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Horizontal Data Partitioning
• Block Partition, a.k.a. Round Robin: 

– Partition tuples arbitrarily s.t. size(R1)≈ … ≈ size(RP) 

• Hash partitioned on attribute A:
– Tuple t goes to chunk i, where i = h(t.A) mod P + 1

• Range partitioned on attribute A:
– Partition the range of A into  -∞ = v0 < v1 < … < vP = ∞
– Tuple t goes to chunk i, if vi-1 < t.A < vi
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Notations

6

When a relation R is distributed to p servers,
we draw the picture like this:

R1 R2 RP

Here R1 is the fragment of R stored on server 1, etc

𝑅 = 𝑅! ∪ 𝑅" ∪⋯∪ 𝑅#

p = number of servers (nodes) that hold the chunks



Uniform Load and Skew

• |R| = N tuples, then |R1| + |R2| + … + |Rp| = N

• We say the load is uniform when:
|R1| ≈ |R2| ≈ … ≈ |Rp| ≈ N/p

• Skew means that some load is much larger:
maxi |Ri| >> N/p

7We design algorithms for uniform load, discuss skew later



Parallel Algorithm

• Selection σ

• Join ⨝

• Group by  ɣ
8



Parallel Selection
Data: R(K, A, B, C)
Query: σA=v(R), or σv1<A<v2(R)

• Block partitioned:
– All servers need to scan

• Hash partitioned:
– Point query: only one server needs to scan
– Range query: all servers need to scan

• Range partitioned:
– Only some servers need to scan
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Parallel GroupBy
Data: R(K, A, B, C)
Query: γA,sum(C)(R)
Discuss in class how to compute in each case:

• R is hash-partitioned on A
– Each server i computes locally γA,sum(C)(Ri)

• R is block-partitioned or hash-partitioned on K
– Need to reshuffle data on A first (next slide)
– Then compute locally γA,sum(C)(Ri)
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Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: γA,sum(C)(R)
• R is block-partitioned or hash-partitioned on K
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Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: γA,sum(C)(R)
• R is block-partitioned or hash-partitioned on K
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Reshuffle R
on attribute A

This is done in one
communication step



Reshuffling

• Nodes send data over the network

• Many-many communications possible

• Throughput:
– Better than disk
– Worse than main memory
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Basic Parallel GroupBy

Data: R(K, A, B, C)
Query: γA,sum(C)(R)
• R is block-partitioned or hash-partitioned on K

CSEP590d 23

R1’ R2’ RP’.  .  .

R1 R2 RP

.  .  .

Reshuffle R
on attribute A

This is done in one
communication step

Can you think
of an optimization?
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Basic Parallel GroupBy
Data: R(K, A, B, C)
Query: γA,sum(C)(R)

Step 0: [Optimization] each server i computes local group-by:  
Ti = γA,sum(C)(Ri)

Step 1: partitions tuples in Ti using hash function h(A):
Ti,1, Ti,2, …, Ti,p

then send fragment Ti,j to server j

Step 2:  receive fragments, union them,  then group-by 
Rj’ = T1,j ∪ … ∪ Tp,j
Answerj =  γA, sum(B) (Rj’)
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Pushing Aggregates Past 
Union

Which other rules can we push past 
union?
• Sum?
• Count?
• Avg?
• Max?
• Median?
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Distributive Algebraic Holistic

sum(a1+a2+…+a9)=
sum(sum(a1+a2+a3)+

sum(a4+a5+a6)+
sum(a7+a8+a9))

avg(B) = 
sum(B)/count(B)

median(B)



SELECT a, sum(b) as sb
FROM R WHERE c > 0
GROUP BY a 

Example Query with Group By
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Speedup and Scaleup
Consider the query γA,sum(C)(R)
Assume the local runtime for group-by is linear O(|R|)

If we double number of nodes P, what is the runtime?
• Half (chunk sizes become ½)

If we double both P and size of R, what is the runtime?
• Same (chunk sizes remain the same)
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Speedup and Scaleup
Consider the query γA,sum(C)(R)
Assume the local runtime for group-by is linear O(|R|)

If we double number of nodes P, what is the runtime?
• Half (chunk sizes become ½)

If we double both P and size of R, what is the runtime?
• Same (chunk sizes remain the same)
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Parallel/Distributed Join

Three “algorithms”:

• Hash-partitioned

• Broadcast

• Combined: “skew-join” or other names
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Hash-Partitioned Join,
a.k.a. Distributed Join
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Hash Join:  R ⋈A=B S

R1, S1 R2, S2 RP, SP .  .  .

Initially, R and S are block partitioned. 
Notice: they may be stored in DFS (recall MapReduce)
Some servers hold R-chunks, some hold S-chunks, some hold both

Data: R(A, C), S(B, D)
Query: R ⋈A=B S
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Reshuffle R on R.A
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Hash Join:  R ⋈A=B S

• Step 1
– Every server holding any chunk of R partitions 

its chunk using a hash function h(t.A)
– Every server holding any chunk of S partitions 

its chunk using a hash function h(t.B)

• Step 2: 
– Each server computes the join of its local 

fragment of R with its local fragment of S
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Broadcast Join,
a.k.a. Small Join
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Broadcast Join

• When joining R and S
• If |R| >> |S|

– Leave R where it is
– Replicate entire S relation across R-nodes

• Also called a small join or a broadcast join
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Broadcast Join
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Query:  R ⋈ S

.  .  .
SR1 R2 RP 



Broadcast Join
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.  .  .

Keep R in place

Broadcast S

SR1 R2 RP 

Query:  R ⋈ S



Broadcast Join
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R1 R2 RP 

.  .  .

Keep R in place

Broadcast S

SR1 R2 RP 

Same place…

Query:  R ⋈ S



Broadcast Join
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R1, S R2, S RP, S

.  .  .

Keep R in place

Broadcast S

SR1 R2 RP 

Broadcast S

Same place…

Query:  R ⋈ S



Discussion

• Hash-join:
– Both relations are partitioned (good)
– May have skew (bad)
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Discussion

• Hash-join:
– Both relations are partitioned (good)
– May have skew (bad)

• Broadcast join
– One relation must be broadcast (bad)
– No worry about skew (good)

• Skew join (has other names):
– Combine both (next)
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Skew-Join

Key / foreign-key join: R(A,B) ⋈S(B, C):
• Step 1: fix some large threshold T:

– A value b is called heavy-hitter if there are 
>T tuples with R.B = b

– Let H = {b1, b2, …} the set of heavy hitters
– Note that H is small: H < |R| / T

• Step 2: partitioned join on light hitters
• Step 3: broadcast join on heavy hitters
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Example Query Execution

CSEP590d 62

SELECT * 
FROM Order o, Line i
WHERE o.item = i.item

AND o.date = today()

join

select

scan scan

date = today()

o.item = i.item

Order oLine i

Find all orders from today, along with the items ordered

Order(oid, item, date), Line(item, …)



Query Execution
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Node 1 Node 2 Node 3

select
date=today()

select
date=today()

select
date=today()

scan
Order o

scan
Order o

scan
Order o

hash
h(o.item)

hash
h(o.item)

hash
h(o.item)

Node 1 Node 2 Node 3

join

select

scan

date = today()

o.item = i.item

Order o

Order(oid, item, date), Line(item, …)



Query Execution
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Node 1 Node 2 Node 3

scan
Item i

Node 1 Node 2 Node 3

hash
h(i.item)

scan
Item i

hash
h(i.item)

scan
Item i

hash
h(i.item)

join

scan
date = today()

o.item = i.item

Order o
Line i

Order(oid, item, date), Line(item, …)



Query Execution
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Node 1 Node 2 Node 3

join join join
o.item = i.item o.item = i.item o.item = i.item

contains all orders and all
lines where hash(item) = 1

contains all orders and all
lines where hash(item) = 2

contains all orders and all
lines where hash(item) = 3

Order(oid, item, date), Line(item, …)



Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T

SELECT * 
FROM R, S, T 
WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100 

Example 2
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σR.a – T.f >100

scan R

Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T

scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

Shuffling intermediate result from R ⨝ S

Shuffling R, S, and T
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scan R

Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T
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1/3 of R, S, T

scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)
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scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

Shuffling intermediate result from R ⨝ S

Shuffling R, S, and T
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Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T

Broadcasting S and T

σR.a – T.f >100

scan R

scan S scan T

broadcast broadcast

R ⨝ S

RS ⨝ T

σR.a – T.f >100

scan R

scan S scan T

broadcast broadcast

R ⨝ S

RS ⨝ T

σR.a – T.f >100

scan R

scan S scan T

broadcast broadcast

R ⨝ S

RS ⨝ T
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… WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100 



Skew
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Skew

• Skew means that one server runs much 
longer than the other servers

• Reasons:
– Computation skew
– Data skew
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Computation Skew

• All workers receive the same amount of 
input data, but some need to run much 
longer than others

• E.g. perform some image processing 
whose runtimes depends on the image

• Solution: use virtual servers
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Virtual Servers

Main idea:
• If we send the data uniformly to the P 

servers, and one of them is stuck with 
the complicated image, then we have 
skew

• Solution: pretend we have many 
“virtual” servers.  (Next slide.)
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Virtual Servers
Large number Pv of “virtual servers”

• Design algorithm for Pv virtual servers

• Scale down to P << Pv physical servers, by 
simulating them round-robin

E.g. MapReduce: P=workers, Pv=map tasks
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Data Skew

• We fail to distribute the data uniformly to 
the servers

• Question: why can this happen?
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Data Skew

• We fail to distribute the data uniformly to 
the servers

• Question: why can this happen?
• Answer:

– Range partition may have many more 
tuples in one bucket than another

– Hash partition may suffer from heavy 
hitters

CSEP590d 78


