Advanced Topics in Data Management

Distributed Query Processing

Horizontal Data Partitioning

Table

R

sid	name	\ldots	\ldots

Horizontal Data Partitioning

Table

R

sid	name	\ldots	\ldots

Horizontal Data Partitioning

Table

R

Fad	Rame

R_{1}

R_{2}

R_{3}
fragment
chunk
partition

Horizontal Data Partitioning

- Block Partition, a.k.a. Round Robin:
- Partition tuples arbitrarily s.t. $\operatorname{size}\left(R_{1}\right) \approx \ldots \approx \operatorname{size}\left(R_{P}\right)$
- Hash partitioned on attribute A:
- Tuple t goes to chunk i, where $i=h(t . A) \bmod P+1$
- Range partitioned on attribute A:
- Partition the range of A into $-\infty=v_{0}<v_{1}<\ldots<v_{P}=\infty$
- Tuple t goes to chunk i, if $v_{i-1}<t . A<v_{i}$

Notations

$p=$ number of servers (nodes) that hold the chunks

When a relation R is distributed to p servers, we draw the picture like this:

$$
\begin{array}{ll}
\mathrm{R}_{1} & \mathrm{R}_{2} \\
\hline
\end{array}
$$

$$
R_{P}
$$

Here R_{1} is the fragment of R stored on server 1 , etc

$$
R=R_{1} \cup R_{2} \cup \cdots \cup R_{P}
$$

Uniform Load and Skew

- $|R|=N$ tuples, then $\left|R_{1}\right|+\left|R_{2}\right|+\ldots+\left|R_{p}\right|=N$
- We say the load is uniform when:

$$
\left|R_{1}\right| \approx\left|R_{2}\right| \approx \ldots \approx\left|R_{p}\right| \approx N / p
$$

- Skew means that some load is much larger: $\max _{i}\left|R_{i}\right| \gg N / p$

We design algorithms for uniform load, discuss skew later

Parallel Algorithm

- Selection σ
- Join \bowtie
- Group by γ

Parallel Selection

Data:
$R(\underline{K}, A, B, C)$
Query:
$\sigma_{A=v}(R)$, or $\sigma_{v 1<A<v 2}(R)$

- Block partitioned:
- Hash partitioned:
- Range partitioned:

Parallel Selection

Data:
 Query:

$$
\begin{gathered}
R(\underline{K}, A, B, C) \\
\sigma_{A=v}(R), \operatorname{or} \sigma_{v 1<A<v 2}(R)
\end{gathered}
$$

- Block partitioned:
- All servers need to scan
- Hash partitioned:
- Range partitioned:

Parallel Selection

Data:
Query:

$$
\begin{gathered}
R(\underline{K}, A, B, C) \\
\sigma_{A=v}(R), \text { or } \sigma_{v 1<A<v 2}(R)
\end{gathered}
$$

- Block partitioned:
- All servers need to scan
- Hash partitioned:
- Point query: only one server needs to scan
- Range query: all servers need to scan
- Range partitioned:

Parallel Selection

Data:

$$
\begin{gathered}
R(\underline{K}, A, B, C) \\
\sigma_{A=v}(R), \text { or } \sigma_{v 1<A<v 2}(R)
\end{gathered}
$$

Query:

- Block partitioned:
- All servers need to scan
- Hash partitioned:
- Point query: only one server needs to scan
- Range query: all servers need to scan
- Range partitioned:
- Only some servers need to scan

Parallel GroupBy

Data: R(K, A, B, C)
Query: $\gamma_{A, s u m(C)}(R)$

Discuss in class how to compute in each case:

- R is hash-partitioned on A
- R is block-partitioned or hash-partitioned on K

Parallel GroupBy

Data:
Query:
$R(\underline{K}, A, B, C)$
$Y_{A, \text { sum(C) }}(R)$

Discuss in class how to compute in each case:

- R is hash-partitioned on A
- Each server i computes locally $\gamma_{A, \text { sum(}()}\left(R_{i}\right)$
- R is block-partitioned or hash-partitioned on K

Parallel GroupBy

Data:
Query:
$R(\underline{K}, A, B, C)$
$Y_{A, \text { sum(C) }}(R)$

Discuss in class how to compute in each case:

- R is hash-partitioned on A
- Each server i computes locally $\gamma_{A, s u m(C)}\left(R_{i}\right)$
- R is block-partitioned or hash-partitioned on K
- Need to reshuffle data on A first (next slide)
- Then compute locally $\gamma_{A, s u m(C)}\left(R_{i}\right)$

Basic Parallel GroupBy

$\begin{array}{ll}\text { Data: } & R(\underline{K}, A, B, C) \\ \text { Query: } & \left.Y_{A, \text { sum }(C)}\right)(R)\end{array}$

- R is block-partitioned or hash-partitioned on K

Basic Parallel GroupBy

Data: $\quad R(\underline{K}, A, B, C)$
 Query: $\quad \mathrm{V}_{\mathrm{A}, \text { sum }(\mathrm{C})}(\mathrm{R})$

- R is block-partitioned or hash-partitioned on K

Reshuffle R on attribute A

Basic Parallel GroupBy

Data: $\quad R(\underline{K}, A, B, C)$
 Query: $\quad \mathrm{V}_{\mathrm{A}, \text { sum }(\mathrm{C})}(\mathrm{R})$

- R is block-partitioned or hash-partitioned on K

Reshuffle R

 on attribute A

Basic Parallel GroupBy

Data: $\quad R(\underline{K}, A, B, C)$
 Query: $\quad \mathrm{V}_{\mathrm{A}, \text { sum }(\mathrm{C})}(\mathrm{R})$

- R is block-partitioned or hash-partitioned on K

Reshuffle R

 on attribute A

Basic Parallel GroupBy

Data: $\quad R(\underline{K}, A, B, C)$
 Query: $\quad \mathrm{V}_{\mathrm{A}, \text { sum }(\mathrm{C})}(\mathrm{R})$

- R is block-partitioned or hash-partitioned on K

Reshuffle R

 on attribute A

Basic Parallel GroupBy

Data: $\quad R(\underline{K}, A, B, C)$
 Query: $\quad \mathrm{V}_{\mathrm{A}, \text { sum }(\mathrm{C})}(\mathrm{R})$

- R is block-partitioned or hash-partitioned on K

Reshuffle R on attribute A

Reshuffling

- Nodes send data over the network
- Many-many communications possible
- Throughput:
- Better than disk
- Worse than main memory

Basic Parallel GroupBy

Data: $\quad R(\underline{K}, A, B, C)$
 Query: $\quad \mathrm{V}_{\mathrm{A}, \text { sum }(\mathrm{C})}(\mathrm{R})$

- R is block-partitioned or hash-partitioned on K

Reshuffle R

 on attribute A

GroupBy/Union Commutativity

	city	\ldots	qant
	Seattle		10
	LA		20
	Seattle		30
	NY		40

	city	\ldots	qant
	LA		22
	NY		33
	LA		44
	Austin		55

SELECT city, sum(quant) FROM R
 GROUP BY city

\section*{GroupBy/Union Commutativity
 | | city | \ldots | qant |
| :--- | :--- | :--- | :--- |
| | Seattle | | 10 |
| | LA | | 20 |
| | Seattle | | 30 |
| | NY | | 40 |}

	city	\ldots	qant
	LA		22
	NY		33
	LA		44
	Austin		55

SELECT city, sum(quant) FROM R GROUP BY city

	city	\ldots	qant
	Seattle		66
	LA		77
	NY		88
	LA		99

$\gamma_{c i t y, \operatorname{sum}(q)}\left(\boldsymbol{R}_{\mathbf{1}} \cup \boldsymbol{R}_{\mathbf{2}} \cup \boldsymbol{R}_{3}\right)=$

\section*{GroupBy/Union Commutativity
 | | city | \ldots | qant |
| :--- | :--- | :--- | :--- |
| | Seattle | | 10 |
| | LA | | 20 |
| | Seattle | | 30 |
| | NY | | 40 |}

	city	\ldots	qant
	LA		22
	NY		33
	LA		44
	Austin		55

SELECT city, sum(quant) FROM R GROUP BY city

	city	\ldots	qant
	Seattle		66
	LA		77
	NY		88
	LA		99

$\gamma_{\text {city }, \operatorname{sum}(q)}\left(\boldsymbol{R}_{1} \cup \boldsymbol{R}_{\mathbf{2}} \cup \boldsymbol{R}_{3}\right)=$
$=\gamma_{c i t y, \operatorname{sum}(q)}\left(\gamma_{c i t y, \operatorname{sum}(q)}\left(\boldsymbol{R}_{1}\right) \cup \gamma_{c i t y, \operatorname{sum}(q)}\left(R_{2}\right) \cup \gamma_{c i t y, \operatorname{sum}(q)}\left(R_{3}\right)\right)$

Basic Parallel GroupBy

Data: $R(\underline{K}, A, B, C)$
Query: $\mathrm{V}_{\mathrm{A}, \mathrm{sum}(\mathrm{C})}(\mathrm{R})$

Basic Parallel GroupBy

Data: $R(\underline{K}, A, B, C)$
Query: $\mathrm{Y}_{\mathrm{A}, \mathrm{sum}(\mathrm{C})}(\mathrm{R})$
Step 0: [Optimization] each server i computes local group-by:

$$
T_{i}=Y_{A, \operatorname{sum}(C)}\left(R_{i}\right)
$$

Basic Parallel GroupBy

Data: $R(\underline{K}, A, B, C)$
Query: $\mathrm{Y}_{\mathrm{A}, \text { sum(}(\mathrm{C})}(\mathrm{R})$
Step 0: [Optimization] each server i computes local group-by:

$$
T_{i}=V_{A, \text { sum }(C)}\left(R_{i}\right)
$$

Step 1: partitions tuples in T_{i} using hash function $h(A)$: , $T_{i, 1}, T_{i, 2}, \ldots, T_{i, p}$ then send fragment $T_{i, j}$ to server j

Basic Parallel GroupBy

Data: $\mathrm{R}(\underline{K}, \mathrm{~A}, \mathrm{~B}, \mathrm{C})$
Query: $\mathrm{Y}_{\mathrm{A}, \mathrm{sum}(\mathrm{C})}(\mathrm{R})$
Step 0: [Optimization] each server i computes local group-by:

$$
T_{i}=Y_{A, \text { sum }(C)}\left(R_{i}\right)
$$

Step 1: partitions tuples in T_{i} using hash function $h(A)$: then $T_{i, 1}, T_{i, 2}, \ldots, T_{i, p}$
then send fragment $T_{i, j}$ to server j
Step 2: receive fragments, union them, then group-by

$$
\begin{aligned}
& R_{j}^{\prime}=T_{1, j} \cup \ldots \cup T_{p, j} \\
& \text { Answer }_{j}=Y_{A, \text { sum(C) }}\left(R_{j}^{\prime}\right)
\end{aligned}
$$

Pushing Aggregates Past Union

Which other rules can we push past union?

- Sum?
- Count?
- Avg?
- Max?
- Median?

Pushing Aggregates Past Union

Which other rules can we push past union?

- Sum?
- Count?

Distributive	Algebraic	Holistic
sum $\left(a_{1}+a_{2}+\ldots+a_{9}\right)=$ sum $\left(\operatorname{sum}\left(a_{1}+a_{2}+a_{3}\right)+\right.$ sum $\left(a_{4}+a_{5}+a_{6}\right)+$ $\left.\operatorname{sum}\left(a_{7}+a_{8}+a_{9}\right)\right)$	avg $(B)=$ sum $(B) / \operatorname{count}(B)$	median(B)

- Avg?
- Max?
- Median?

Example Query with Group By

SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a

Example Query with Group By

SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a

Example Query with Group By

SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a

$$
\begin{gathered}
\gamma_{\mathrm{a}, \operatorname{sum}(\mathrm{~b}) \rightarrow \mathrm{sb}} \\
\sigma_{\mathrm{c}>0} \\
\mid \\
\mathrm{R}
\end{gathered}
$$

$1 / 3$ of R

Machine 2
$1 / 3$ of R

Machine 3

$1 / 3$ of R

Machine 2
$1 / 3$ of R

Machine 3

Machine 2
$1 / 3$ of R

Machine 3
$1 / 3$ of R

Speedup and Scaleup

Consider the query $\gamma_{\mathrm{A}, \text { sum(C) }}(\mathrm{R})$
Assume the local runtime for group-by is linear $\mathrm{O}(|\mathrm{R}|)$

If we double number of nodes P, what is the runtime?

If we double both P and size of R, what is the runtime?

Speedup and Scaleup

Consider the query $\gamma_{\mathrm{A}, \text { sum(C) }}(\mathrm{R})$
Assume the local runtime for group-by is linear $\mathrm{O}(|\mathrm{R}|)$

If we double number of nodes P, what is the runtime?

- Half (chunk sizes become $1 / 2$)

If we double both P and size of R, what is the runtime?

- Same (chunk sizes remain the same)

Speedup and Scaleup

Consider the query $\gamma_{A, \text { sum(C) }}(\mathrm{R})$
Assume the local runtime for group-by is linear $\mathrm{O}(|\mathrm{R}|)$

If we double number of nodes P, what is the runtime?

- Half (chunk sizes become $1 / 2$)

If we double both P and size of R, what is the runtime?

- Same (chunk sizes remain the same)

Parallel/Distributed Join

Three "algorithms":

- Hash-partitioned
- Broadcast
- Combined: "skew-join" or other names

Hash-Partitioned Join, a.k.a. Distributed Join

Hash Join: $R \bowtie_{A=B} S$

Data: $\quad R(A, C), S(B, D)$
 Query:

R_{1}, S_{1}

$\mathrm{R}_{2}, \mathrm{~S}_{2}$
R_{P}, S_{P}

Initially, R and S are block partitioned.
Notice: they may be stored in DFS (recall MapReduce)
Some servers hold R-chunks, some hold S-chunks, some hold both

Hash Join: $R \bowtie_{A=B} S$

Data: $\quad R(A, C), S(B, D)$
 Query:
 $R \bowtie_{A=B} S$

Reshuffle R on R.A and S on S.B

Initially, R and S are block partitioned.
Notice: they may be stored in DFS (recall MapReduce)
Some servers hold R-chunks, some hold S-chunks, some hold both

Hash Join: $R \bowtie_{A=B} S$

Data: $\quad R(A, C), S(B, D)$ $R \bowtie_{A=B} S$

Initially, R and S are block partitioned.
Notice: they may be stored in DFS (recall MapReduce)
Some servers hold R-chunks, some hold S-chunks, some hold both

Hash Join: $R \bowtie_{A=B} S$

Data: $\quad R(A, C), S(B, D)$
 $R \bowtie_{A=B} S$

Initially, R and S are block partitioned.
Notice: they may be stored in DFS (recall MapReduce)
Some servers hold R-chunks, some hold S-chunks, some hold both

Hash Join: $R \bowtie_{A=B} S$

- Step 1
- Every server holding any chunk of R partitions its chunk using a hash function h(t.A)
- Every server holding any chunk of S partitions its chunk using a hash function $\mathrm{h}(\mathrm{t} . \mathrm{B})$
- Step 2:
- Each server computes the join of its local fragment of R with its local fragment of S

Broadcast Join, a.k.a. Small Join

Broadcast Join

- When joining R and S
- If $|R| \gg|S|$
- Leave R where it is
- Replicate entire S relation across R-nodes
- Also called a small join or a broadcast join

Query: $R \bowtie S$

Broadcast Join

Query: $R \bowtie S$

Broadcast Join

Query: $R \bowtie S$

Broadcast Join

Same place..

Query: $R \bowtie S$

Broadcast Join

Discussion

- Hash-join:
- Both relations are partitioned (good)
- May have skew (bad)

Discussion

- Hash-join:
- Both relations are partitioned (good)
- May have skew (bad)
- Broadcast join
- One relation must be broadcast (bad)
- No worry about skew (good)

Discussion

- Hash-join:
- Both relations are partitioned (good)
- May have skew (bad)
- Broadcast join
- One relation must be broadcast (bad)
- No worry about skew (good)
- Skew join (has other names):
- Combine both (next)

Skew-Join

Key / foreign-key join: $R(A, B) \bowtie S(\underline{B}, C)$:

- Step 1: fix some large threshold T :
- A value b is called heavy-hitter if there are $>\mathrm{T}$ tuples with R.B $=\mathrm{b}$
- Let $\mathrm{H}=\{\mathrm{b} 1, \mathrm{~b} 2, \ldots\}$ the set of heavy hitters
- Note that H is small: $\mathrm{H}<|\mathrm{R}| / \mathrm{T}$
- Step 2: partitioned join on light hitters
- Step 3: broadcast join on heavy hitters

Example Query Execution

Find all orders from today, along with the items ordered

```
SELECT *
FROM Order o, Line i
WHERE o.item = i.item
    AND o.date = today()
```


Query Execution

Order(oid, item, date), Line(item, ...)

Query Executi buer

Query Execution

Example 2

SELECT *
FROM R, S, T
WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100

Machine 1

Machine 3

Machine 2
$1 / 3$ of R, S, T

Machine 3

... WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100

Shuffling intermediate result from $\mathrm{R} \bowtie \mathrm{S}$

Shuffling R, S, and T

Machine 1
Machine 2
$1 / 3$ of R, S, T
$1 / 3$ of R, S, T
... WHERE R.b = S.c AND S.d = T.e AND $($ R. $a-$ T.f $)>100$

Shuffling intermediate result from $R \bowtie S$

Shuffling R, S, and T

Machine 1
Machine 2
$1 / 3$ of R, S, T
$1 / 3$ of R, S, T
... WHERE R.b = S.c AND S.d = T.e AND $($ R. a - T.f $)>100$

Broadcasting S and T

Machine 1
$1 / 3$ of R, S, T

Machine 2
$1 / 3$ of R, S, T
CSEP590d
broadcast roadcas

Machine 3
$1 / 3$ of R, S, T

Skew

Skew

- Skew means that one server runs much longer than the other servers
- Reasons:
- Computation skew
- Data skew

Computation Skew

- All workers receive the same amount of input data, but some need to run much longer than others
- E.g. perform some image processing whose runtimes depends on the image
- Solution: use virtual servers

Virtual Servers

Main idea:

- If we send the data uniformly to the P servers, and one of them is stuck with the complicated image, then we have skew
- Solution: pretend we have many "virtual" servers. (Next slide.)

Virtual Servers

Large number P_{v} of "virtual servers"

- Design algorithm for P_{v} virtual servers
- Scale down to $P \ll P_{y}$ physical servers, by simulating them round-robin
E.g. MapReduce: $\mathrm{P}=$ workers, $\mathrm{P}_{\mathrm{v}}=$ map tasks

Data Skew

- We fail to distribute the data uniformly to the servers
- Question: why can this happen?

Data Skew

- We fail to distribute the data uniformly to the servers
- Question: why can this happen?
- Answer:
- Range partition may have many more tuples in one bucket than another
- Hash partition may suffer from heavy hitters

