Advanced Topics in Data Management

Distributed Query Processing

1

Table

R

sid	name	

Table

sid	name	

R

Table	
 	~
	7

R

sid	name	
L		

sid	name	

 R_1

. . .

- Block Partition, a.k.a. Round Robin:
 Partition tuples arbitrarily s.t. size(R₁)≈ ... ≈ size(R_P)
- Hash partitioned on attribute A:
 - Tuple t goes to chunk i, where $i = h(t.A) \mod P + 1$
- Range partitioned on attribute A:
 - Partition the range of A into $-\infty = v_0 < v_1 < ... < v_P = \infty$
 - Tuple t goes to chunk i, if $v_{i-1} < t.A < v_i$

Notations

p = number of servers (nodes) that hold the chunks

When a relation R is distributed to p servers, we draw the picture like this:

Here R_1 is the fragment of R stored on server 1, etc

$$R = R_1 \cup R_2 \cup \cdots \cup R_P$$

Uniform Load and Skew

- |R| = N tuples, then $|R_1| + |R_2| + ... + |R_p| = N$
- We say the load is uniform when:
 |R₁| ≈ |R₂| ≈ ... ≈ |R_p| ≈ N/p
- Skew means that some load is much larger: max_i |R_i| >> N/p

We design algorithms for uniform load, discuss skew later

Parallel Algorithm

• Selection σ

• Join 🖂

• Group by γ

- Block partitioned:
- Hash partitioned:

• Range partitioned:

- Block partitioned:
 All servers need to scan
- Hash partitioned:

• Range partitioned:

- Block partitioned:
 - All servers need to scan
- Hash partitioned:
 - Point query: only one server needs to scan
 - Range query: all servers need to scan
- Range partitioned:

- Block partitioned:
 - All servers need to scan
- Hash partitioned:
 - Point query: only one server needs to scan
 - Range query: all servers need to scan
- Range partitioned:
 - Only some servers need to scan

Parallel GroupBy

Data: $R(\underline{K}, A, B, C)$ Query: $\gamma_{A,sum(C)}(R)$ Discuss in class how to compute in each case:

- R is hash-partitioned on A
- R is block-partitioned or hash-partitioned on K

Parallel GroupBy

Data: $R(\underline{K}, A, B, C)$ Query: $\gamma_{A,sum(C)}(R)$ Discuss in class how to compute in each case:

- R is hash-partitioned on A
 - Each server i computes locally $\gamma_{A,sum(C)}(R_i)$
- R is block-partitioned or hash-partitioned on K

Parallel GroupBy

Data: $R(\underline{K}, A, B, C)$ Query: $\gamma_{A,sum(C)}(R)$ Discuss in class how to compute in each case:

- R is hash-partitioned on A
 - Each server i computes locally $\gamma_{A,sum(C)}(R_i)$
- R is block-partitioned or hash-partitioned on K
 - Need to reshuffle data on A first (next slide)
 - Then compute locally $\gamma_{A,sum(C)}(R_i)$

Data: R(<u>K</u>, A, B, C)

Query: γ_{A,sum(C)}(R)

Data: R(<u>K</u>, A, B, C)

Query: $\gamma_{A,sum(C)}(R)$

- Data: R(<u>K</u>, A, B, C)
- Query: $\gamma_{A,sum(C)}(R)$
- R is block-partitioned or hash-partitioned on K

Data: R(<u>K</u>, A, B, C)

Query: $\gamma_{A,sum(C)}(R)$

Data: R(<u>K</u>, A, B, C)

Query: $\gamma_{A,sum(C)}(R)$

Data: R(<u>K</u>, A, B, C)

Query: $\gamma_{A,sum(C)}(R)$

Reshuffling

Nodes send data over the network

Many-many communications possible

- Throughput:
 - Better than disk
 - Worse than main memory

Data: R(<u>K</u>, A, B, C)

Query: $\gamma_{A,sum(C)}(R)$

GroupBy/Union Commutativity

city	 qant
Seattle	10
LA	20
Seattle	30
NY	40

city	 qant
LA	22
NY	33
LA	44
Austin	55

city	 qant
Seattle	66
LA	77
NY	88
LA	99

SELECT city, sum(quant)

FROM R

GROUP BY city

GroupBy/Union Commutativity

city	 qant
Seattle	10
LA	20
Seattle	30
NY	40

city	 qant
LA	22
NY	33
LA	44
Austin	55

SELECT city, sum(quant)
FROM R
GROUP BY city

city	 qant
Seattle	66
LA	77
NY	88
LA	99

 $\gamma_{city,sum(q)}(R_1 \cup R_2 \cup R_3) =$

GroupBy/Union Commutativity

city	 qant
Seattle	10
LA	20
Seattle	30
NY	40

city	 qant
LA	22
NY	33
LA	44
Austin	55

SELECT city, sum(quant) FROM R GROUP BY city

city	 qant
Seattle	66
LA	77
NY	88
LA	99

 $\begin{array}{c} & & & \\ & & & \\ \end{array} \\ = \gamma_{city,sum(q)} \left(\gamma_{city,sum(q)}(R_1) \cup \gamma_{city,sum(q)}(R_2) \cup \gamma_{city,sum(q)}(R_3) \right) \end{array}$

Data: R(<u>K</u>, A, B, C) Query: $\gamma_{A,sum(C)}(R)$

Data: R(<u>K</u>, A, B, C) Query: $\gamma_{A,sum(C)}(R)$

Step 0: [Optimization] each server i computes local group-by: $T_i = \gamma_{A,sum(C)}(R_i)$

Data: R(<u>K</u>, A, B, C) Query: $\gamma_{A,sum(C)}(R)$

Step 0: [Optimization] each server i computes local group-by: $T_i = \gamma_{A,sum(C)}(R_i)$

Step 1: partitions tuples in T_i using hash function h(A): $T_{i,1}, T_{i,2}, ..., T_{i,p}$ then send fragment $T_{i,i}$ to server j

Data: R(<u>K</u>, A, B, C) Query: $\gamma_{A,sum(C)}(R)$

Step 0: [Optimization] each server i computes local group-by: $T_i = \gamma_{A,sum(C)}(R_i)$

Step 1: partitions tuples in T_i using hash function h(A): $T_{i,1}, T_{i,2}, ..., T_{i,p}$ then send fragment $T_{i,i}$ to server j

Step 2: receive fragments, union them, then group-by $R_{j}^{i} = T_{1,j} \cup \ldots \cup T_{p,j}$ Answer_j = $\gamma_{A, sum(C)} (R_{j}^{i})$

Pushing Aggregates Past Union

Which other rules can we push past union?

- Sum?
- Count?
- Avg?
- Max?
- Median?

Pushing Aggregates Past Union

Which other rules can we push past union?

- Sum?
- Count?
- Avg?
- Max?
- Median?

Distributive	Algebraic	Holistic
$sum(a_1+a_2++a_9)=sum(sum(a_1+a_2+a_3)+sum(a_4+a_5+a_6)+sum(a_7+a_8+a_9))$	avg(B) = sum(B)/count(B)	median(B)

Example Query with Group By

SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a

Example Query with Group By

SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a

γ a, sum(b)→sb | σ_{c>0} | R

Example Query with Group By

Machine 2

1/3 of R

SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a

Machine 1

1/3 of R

 γ a, sum(b) \rightarrow sb $\sigma_{c>0}$ R Machine 3

SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a

SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a

SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a

SELECT a, sum(b) as sb FROM R WHERE c > 0 GROUP BY a

Speedup and Scaleup

Consider the query $\gamma_{A,sum(C)}(R)$ Assume the local runtime for group-by is linear O(|R|)

If we double number of nodes P, what is the runtime?

If we double both P and size of R, what is the runtime?

Speedup and Scaleup

Consider the query $\gamma_{A,sum(C)}(R)$ Assume the local runtime for group-by is linear O(|R|)

If we double number of nodes P, what is the runtime?

• Half (chunk sizes become ¹/₂)

If we double both P and size of R, what is the runtime?

• Same (chunk sizes remain the same)

Speedup and Scaleup

Consider the query $\gamma_{A,sum(C)}(R)$ Assume the local runtime for group-by is linear O(|R|)

If we double number of nodes P, what is the runtime?

• Half (chunk sizes become ¹/₂)

If we double both P and size of R, what is the runtime?

• Same (chunk sizes remain the same)

But only if the data is without skew!

Parallel/Distributed Join

Three "algorithms":

Hash-partitioned

Broadcast

Combined: "skew-join" or other names

Hash-Partitioned Join, a.k.a. Distributed Join

Data:R(A, C), S(B, D)Query: $R \bowtie_{A=B} S$

Initially, R and S are block partitioned. Notice: they may be stored in DFS (recall MapReduce)

Data:R(A, C), S(B, D)Query: $R \bowtie_{A=B} S$

Initially, R and S are block partitioned. Notice: they may be stored in DFS (recall MapReduce)

Data:R(A, C), S(B, D)Query: $R \bowtie_{A=B} S$

Initially, R and S are block partitioned. Notice: they may be stored in DFS (recall MapReduce)

Data:R(A, C), S(B, D)Query: $R \bowtie_{A=B} S$

Initially, R and S are block partitioned. Notice: they may be stored in DFS (recall MapReduce)

- Step 1
 - Every server holding any chunk of R partitions its chunk using a hash function h(t.A)
 - Every server holding any chunk of S partitions its chunk using a hash function h(t.B)
- Step 2:
 - Each server computes the join of its local fragment of R with its local fragment of S

Broadcast Join, a.k.a. Small Join

- When joining R and S
- If |R| >> |S|
 - Leave R where it is
 - Replicate entire S relation across R-nodes
- Also called a small join or a broadcast join

Query: $R \bowtie S$

Broadcast Join

. . .

. . .

Discussion

- Hash-join:
 - Both relations are partitioned (good)
 - May have skew (bad)

Discussion

- Hash-join:
 - Both relations are partitioned (good)
 - May have skew (bad)
- Broadcast join
 - One relation must be broadcast (bad)
 - No worry about skew (good)

Discussion

- Hash-join:
 - Both relations are partitioned (good)
 - May have skew (bad)
- Broadcast join
 - One relation must be broadcast (bad)
 - No worry about skew (good)
- Skew join (has other names):
 - Combine both (next)

Skew-Join

Key / foreign-key join: $R(A,B) \bowtie S(\underline{B}, C)$:

- Step 1: fix some large threshold T:
 - A value b is called *heavy-hitter* if there are >T tuples with R.B = b
 - Let H = {b1, b2, ...} the set of heavy hitters
 Note that H is small: H < |R| / T
- Step 2: partitioned join on light hitters
- Step 3: broadcast join on heavy hitters

Example Query Execution

Find all orders from today, along with the items ordered

Order(oid, item, date), Line(item, ...)

Example 2

SELECT * FROM R, S, T WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100

\dots WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100

... WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100

... WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100

... WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100

... WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100

CSEP590d

Skew

• Skew means that one server runs much longer than the other servers

- Reasons:
 - Computation skew
 - Data skew

Computation Skew

- All workers receive the same amount of input data, but some need to run much longer than others
- E.g. perform some image processing whose runtimes depends on the image
- Solution: use virtual servers

Virtual Servers

Main idea:

- If we send the data uniformly to the P servers, and one of them is stuck with the complicated image, then we have skew
- Solution: pretend we have many "virtual" servers. (Next slide.)

Virtual Servers

Large number P_v of "virtual servers"

- Design algorithm for P_v virtual servers
- Scale down to P << P $_{\rm v}$ physical servers, by simulating them round-robin
- E.g. MapReduce: P=workers, P_v=map tasks

Data Skew

- We fail to distribute the data uniformly to the servers
- Question: why can this happen?

Data Skew

- We fail to distribute the data uniformly to the servers
- Question: why can this happen?
- Answer:
 - Range partition may have many more tuples in one bucket than another
 - Hash partition may suffer from heavy hitters