
Advanced Topics
in Data Management
Distributed Query Processing

CSEP590d 1

Horizontal Data Partitioning

2

sid name … …
Table

R

Horizontal Data Partitioning

3

sid name … …
Table

R

Horizontal Data Partitioning

4

sid name … … sid name … …

sid name … …

sid name … …

Table

fragment
chunk
partition

R

R1

R2

R3

…

Horizontal Data Partitioning
• Block Partition, a.k.a. Round Robin:

– Partition tuples arbitrarily s.t. size(R1)≈ … ≈ size(RP)

• Hash partitioned on attribute A:
– Tuple t goes to chunk i, where i = h(t.A) mod P + 1

• Range partitioned on attribute A:
– Partition the range of A into -∞ = v0 < v1 < … < vP = ∞
– Tuple t goes to chunk i, if vi-1 < t.A < vi

CSEP590d 5

Notations

6

When a relation R is distributed to p servers,
we draw the picture like this:

R1 R2 RP

Here R1 is the fragment of R stored on server 1, etc

𝑅 = 𝑅! ∪ 𝑅" ∪⋯∪ 𝑅#

p = number of servers (nodes) that hold the chunks

Uniform Load and Skew

• |R| = N tuples, then |R1| + |R2| + … + |Rp| = N

• We say the load is uniform when:
|R1| ≈ |R2| ≈ … ≈ |Rp| ≈ N/p

• Skew means that some load is much larger:
maxi |Ri| >> N/p

7We design algorithms for uniform load, discuss skew later

Parallel Algorithm

• Selection σ

• Join ⨝

• Group by ɣ
8

Parallel Selection
Data: R(K, A, B, C)
Query: σA=v(R), or σv1<A<v2(R)

• Block partitioned:
– All servers need to scan

• Hash partitioned:
– Point query: only one server needs to scan
– Range query: all servers need to scan

• Range partitioned:
– Only some servers need to scan

CSEP590d 9

Parallel Selection
Data: R(K, A, B, C)
Query: σA=v(R), or σv1<A<v2(R)

• Block partitioned:
– All servers need to scan

• Hash partitioned:
– Point query: only one server needs to scan
– Range query: all servers need to scan

• Range partitioned:
– Only some servers need to scan

CSEP590d 10

Parallel Selection
Data: R(K, A, B, C)
Query: σA=v(R), or σv1<A<v2(R)

• Block partitioned:
– All servers need to scan

• Hash partitioned:
– Point query: only one server needs to scan
– Range query: all servers need to scan

• Range partitioned:
– Only some servers need to scan

CSEP590d 11

Parallel Selection
Data: R(K, A, B, C)
Query: σA=v(R), or σv1<A<v2(R)

• Block partitioned:
– All servers need to scan

• Hash partitioned:
– Point query: only one server needs to scan
– Range query: all servers need to scan

• Range partitioned:
– Only some servers need to scan

CSEP590d 12

Parallel GroupBy
Data: R(K, A, B, C)
Query: γA,sum(C)(R)
Discuss in class how to compute in each case:

• R is hash-partitioned on A
– Each server i computes locally γA,sum(C)(Ri)

• R is block-partitioned or hash-partitioned on K
– Need to reshuffle data on A first (next slide)
– Then compute locally γA,sum(C)(Ri)

13

Parallel GroupBy
Data: R(K, A, B, C)
Query: γA,sum(C)(R)
Discuss in class how to compute in each case:

• R is hash-partitioned on A
– Each server i computes locally γA,sum(C)(Ri)

• R is block-partitioned or hash-partitioned on K
– Need to reshuffle data on A first (next slide)
– Then compute locally γA,sum(C)(Ri)

14

Parallel GroupBy
Data: R(K, A, B, C)
Query: γA,sum(C)(R)
Discuss in class how to compute in each case:

• R is hash-partitioned on A
– Each server i computes locally γA,sum(C)(Ri)

• R is block-partitioned or hash-partitioned on K
– Need to reshuffle data on A first (next slide)
– Then compute locally γA,sum(C)(Ri)

15

Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: γA,sum(C)(R)
• R is block-partitioned or hash-partitioned on K

CSEP590d 16

R1 R2 RP

. . .

Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: γA,sum(C)(R)
• R is block-partitioned or hash-partitioned on K

CSEP590d 17

R1 R2 RP

. . .

Reshuffle R
on attribute A

Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: γA,sum(C)(R)
• R is block-partitioned or hash-partitioned on K

CSEP590d 18

R1’ R2’ RP’. . .

R1 R2 RP

. . .

Reshuffle R
on attribute A

Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: γA,sum(C)(R)
• R is block-partitioned or hash-partitioned on K

CSEP590d 19

R1’ R2’ RP’. . .

R1 R2 RP

. . .

Reshuffle R
on attribute A

Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: γA,sum(C)(R)
• R is block-partitioned or hash-partitioned on K

CSEP590d 20

R1’ R2’ RP’. . .

R1 R2 RP

. . .

Reshuffle R
on attribute A

Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: γA,sum(C)(R)
• R is block-partitioned or hash-partitioned on K

CSEP590d 21

R1’ R2’ RP’. . .

R1 R2 RP

. . .

Reshuffle R
on attribute A

This is done in one
communication step

Reshuffling

• Nodes send data over the network

• Many-many communications possible

• Throughput:
– Better than disk
– Worse than main memory

CSEP590d 22

Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: γA,sum(C)(R)
• R is block-partitioned or hash-partitioned on K

CSEP590d 23

R1’ R2’ RP’. . .

R1 R2 RP

. . .

Reshuffle R
on attribute A

This is done in one
communication step

Can you think
of an optimization?

GroupBy/Union Commutativity
city … qant

Seattle 10

LA 20

Seattle 30

NY 40

city … qant

LA 22

NY 33

LA 44

Austin 55

city … qant

Seattle 66

LA 77

NY 88

LA 99

SELECT city, sum(quant)
FROM R
GROUP BY city

GroupBy/Union Commutativity
city … qant

Seattle 10

LA 20

Seattle 30

NY 40

city … qant

LA 22

NY 33

LA 44

Austin 55

city … qant

Seattle 66

LA 77

NY 88

LA 99

SELECT city, sum(quant)
FROM R
GROUP BY city

𝜸𝒄𝒊𝒕𝒚,𝒔𝒖𝒎 𝒒 𝑹𝟏 ∪ 𝑹𝟐 ∪ 𝑹𝟑 =
= 𝜸𝒄𝒊𝒕𝒚,𝒔𝒖𝒎(𝒒) 𝜸𝒄𝒊𝒕𝒚,𝒔𝒖𝒎(𝒒) 𝑹𝟏 ∪ 𝜸𝒄𝒊𝒕𝒚,𝒔𝒖𝒎(𝒒) 𝑹𝟐 ∪ 𝜸𝒄𝒊𝒕𝒚,𝒔𝒖𝒎(𝒒) 𝑹𝟑

GroupBy/Union Commutativity
city … qant

Seattle 10

LA 20

Seattle 30

NY 40

city … qant

LA 22

NY 33

LA 44

Austin 55

city … qant

Seattle 66

LA 77

NY 88

LA 99

SELECT city, sum(quant)
FROM R
GROUP BY city

𝜸𝒄𝒊𝒕𝒚,𝒔𝒖𝒎 𝒒 𝑹𝟏 ∪ 𝑹𝟐 ∪ 𝑹𝟑 =
= 𝜸𝒄𝒊𝒕𝒚,𝒔𝒖𝒎(𝒒) 𝜸𝒄𝒊𝒕𝒚,𝒔𝒖𝒎(𝒒) 𝑹𝟏 ∪ 𝜸𝒄𝒊𝒕𝒚,𝒔𝒖𝒎(𝒒) 𝑹𝟐 ∪ 𝜸𝒄𝒊𝒕𝒚,𝒔𝒖𝒎(𝒒) 𝑹𝟑

Basic Parallel GroupBy
Data: R(K, A, B, C)
Query: γA,sum(C)(R)

Step 0: [Optimization] each server i computes local group-by:
Ti = γA,sum(C)(Ri)

Step 1: partitions tuples in Ti using hash function h(A):
Ti,1, Ti,2, …, Ti,p

then send fragment Ti,j to server j

Step 2: receive fragments, union them, then group-by
Rj’ = T1,j ∪ … ∪ Tp,j
Answerj = γA, sum(B) (Rj’)

CSEP590d 27

Basic Parallel GroupBy
Data: R(K, A, B, C)
Query: γA,sum(C)(R)

Step 0: [Optimization] each server i computes local group-by:
Ti = γA,sum(C)(Ri)

Step 1: partitions tuples in Ti using hash function h(A):
Ti,1, Ti,2, …, Ti,p

then send fragment Ti,j to server j

Step 2: receive fragments, union them, then group-by
Rj’ = T1,j ∪ … ∪ Tp,j
Answerj = γA, sum(B) (Rj’)

CSEP590d 28

Basic Parallel GroupBy
Data: R(K, A, B, C)
Query: γA,sum(C)(R)

Step 0: [Optimization] each server i computes local group-by:
Ti = γA,sum(C)(Ri)

Step 1: partitions tuples in Ti using hash function h(A):
Ti,1, Ti,2, …, Ti,p

then send fragment Ti,j to server j

Step 2: receive fragments, union them, then group-by
Rj’ = T1,j ∪ … ∪ Tp,j
Answerj = γA, sum(B) (Rj’)

CSEP590d 29

Basic Parallel GroupBy
Data: R(K, A, B, C)
Query: γA,sum(C)(R)

Step 0: [Optimization] each server i computes local group-by:
Ti = γA,sum(C)(Ri)

Step 1: partitions tuples in Ti using hash function h(A):
Ti,1, Ti,2, …, Ti,p

then send fragment Ti,j to server j

Step 2: receive fragments, union them, then group-by
Rj’ = T1,j ∪ … ∪ Tp,j
Answerj = γA, sum(C) (Rj’)

CSEP590d 30

Pushing Aggregates Past
Union

Which other rules can we push past
union?
• Sum?
• Count?
• Avg?
• Max?
• Median?

CSEP590d 31

Pushing Aggregates Past
Union

Which other rules can we push past
union?
• Sum?
• Count?
• Avg?
• Max?
• Median?

CSEP590d 32

Distributive Algebraic Holistic

sum(a1+a2+…+a9)=
sum(sum(a1+a2+a3)+

sum(a4+a5+a6)+
sum(a7+a8+a9))

avg(B) =
sum(B)/count(B)

median(B)

SELECT a, sum(b) as sb
FROM R WHERE c > 0
GROUP BY a

Example Query with Group By

SELECT a, sum(b) as sb
FROM R WHERE c > 0
GROUP BY a

Example Query with Group By

σc>0

g a, sum(b)→sb

R

Machine 1

1/3 of R

Machine 2

1/3 of R

Machine 3

1/3 of R

SELECT a, sum(b) as sb
FROM R WHERE c > 0
GROUP BY a

Example Query with Group By

σc>0

g a, sum(b)→sb

R

Machine 1

1/3 of R

Machine 2

1/3 of R

Machine 3

1/3 of R

SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a

Machine 1

1/3 of R

Machine 2

1/3 of R

Machine 3

1/3 of R

σc>0

scan

σc>0

scan

σc>0

scan

SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a

Machine 1

1/3 of R

Machine 2

1/3 of R

Machine 3

1/3 of R

σc>0

scan

g a, sum(b)→b

σc>0

scan

g a, sum(b)→b

σc>0

scan

g a, sum(b)→b

SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a

Machine 1

1/3 of R

Machine 2

1/3 of R

Machine 3

1/3 of R

σc>0

scan

g a, sum(b)→b

hash on a

σc>0

scan

g a, sum(b)→b

hash on a

σc>0

scan

g a, sum(b)→b

hash on a

SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a

Machine 1

1/3 of R

Machine 2

1/3 of R

Machine 3

1/3 of R

σc>0

scan

g a, sum(b)→b

hash on a

σc>0

scan

g a, sum(b)→b

hash on a

σc>0

scan

g a, sum(b)→b

hash on a

SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a

Machine 1

1/3 of R

Machine 2

1/3 of R

Machine 3

1/3 of R

σc>0

scan

g a, sum(b)→b

hash on a

g a, sum(b)→sb

σc>0

scan

g a, sum(b)→b

hash on a

g a, sum(b)→ sb

σc>0

scan

g a, sum(b)→b

hash on a

g a, sum(b)→ sb

SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a

Speedup and Scaleup
Consider the query γA,sum(C)(R)
Assume the local runtime for group-by is linear O(|R|)

If we double number of nodes P, what is the runtime?
• Half (chunk sizes become ½)

If we double both P and size of R, what is the runtime?
• Same (chunk sizes remain the same)

CSEP590d 42

Speedup and Scaleup
Consider the query γA,sum(C)(R)
Assume the local runtime for group-by is linear O(|R|)

If we double number of nodes P, what is the runtime?
• Half (chunk sizes become ½)

If we double both P and size of R, what is the runtime?
• Same (chunk sizes remain the same)

CSEP590d 43

Speedup and Scaleup
Consider the query γA,sum(C)(R)
Assume the local runtime for group-by is linear O(|R|)

If we double number of nodes P, what is the runtime?
• Half (chunk sizes become ½)

If we double both P and size of R, what is the runtime?
• Same (chunk sizes remain the same)

CSEP590d 44But only if the data is without skew!

Parallel/Distributed Join

Three “algorithms”:

• Hash-partitioned

• Broadcast

• Combined: “skew-join” or other names
CSEP590d 45

Hash-Partitioned Join,
a.k.a. Distributed Join

CSEP590d 46

Hash Join: R ⋈A=B S

R1, S1 R2, S2 RP, SP . . .

Initially, R and S are block partitioned.
Notice: they may be stored in DFS (recall MapReduce)
Some servers hold R-chunks, some hold S-chunks, some hold both

Data: R(A, C), S(B, D)
Query: R ⋈A=B S

Hash Join: R ⋈A=B S

R1, S1 R2, S2 RP, SP . . .

Reshuffle R on R.A
and S on S.B

Initially, R and S are block partitioned.
Notice: they may be stored in DFS (recall MapReduce)
Some servers hold R-chunks, some hold S-chunks, some hold both

Data: R(A, C), S(B, D)
Query: R ⋈A=B S

Hash Join: R ⋈A=B S

R’1, S’1 R’2, S’2 R’P, S’P . . .

R1, S1 R2, S2 RP, SP . . .

Reshuffle R on R.A
and S on S.B

Initially, R and S are block partitioned.
Notice: they may be stored in DFS (recall MapReduce)
Some servers hold R-chunks, some hold S-chunks, some hold both

Data: R(A, C), S(B, D)
Query: R ⋈A=B S

Hash Join: R ⋈A=B S

R’1, S’1 R’2, S’2 R’P, S’P . . .

R1, S1 R2, S2 RP, SP . . .

Reshuffle R on R.A
and S on S.B

Each server computes
the join locally

Initially, R and S are block partitioned.
Notice: they may be stored in DFS (recall MapReduce)
Some servers hold R-chunks, some hold S-chunks, some hold both

Data: R(A, C), S(B, D)
Query: R ⋈A=B S

Hash Join: R ⋈A=B S

• Step 1
– Every server holding any chunk of R partitions

its chunk using a hash function h(t.A)
– Every server holding any chunk of S partitions

its chunk using a hash function h(t.B)

• Step 2:
– Each server computes the join of its local

fragment of R with its local fragment of S

CSEP590d 51

Broadcast Join,
a.k.a. Small Join

CSEP590d 52

Broadcast Join

• When joining R and S
• If |R| >> |S|

– Leave R where it is
– Replicate entire S relation across R-nodes

• Also called a small join or a broadcast join

CSEP590d 53

Broadcast Join

CSEP590d 54

Query: R ⋈ S

. . .
SR1 R2 RP

Broadcast Join

CSEP590d 55

. . .

Keep R in place

Broadcast S

SR1 R2 RP

Query: R ⋈ S

Broadcast Join

CSEP590d 56

R1 R2 RP

. . .

Keep R in place

Broadcast S

SR1 R2 RP

Same place…

Query: R ⋈ S

Broadcast Join

CSEP590d 57

R1, S R2, S RP, S

. . .

Keep R in place

Broadcast S

SR1 R2 RP

Broadcast S

Same place…

Query: R ⋈ S

Discussion

• Hash-join:
– Both relations are partitioned (good)
– May have skew (bad)

58

Discussion

• Hash-join:
– Both relations are partitioned (good)
– May have skew (bad)

• Broadcast join
– One relation must be broadcast (bad)
– No worry about skew (good)

59

Discussion

• Hash-join:
– Both relations are partitioned (good)
– May have skew (bad)

• Broadcast join
– One relation must be broadcast (bad)
– No worry about skew (good)

• Skew join (has other names):
– Combine both (next)

60

Skew-Join

Key / foreign-key join: R(A,B) ⋈S(B, C):
• Step 1: fix some large threshold T:

– A value b is called heavy-hitter if there are
>T tuples with R.B = b

– Let H = {b1, b2, …} the set of heavy hitters
– Note that H is small: H < |R| / T

• Step 2: partitioned join on light hitters
• Step 3: broadcast join on heavy hitters

61

Example Query Execution

CSEP590d 62

SELECT *
FROM Order o, Line i
WHERE o.item = i.item

AND o.date = today()

join

select

scan scan

date = today()

o.item = i.item

Order oLine i

Find all orders from today, along with the items ordered

Order(oid, item, date), Line(item, …)

Query Execution

CSEP590d 63

Node 1 Node 2 Node 3

select
date=today()

select
date=today()

select
date=today()

scan
Order o

scan
Order o

scan
Order o

hash
h(o.item)

hash
h(o.item)

hash
h(o.item)

Node 1 Node 2 Node 3

join

select

scan

date = today()

o.item = i.item

Order o

Order(oid, item, date), Line(item, …)

Query Execution

CSEP590d 64

Node 1 Node 2 Node 3

scan
Item i

Node 1 Node 2 Node 3

hash
h(i.item)

scan
Item i

hash
h(i.item)

scan
Item i

hash
h(i.item)

join

scan
date = today()

o.item = i.item

Order o
Line i

Order(oid, item, date), Line(item, …)

Query Execution

CSEP590d 65

Node 1 Node 2 Node 3

join join join
o.item = i.item o.item = i.item o.item = i.item

contains all orders and all
lines where hash(item) = 1

contains all orders and all
lines where hash(item) = 2

contains all orders and all
lines where hash(item) = 3

Order(oid, item, date), Line(item, …)

Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T

SELECT *
FROM R, S, T
WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100

Example 2

66

σR.a – T.f >100

scan R

Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T

scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

Shuffling intermediate result from R ⨝ S

Shuffling R, S, and T

CSEP590d 67

… WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100

σR.a – T.f >100

scan R

Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T

scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

Shuffling intermediate result from R ⨝ S

Shuffling R, S, and T

CSEP590d 68

… WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100

σR.a – T.f >100

scan R

Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T

scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

Shuffling intermediate result from R ⨝ S

Shuffling R, S, and T

CSEP590d 69

… WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100

σR.a – T.f >100

scan R

Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T

scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

Shuffling intermediate result from R ⨝ S

Shuffling R, S, and T

CSEP590d 70

… WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100

Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T

Broadcasting S and T

σR.a – T.f >100

scan R

scan S scan T

broadcast broadcast

R ⨝ S

RS ⨝ T

σR.a – T.f >100

scan R

scan S scan T

broadcast broadcast

R ⨝ S

RS ⨝ T

σR.a – T.f >100

scan R

scan S scan T

broadcast broadcast

R ⨝ S

RS ⨝ T

CSEP590d 71

… WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100

Skew

CSEP590d 72

Skew

• Skew means that one server runs much
longer than the other servers

• Reasons:
– Computation skew
– Data skew

73

Computation Skew

• All workers receive the same amount of
input data, but some need to run much
longer than others

• E.g. perform some image processing
whose runtimes depends on the image

• Solution: use virtual servers

CSEP590d 74

Virtual Servers

Main idea:
• If we send the data uniformly to the P

servers, and one of them is stuck with
the complicated image, then we have
skew

• Solution: pretend we have many
“virtual” servers. (Next slide.)

CSEP590d 75

Virtual Servers
Large number Pv of “virtual servers”

• Design algorithm for Pv virtual servers

• Scale down to P << Pv physical servers, by
simulating them round-robin

E.g. MapReduce: P=workers, Pv=map tasks

76

Data Skew

• We fail to distribute the data uniformly to
the servers

• Question: why can this happen?

CSEP590d 77

Data Skew

• We fail to distribute the data uniformly to
the servers

• Question: why can this happen?
• Answer:

– Range partition may have many more
tuples in one bucket than another

– Hash partition may suffer from heavy
hitters

CSEP590d 78

