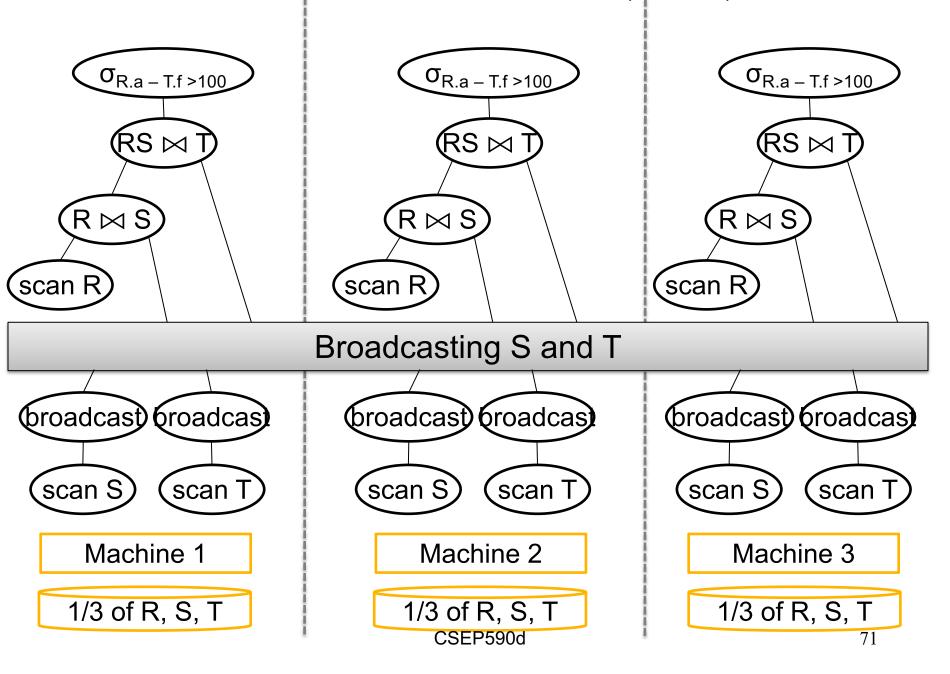
... WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100



... WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100



... WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100





CSEP590d

#### Skew

• Skew means that one server runs much longer than the other servers

- Reasons:
  - Computation skew
  - Data skew

# **Computation Skew**

- All workers receive the same amount of input data, but some need to run much longer than others
- E.g. perform some image processing whose runtimes depends on the image
- Solution: use virtual servers

# **Virtual Servers**

Main idea:

- If we send the data uniformly to the P servers, and one of them is stuck with the complicated image, then we have skew
- Solution: pretend we have many "virtual" servers. (Next slide.)

# **Virtual Servers**

Large number  $P_v$  of "virtual servers"

- Design algorithm for P<sub>v</sub> virtual servers
- Scale down to P << P $_{\rm v}$  physical servers, by simulating them round-robin
- E.g. MapReduce: P=workers, P<sub>v</sub>=map tasks

### Data Skew

- We fail to distribute the data uniformly to the servers
- Question: why can this happen?

# Data Skew

- We fail to distribute the data uniformly to the servers
- Question: why can this happen?
- Answer:
  - Range partition may have many more tuples in one bucket than another
  - Hash partition may suffer from heavy hitters