
Advanced Topics
in Data Management

Lecture 1

CSEP590d 1

Welcome

• Welcome to the Special Topics Course:
Advanced Topics in Data Management

• Goal: drill deep into modern database
engines, new and old techniques,
explore extensions.

CSEP590d 2

Staff

• Instructor: Dan Suciu

• TA: Remy Wang

CSEP590d 3

Course Organization

• Lectures: Thursday, 6:30-9:20
– Guest lecture followed by regular lecture

• Project:
– Open ended, e.g. extend some query optimizer

• Paper reviews:
– Short reviews, maybe short programs
– Please submit before the lecture

4

Evaluation

• Project 50%

• Paper reviews 30%

• Class participation 20%

CSEP590d 5

Communication

• Ed – everybody is subscribed

• Class mailing list – very low traffic

• Website

CSEP590d 6

Lectures
1. Introduction, Review of Query Processing
2. Query Processing (continued)
3. Rebecca Taft (Cockroach Labs)

Tutorial on Egg (Max Wilsey)
4. Nico Bruno and César A. Galindo-Legaria (Microsoft):

The Cascades Framework
Tutorial on optimizing tensor expressions (Remy Wang)

5. Sergey Melnik (Google): Big Query
6. Ippokratis Pandis (Amazon): Redshift
7. Guest lecturer: Doug Brown (Teradata)
8. Guest lecturer: Jiaqi Yan (Snowflake)
9. Guest lecturer: Martin Bravenboer (RelationalAI)
10.Project presentations

CSEP590d 7
Please attend
the lectures!

What you (we?) will learn

• Consolidated knowledge of query
optimization and execution

• Understand the choices made by various
state-of-the art commercial systems

• Explore possible extensions of optimizers;
e.g. to tensor algebra

CSEP590d 8

Tools

• Please have your favorite, state-of-the-
art database system on your laptop!
– Postgres, SQL Server -- yes
– (access to) Redshift, Snowflake -- yes
– Sqlite -- no

• The project webpage has links to some
open source optimizers

CSEP590d 9

https://courses.cs.washington.edu/courses/csep590d/22sp/project.html

Prerequisits

• If you took csep544, you should be fine
in this class

• If you haven’t, then you should think
hard if you want to take this class

CSEP590d 10

Today’s Outline

• Overview of SQL processing and
optimization

CSEP590d 11

Relational Data Model

CSEP590d 12

Relational Data Model

• A Database is a collection of relations

• A Relation is a set of tuples
– Also called Table

• A Tuple t is an element of Dom1 x … x Domn

CSEP590d 13

Discussion

• Order of records is immaterial

• Sets semantics or bag semantics

• Attribute domains are primitive types:
First Normal Form (1NF)

CSEP590d 14

Schema

• Relation schema: describes column heads

• Database schema: set of all relation schemas

CSEP590d 15

Instance

• Relation instance: concrete table content

• Database instance: set of relation instances

CSEP590d 16

Relational Query Language

• Set-at-a-time:
– Query inputs and outputs are relations

• Two variants of the query language:
– SQL: declarative
– Relational algebra: specifies order of operations

CSEP590d 17

Discussion

• Physical Data Independence:
– No physical spec of the data

• Declarative query language:
– Say what we want
– Don’t say how to get it

• Query optimization: what à how
18

SQL

CSEP590d 19

SQL

• Standard query language

• Introduced late 70’s, now it ballooned

• We briefly review “core SQL” (whatever
that means)

20

Structured Query Language: SQL

• Data definition language: DDL
– Statements to create, modify tables and views
– CREATE TABLE …,

CREATE VIEW …,
ALTER TABLE…

Structured Query Language: SQL

• Data definition language: DDL
– Statements to create, modify tables and views
– CREATE TABLE …,

CREATE VIEW …,
ALTER TABLE…

• Data manipulation language: DML
– Statements to issue queries, insert, delete data
– SELECT-FROM-WHERE…,

INSERT…,
UPDATE…,
DELETE…

Our focus

CSEP590d

SQL Query

SELECT <attributes>
FROM <one or more relations>
WHERE <conditions>

Basic form: (plus many many more bells and whistles)

23

Quick Review of SQL

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

CSEP590d 24

Quick Review of SQL

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

CSEP590d 25

Retrieve all parts under $100,
and the cities in Washington that supply them:

Quick Review of SQL

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

SELECT DISTINCT z.pno, z.pname, x.scity
FROM Supplier x, Supply y, Part z
WHERE x.sno = y.sno

and y.pno = z.pno
and x.sstate = ‘WA’
and y.price < 100

CSEP590d 26

Retrieve all parts under $100,
and the cities in Washington that supply them:

Terminology

• Selection/filter: return a subset of the rows:
– SELECT * FROM Supplier

WHERE scity = ’Seattle’

• Projection: return subset of the columns:
– SELECT DISTINCT scity FROM Supplier;

• Join: refers to combining two or more tables
– SELECT * FROM Supplier, Supply, Part …

27

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

Self-Joins

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

CSEP590d 28

Find the Parts numbers available both from
suppliers in Seattle, and suppliers in Portland

Self-Joins

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

SELECT DISTINCT y1.pno
FROM Supplier x1, Supplier x2, Supply y1, Supply y2
WHERE x1.scity = ‘Seattle’

and x1.sno = y1.sno
and x2.scity = ‘Portland’
and x2.sno = y2.sno
and y1.pno = y2.pno

CSEP590d 29

Find the Parts numbers available both from
suppliers in Seattle, and suppliers in Portland

Self-Joins

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

SELECT DISTINCT y1.pno
FROM Supplier x1, Supplier x2, Supply y1, Supply y2
WHERE x1.scity = ‘Seattle’

and x1.sno = y1.sno
and x2.scity = ‘Portland’
and x2.sno = y2.sno
and y1.pno = y2.pno

CSEP590d 30

Find the Parts numbers available both from
suppliers in Seattle, and suppliers in Portland

Need TWO Suppliers
and TWO Supplies

Self-Joins

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

SELECT DISTINCT y1.pno
FROM Supplier x1, Supplier x2, Supply y1, Supply y2
WHERE x1.scity = ‘Seattle’

and x1.sno = y1.sno
and x2.scity = ‘Portland’
and x2.sno = y2.sno
and y1.pno = y2.pno

CSEP590d 31

Find the Parts numbers available both from
suppliers in Seattle, and suppliers in Portland

Need TWO Suppliers
and TWO Supplies

one in Seattle
the other in Portland

Self-Joins

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

SELECT DISTINCT y1.pno
FROM Supplier x1, Supplier x2, Supply y1, Supply y2
WHERE x1.scity = ‘Seattle’

and x1.sno = y1.sno
and x2.scity = ‘Portland’
and x2.sno = y2.sno
and y1.pno = y2.pno

CSEP590d 32

Find the Parts numbers available both from
suppliers in Seattle, and suppliers in Portland

Need TWO Suppliers
and TWO Supplies

one in Seattle
the other in Portland

the SAME part

Nested-Loop Semantics of SQL

CSEP590d 33

SELECT [DISTINCT] a1, a2, …, ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE Conditions

Nested-Loop Semantics of SQL

CSEP590d 34

SELECT [DISTINCT] a1, a2, …, ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE Conditions

Answer = {}
for x1 in R1 do

for x2 in R2 do
…..
for xn in Rn do

if Conditions
then Answer = Answer È {(a1,…,ak)}

return Answer

Nested-Loop Semantics of SQL

CSEP590d 35

SELECT [DISTINCT] a1, a2, …, ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE Conditions

Answer = {}
for x1 in R1 do

for x2 in R2 do
…..
for xn in Rn do

if Conditions
then Answer = Answer È {(a1,…,ak)}

return Answer

This SEMANTICS!
It is NOT how the
engine computes

the query!

Query Evaluation

CSEP590d 36

Query Evaluation

• Convert SQL into a query plan

• Optimize the query plan

• Execute each operator of the query plan

CSEP590d 37

Relational algebra (subset)

• Selection σ!"#$%&%"#

• Projection Π'(()*+,(-.

• Join ⋈!"#$%&%"#

• Duplicate elimination 𝛿
CSEP590d 38

Convert SQL to Query Plan
SELECT DISTINCT y1.pno
FROM Supplier x1, Supplier x2, Supply y1, Supply y2
WHERE x1.scity = ‘Seattle’

and x1.sno = y1.sno
and x2.scity = ‘Portland’
and x2.sno = y2.sno
and y1.pno = y2.pno

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

Convert SQL to Query Plan
SELECT DISTINCT y1.pno
FROM Supplier x1, Supplier x2, Supply y1, Supply y2
WHERE x1.scity = ‘Seattle’

and x1.sno = y1.sno
and x2.scity = ‘Portland’
and x2.sno = y2.sno
and y1.pno = y2.pno

Supplier x1 Supply y1

⋈!".$%&'(".$%&

𝜎!".)*+('!,-.++/-0

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

Convert SQL to Query Plan
SELECT DISTINCT y1.pno
FROM Supplier x1, Supplier x2, Supply y1, Supply y2
WHERE x1.scity = ‘Seattle’

and x1.sno = y1.sno
and x2.scity = ‘Portland’
and x2.sno = y2.sno
and y1.pno = y2.pno

Supplier x1 Supplier x2Supply y1 Supply y2

⋈!".$%&'(".$%& ⋈!1.$%&'(1.$%&

𝜎!".)*+('!,-.++/-0 𝜎!".)*+('!2&3+/.%40

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

Convert SQL to Query Plan
SELECT DISTINCT y1.pno
FROM Supplier x1, Supplier x2, Supply y1, Supply y2
WHERE x1.scity = ‘Seattle’

and x1.sno = y1.sno
and x2.scity = ‘Portland’
and x2.sno = y2.sno
and y1.pno = y2.pno

Supplier x1 Supplier x2Supply y1 Supply y2

⋈!".$%&'(".$%& ⋈!1.$%&'(1.$%&

𝜎!".)*+('!,-.++/-0 𝜎!".)*+('!2&3+/.%40

⋈(".5%&'(1.5%&

Π(".5%&

𝛿

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

Convert SQL to Query Plan
SELECT DISTINCT y1.pno
FROM Supplier x1, Supplier x2, Supply y1, Supply y2
WHERE x1.scity = ‘Seattle’

and x1.sno = y1.sno
and x2.scity = ‘Portland’
and x2.sno = y2.sno
and y1.pno = y2.pno

Supplier x1 Supplier x2Supply y1 Supply y2

⋈!".$%&'(".$%& ⋈!1.$%&'(1.$%&

𝜎!".)*+('!,-.++/-0 𝜎!".)*+('!2&3+/.%40

⋈(".5%&'(1.5%&

Π(".5%&

𝛿

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

Sometimes
we assume that

Π already eliminates
duplicates; no need

for δ

Optimize the Query Plan

• Heuristics:
– Push selections down
– Pull projections up

• Cost based:
– Join reordering: dynamic programming
– Rule based

44

Push Selections Down
SELECT DISTINCT y1.pno
FROM Supplier x1, Supplier x2, Supply y1, Supply y2
WHERE x1.scity = ‘Seattle’

and x1.sno = y1.sno
and x2.scity = ‘Portland’
and x2.sno = y2.sno
and y1.pno = y2.pno

Supplier x1 Supplier x2Supply y1 Supply y2

⋈!".$%&'(".$%& ⋈!1.$%&'(1.$%&

𝜎!".)*+('!,-.++/-0 𝜎!".)*+('!2&3+/.%40

⋈(".5%&'(1.5%&

Π(".5%&

𝛿

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

Push Selections Down
SELECT DISTINCT y1.pno
FROM Supplier x1, Supplier x2, Supply y1, Supply y2
WHERE x1.scity = ‘Seattle’

and x1.sno = y1.sno
and x2.scity = ‘Portland’
and x2.sno = y2.sno
and y1.pno = y2.pno

Supplier x1 Supply y1

⋈!".$%&'(".$%&

𝜎!".)*+('!,-.++/-0

⋈(".5%&'(1.5%&

Π(".5%&

𝛿

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

Supplier x1 Supply y1

⋈!1.$%&'(1.$%&

𝜎!1.)*+('!2&3+/.%40

…and Pull Projections Up
SELECT DISTINCT y1.pno
FROM Supplier x1, Supplier x2, Supply y1, Supply y2
WHERE x1.scity = ‘Seattle’

and x1.sno = y1.sno
and x2.scity = ‘Portland’
and x2.sno = y2.sno
and y1.pno = y2.pno

Supplier x1 Supply y1

⋈!".$%&'(".$%&

𝜎!".)*+('!,-.++/-0

⋈(".5%&'(1.5%&

Π(".5%&

𝛿

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

Supplier x1 Supply y1

⋈!1.$%&'(1.$%&

𝜎!1.)*+('!2&3+/.%40

Optimize the Query Plan

• Heuristics:
– Push selections down
– Pull projections up

• Cost based:
– Join reordering: dynamic programming
– Rule based

48

Join Reordering
SELECT DISTINCT y1.pno
FROM Supplier x1, Supplier x2, Supply y1, Supply y2
WHERE x1.scity = ‘Seattle’

and x1.sno = y1.sno
and x2.scity = ‘Portland’
and x2.sno = y2.sno
and y1.pno = y2.pno

Supplier x1 Supply y1

⋈!".$%&'(".$%&

𝜎!".)*+('!,-.++/-0

⋈(".5%&'(1.5%&

Π(".5%&

𝛿

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

Supplier x2 Supply y2

⋈!1.$%&'(1.$%&

𝜎!1.)*+('!2&3+/.%40

Optimize
this part

Joins Reordering

• It’s the bread and butter of query
optimizers

• Performed using dynamic programming,
a.k.a. Selinger’s algorithm

• Before we see this, let’s examine how
joins are evaluated

50

Join Evaluation Algorithms
Logical operator:
Supplier ⨝sid=sid Supply

Three algorithms:
1. Nested Loops
2. Hash-join
3. Merge-join

CSEP590d 51

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

1. Nested Loop Join
Logical operator:
Supplier ⨝sid=sid Supply

CSEP590d 52

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

for x in Supplier do
for y in Supply do

if x.sid = y.sid
then output(x,y)

Runtime O(n2)

2. Hash Join
Logical operator:
Supply ⨝sid=sid Supplier

CSEP590d 53

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

for x in Supplier do
insert(x.sid, x)

for y in Supply do
x = find(y.sid);
output(x,y);

Build phase

2. Hash Join
Logical operator:
Supply ⨝sid=sid Supplier

CSEP590d 54

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

for x in Supplier do
insert(x.sid, x)

for y in Supply do
x = find(y.sid);
output(x,y);

Build phase

Probe phase

2. Hash Join
Logical operator:
Supply ⨝sid=sid Supplier

CSEP590d 55

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

for x in Supplier do
insert(x.sid, x)

for y in Supply do
x = find(y.sid);
output(x,y);

Runtime O(n)

Build phase

Probe phase

2. Hash Join
Logical operator:
Supplier ⨝sid=sid Supply

CSEP590d 56

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

for y in Supply do
insert(y.sid, y)

for x in Supplier do ??
for y in find(x.sid) do

output(x,y);

Change join order

2. Hash Join
Logical operator:
Supplier ⨝sid=sid Supply

CSEP590d 57

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

for y in Supply do
insert(y.sid, y)

for x in Supplier do
for y in find(x.sid) do

output(x,y);

Change join order

2. Hash Join
Logical operator:
Supplier ⨝sid=sid Supply

CSEP590d 58

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

for y in Supply do
insert(y.sid, y)

for x in Supplier do
for y in find(x.sid) do

output(x,y);

Runtime can be O(n2)
because Supply.sid
is not a key and
there may be many
duplicates

Change join order

3. Merge Join
Logical operator:
Supplier ⨝sid=sid Supply

CSEP590d 59

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Sort(Supplier); Sort(Supply);
x = Supplier.first();
y = Supply.first();
while y != NULL do
case:
x.sid < y.sid: ???
x.sid = y.sid: ???
x.sid > y.sid: ???

3. Merge Join
Logical operator:
Supplier ⨝sid=sid Supply

CSEP590d 60

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Sort(Supplier); Sort(Supply);
x = Supplier.first();
y = Supply.first();
while y != NULL do
case:
x.sid < y.sid: ???
x.sid = y.sid: ???
x.sid > y.sid: ???

3. Merge Join
Logical operator:
Supplier ⨝sid=sid Supply

CSEP590d 61

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Sort(Supplier); Sort(Supply);
x = Supplier.first();
y = Supply.first();
while y != NULL do
case:
x.sid < y.sid: x = x.next()
x.sid = y.sid: ???
x.sid > y.sid: ???

3. Merge Join
Logical operator:
Supplier ⨝sid=sid Supply

CSEP590d 62

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Sort(Supplier); Sort(Supply);
x = Supplier.first();
y = Supply.first();
while y != NULL do
case:
x.sid < y.sid: x = x.next()
x.sid = y.sid: output(x,y); y = y.next();
x.sid > y.sid: ???

3. Merge Join
Logical operator:
Supplier ⨝sid=sid Supply

CSEP590d 63

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Sort(Supplier); Sort(Supply);
x = Supplier.first();
y = Supply.first();
while y != NULL do
case:
x.sid < y.sid: x = x.next()
x.sid = y.sid: output(x,y); y = y.next();
x.sid > y.sid: y = y.next();

3. Merge Join
Logical operator:
Supplier ⨝sid=sid Supply

CSEP590d 64

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Sort(Supplier); Sort(Supply);
x = Supplier.first();
y = Supply.first();
while y != NULL do
case:
x.sid < y.sid: x = x.next()
x.sid = y.sid: output(x,y); y = y.next();
x.sid > y.sid: y = y.next();

Runtime O(n log(n))
(because sorting…)

Discussion

• Joins = most studied relational operator

• Variations:
– Blocking (materialize) v.s. pipelining
– Main memory join v.s. external memory
– Single server v.s. distributed

CSEP590d 65

Join Ordering

CSEP590d 66

Optimize the Query Plan

• Heuristics:
– Push selections down
– Pull projections up

• Cost based:
– Join reordering: dynamic programming
– Rule based

67

Join Reordering

• Dynamic programming

• Introduced by Selinger, “System R”, 79

• Also called Selinger’s algorithm

• Originally restricted to:
– Left-deep plans
– No cartesian products

68

Cartesian Products

69

R(A,B) ⋈R.B=S.B S(B,C) ⋈S.C=T.C T(C,D)

Cartesian Products

70

R(A,B) ⋈R.B=S.B S(B,C) ⋈S.C=T.C T(C,D)

⋈R.B=S.B

⋈S.C=T.C

R(A,B) S(B,C) T(C,D)

Cartesian Products

71

R(A,B) ⋈R.B=S.B S(B,C) ⋈S.C=T.C T(C,D)

⋈R.B=S.B

⋈S.C=T.C

R(A,B) S(B,C) T(C,D)

⋈R.B=S.B

⋈S.C=T.C

R(A,B) S(B,C) T(C,D)

Cartesian Products

72

R(A,B) ⋈R.B=S.B S(B,C) ⋈S.C=T.C T(C,D)

⋈R.B=S.B

⋈S.C=T.C

R(A,B) S(B,C) T(C,D)

⋈R.B=S.B

⋈S.C=T.C

R(A,B) S(B,C) T(C,D)

Without
cartesian
product

Cartesian Products

73

R(A,B) ⋈R.B=S.B S(B,C) ⋈S.C=T.C T(C,D)

⋈R.B=S.B

⋈S.C=T.C

R(A,B) S(B,C) T(C,D)

⋈R.B=S.B

⋈S.C=T.C

R(A,B) S(B,C) T(C,D)

Without
cartesian
product

×

⋈B=B ∧ C=C

R(A,B) T(C,D) S(B,C)

With
cartesian
product

Cartesian Products

74

R(A,B) ⋈R.B=S.B S(B,C) ⋈S.C=T.C T(C,D)

⋈R.B=S.B

⋈S.C=T.C

R(A,B) S(B,C) T(C,D)

⋈R.B=S.B

⋈S.C=T.C

R(A,B) S(B,C) T(C,D)

Without
cartesian
product

×

⋈B=B ∧ C=C

R(A,B) T(C,D) S(B,C)

With
cartesian
product

When could
this plan be

better?

Shapes of Join Trees
⋈

⋈
Rn

Rn-1
⋈

R2R1

…

Left
deep

Shapes of Join Trees
⋈

⋈
Rn

Rn-1
⋈

R2R1

…

Left
deep

Hash-tables
built on right

relations

Shapes of Join Trees
⋈

⋈
Rn

Rn-1
⋈

R2R1

…

⋈

R2

R1 ⋈

⋈

…

Rn

R3

Left
deep

Right
deep

Hash-tables
built on right

relations

Shapes of Join Trees
⋈

⋈
Rn

Rn-1
⋈

R2R1

…

⋈

R2

R1 ⋈

⋈

…

Rn

R3

Left
deep

Right
deep

⋈

⋈ ⋈

⋈ ⋈⋈ ⋈
.

Bushy

Hash-tables
built on right

relations

Shapes of Join Trees
⋈

⋈
Rn

Rn-1
⋈

R2R1

…

⋈

R2

R1 ⋈

⋈

…

Rn

R3

Left
deep

Right
deep

⋈

⋈ ⋈

⋈ ⋈⋈ ⋈
.

Bushy

⋈

⋈

⋈ R2

R1

R3 Zig-zag⋈

⋈ R4
R5

…

Hash-tables
built on right

relations

Dynamic Programming

• Join order: a misnomer, since we are
not just ordering, but we compute a tree

• Main idea: compute optimal join order
for every subset of relations

• With or without cartesian products
With or without restricting tree shapes

80

Dynamic Programming

• Let m = number of relations to join
• For s = 1, m do:

– For each subset S of of size s do:
• Split S into [relation R] + [set of s-1 relations S’]
• Lookup Cost(S’)
• Cost(S) := minsplits (Cost(S’) + cost-of(𝑅 ⋈ 𝑆′))
• Memorize (S, Cost(S))

• Return Cost(All-relations)
CSEP590d 81

Discussion

• Dynamic programming: exponential in # of
relations; works for up to 10-20 rels

• Variations:
– “Interesting orders” for merge-join
– With or without cartesian product
– Left-, right-, bushy-, zig-zag plans
– Outerjoins? Anti-semijoins?

82

NULLs in SQL

CSEP590d 83

NULLs in SQL

• A NULL value means missing, or
unknown, or undefined, or inapplicable

CSEP590d 84

NULLs in WHERE Clause

A WHERE clause contains a predicate:
• Expr1 op Expr2
• AND / OR / NOT

CSEP590d 85

How do we compute the predicate when values are NULL?

where price < 100 and (pcolor=‘red’ or psize=2)

Example

SQL Has Three-Valued Logic
• False=0, Unknown=0.5, True=1

SQL Has Three-Valued Logic
• False=0, Unknown=0.5, True=1

• A = B, A < B, …: Unknown, if either A or B is NULL
AND, OR, NOT: min, max, and 1- …

SQL Has Three-Valued Logic
• False=0, Unknown=0.5, True=1

• A = B, A < B, …: Unknown, if either A or B is NULL
AND, OR, NOT: min, max, and 1- …

• Return only tuples whose condition is True

SQL Has Three-Valued Logic
• False=0, Unknown=0.5, True=1

• A = B, A < B, …: Unknown, if either A or B is NULL
AND, OR, NOT: min, max, and 1- …

• Return only tuples whose condition is True

• E.g. price < 100: can be False, Unkown, or True

SQL Has Three-Valued Logic
• False=0, Unknown=0.5, True=1

• A = B, A < B, …: Unknown, if either A or B is NULL
AND, OR, NOT: min, max, and 1- …

• Return only tuples whose condition is True

• E.g. price < 100: can be False, Unkown, or True

• What about (price < 100) and (pcolor = ‘red’)?

SQL Has Three-Valued Logic

CSEP590d 91

pno pname price psize pcolor
1 iPad 500 13 blue
2 Scooter 99 NULL NULL
3 Charger NULL NULL red
4 iPad 50 2 NULL

select *
from Part
where price < 100
and (psize=2 or pcolor=‘red’)

(in class: discuss which tuples are returned)

SQL Has Three-Valued Logic

CSEP590d 92

select *
from Part
where (price <= 100) or (price > 100)

Problem:
does not return

all records!

SQL Has Three-Valued Logic

CSEP590d 93

select *
from Part
where (price <= 100) or (price > 100)

Problem:
does not return

all records!

select *
from Part
where (price <= 100) or (price > 100) or isNull(price)

Now it does

Discussion

NULLs and their 3-valued logic are a
major headache for query optimizers:

• (A and not(A)) ≠ True

• Aggregates need special cases

• Outerjoins are not commutative, etc 94

Aggregates in SQL

CSEP590d 95

Aggregates

CSEP590d 96

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

SELECT count(*)
FROM Part

Aggregates

CSEP590d 97

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

SELECT count(*)
FROM Part

For each city,
compute the
average size
of parts
supplied from
that city.

Aggregates

CSEP590d 98

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

SELECT count(*)
FROM Part

SELECT x.scity, avg(psize)
FROM Supplier x, Supply y, Part z
WHERE x.sno = y.sno and y.pno = z.pno
GROUP BY x.scity

For each city,
compute the
average size
of parts
supplied from
that city.

Aggregates

CSEP590d 99

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

SELECT count(*)
FROM Part

SELECT x.scity, avg(psize)
FROM Supplier x, Supply y, Part z
WHERE x.sno = y.sno and y.pno = z.pno
GROUP BY x.scity

For each city,
compute the
average size
of parts
supplied from
that city.

…but only for
cities that
supply > 200
parts

Aggregates

CSEP590d 100

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

SELECT count(*)
FROM Part

SELECT x.scity, avg(psize)
FROM Supplier x, Supply y, Part z
WHERE x.sno = y.sno and y.pno = z.pno
GROUP BY x.scity

SELECT x.scity, avg(psize)
FROM Supplier x, Supply y, Part z
WHERE x.sno = y.sno and y.pno = z.pno
GROUP BY x.scity
HAVING count(*) > 200

For each city,
compute the
average size
of parts
supplied from
that city.

…but only for
cities that
supply > 200
parts

Aggregates

• Semantics:
– FROM-WHERE (nested-loop semantics)
– Group answers by GROUP BY attrs
– Apply HAVING predicates on groups
– Apply SELECT aggregates on groups

• Aggregate functions:
– count, sum, min, max, avg

101

Relational Algebra

• Group-by:
𝛾/&&012&34,/66 7! →9!,/66 7" →9",…

CSEP590d 102

Rule-based Optimization

• Collection of rewrite rules:
E1=E1’
E2=E2’
…

• Given a query plan P, apply rules repeatedly,
to generate equivalent plans:

P = P1 = P2 = P3 =…

• Return the plan with lowest cost
103

Examples of rules

𝑅 ⋈ 𝑆 ⋈ 𝑇 = 𝑅 ⋈ 𝑆 ⋈ 𝑇

𝛾 𝑅 ⋈ 𝑆 = 𝛾(𝑅 ⋈ 𝛾 𝑆)

𝛾 𝑅 ∪ 𝑆 = 𝛾(𝛾 𝑅 ∪ 𝛾 𝑆)

CSEP590d 104

Aggregate
Push-down

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)
Part(pno, pname, pprice)

SELECT x.sstate, sum(y.quanity*z.price)
FROM Supplier x, Supply y, Part z
WHERE x.sid = y.sid and y.pno = z.pno
GROUP BY x.sstate

Aggregate
Push-down

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)
Part(pno, pname, pprice)

Supplier x Supply y

⋈x.sid = y.sid

Part z

⋈y.pno = z.pno

𝛾x.sstate, sum(y.quantity*z.price)

SELECT x.sstate, sum(y.quanity*z.price)
FROM Supplier x, Supply y, Part z
WHERE x.sid = y.sid and y.pno = z.pno
GROUP BY x.sstate

Aggregate
Push-down

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)
Part(pno, pname, pprice)

Supplier x Supply y

⋈x.sid = y.sid

Part z

⋈y.pno = z.pno

𝛾x.sstate, sum(y.quantity*z.price)

SELECT x.sstate, sum(y.quanity*z.price)
FROM Supplier x, Supply y, Part z
WHERE x.sid = y.sid and y.pno = z.pno
GROUP BY x.sstate

Supplier x

Supply y

⋈x.sid = y.sid

Part z

⋈y.pno = z.pno

𝛾x.sstate, sum(s)

𝛾y.sid, sum(y.quantity*z.price)às

Discussion
• Rule-based optimizer introduced by Graefe in the

Volcano system, at Wisconsin

• Later refined by Graefe into the CASCADES
framework à SQL Server

• Most modern systems use rule-based optimizers

• EGG = open-source equality saturation system

108

Outer Joins

CSEP590d 109

Outer joins

110

Compute the number of products sold by each supplier

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)

SELECT x.sno, x.sname, count(*)
FROM Supplier x, Supply y
WHERE x.sno = y.sno
GROUP BY x.sno, x.sname

Problem: suppliers with 0 products are not included.

Outer joins

111

Compute the number of products sold by each supplier

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)

SELECT x.sno, x.sname, count(y.sno)
FROM Supplier x LEFT OUTER JOIN Supply y

ON x.sno = y.sno
GROUP BY x.sno, x.sname

Now they are included

Left Outer Join (Details)

from R left outer join S on C1 where C2

1. Compute cross product R×S

2. Filter on C1

3. Add all R records without a match

4. Filter on C2
CSEP590d 112

Joins

• Inner join = includes only matching
tuples (i.e. regular join)

• Left outer join = includes everything
from the left

• Right outer join = includes everything
from the right

• Full outer join = includes everything

CSEP590d 113

Relational Algebra

• Left outer join: ⟕

• Right outer join: ⟖

• Full outer join: ⟗

CSEP590d 114

Hash-based Left Outer Join
Supplier ⟕sid=sid Supply

115

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

for x in Supplier do
insert(x.sid, x)

for y in Supply do
x = find(y.sid);
y.found = true
output(x,y);

for x in Supplier do
if not x.found

then output(x,NULL)

Discussion

• Left outer join:
– Very useful for one-to-many relationships
– Eg each Supplier has 0 or more Supply
– Eg each Student takes 0 or more Courses

• Right outer join, full outer join: rarely used

• Major pain for optimization

116

Subqueries in SQL

CSEP590d 117

Subqueries

• Subquery in SELECT:
– Must return single value

• Subquery in FROM
– Like a temporary relation
– Alternative: use the WITH clause

• Subquery in WHERE or in HAVING
– Can express sophisticated queries

CSEP590d 118

Subquery in SELECT

CSEP590d 119

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

Compute the number of products sold by each supplier

SELECT x.sno, x.sname,
(SELECT count(*)
FROM Supply y
WHERE x.sno = y.sno)

FROM Supplier x

Subquery in FROM

CSEP590d 120

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

Better: use the WITH statement!

Subquery in FROM

CSEP590d 121

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

Better: use the WITH statement!

Find the supplier who supplies the maximum number of parts

Subquery in FROM

CSEP590d 122

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

WITH Cnt AS (SELECT x.sno, x.sname, count(*) as c
FROM Supplier x, Supply y
WHERE x.sno = y.sno
GROUP BY x.sno),

Mx AS (SELECT max(c) as m
FROM Cnt)

SELECT z.sno, z.sname, m.m
FROM Cnt z, Mx m
WHERE z.c = m.m;

Better: use the WITH statement!

For each supplier,
compute how many
parts they supply

Find the supplier who supplies the maximum number of parts

Subquery in FROM

CSEP590d 123

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

Find the supplier who supplies the maximum number of parts

WITH Cnt AS (SELECT x.sno, x.sname, count(*) as c
FROM Supplier x, Supply y
WHERE x.sno = y.sno
GROUP BY x.sno),

Mx AS (SELECT max(c) as m
FROM Cnt)

SELECT z.sno, z.sname, m.m
FROM Cnt z, Mx m
WHERE z.c = m.m;

Better: use the WITH statement!

Find the maximum

Subquery in FROM

CSEP590d 124

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

WITH Cnt AS (SELECT x.sno, x.sname, count(*) as c
FROM Supplier x, Supply y
WHERE x.sno = y.sno
GROUP BY x.sno),

Mx AS (SELECT max(c) as m
FROM Cnt)

SELECT z.sno, z.sname, m.m
FROM Cnt z, Mx m
WHERE z.c = m.m;

Better: use the WITH statement!

Find the supplier who supplies the maximum number of parts

Find the “witness”,
i.e. the supplier that

supplies the maximum
number of parts; argmax

Subquery in WHERE

CSEP590d 125

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

Find suppliers that supply some ‘blue’ parts

Subquery in WHERE

CSEP590d 126

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

Find suppliers that supply some ‘blue’ parts

SELECT x.sno
FROM Supplier x
WHERE exists (SELECT * FROM Supply y, Part z

WHERE x.sno=y.sno
and y.pno=z.pno
and z.pcolor = ‘blue’);

Subquery in WHERE

CSEP590d 127

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

Find suppliers that supply only ‘red’ parts

Subquery in WHERE

CSEP590d 128

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

Find suppliers that supply only ‘red’ parts
Find the other suppliers

Subquery in WHERE

CSEP590d 129

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

Find suppliers that supply only ‘red’ parts

SELECT x.sno
FROM Supplier x
WHERE exists (SELECT * FROM Supply y, Part z

WHERE x.sno=y.sno
and y.pno=z.pno
and z.pcolor != ‘red’);

Find the other suppliers

Subquery in WHERE

CSEP590d 130

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

Find suppliers that supply only ‘red’ parts

SELECT x.sno
FROM Supplier x
WHERE exists (SELECT * FROM Supply y, Part z

WHERE x.sno=y.sno
and y.pno=z.pno
and z.pcolor != ‘red’);

Find the other suppliers

SELECT x.sno
FROM Supplier x
WHERE not exists (SELECT * FROM Supply y, Part z

WHERE x.sno=y.sno
and y.pno=z.pno
and z.pcolor != ‘red’);

Negate to get
the right ones

Relational Algebra

• Semijoin: R ⋉ S
– Subset of R that joins with S
– 𝑅⋉𝑆 = Π#$$%& ' (𝑅 ⋈ 𝑆)

• Anti-semijoin: R⊳S
– Subset of R that does not join with S
– 𝑅⊳𝑆 = 𝑅 −(𝑅⋉𝑆)

131

Semi-Join

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

Find suppliers that supply some ‘blue’ parts
SELECT x.sno
FROM Supplier x
WHERE exists (SELECT * FROM Supply y, Part z

WHERE x.sno=y.sno
and y.pno=z.pno
and z.pcolor = ‘blue’);

Semi-Join

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

Find suppliers that supply some ‘blue’ parts
SELECT x.sno
FROM Supplier x
WHERE exists (SELECT * FROM Supply y, Part z

WHERE x.sno=y.sno
and y.pno=z.pno
and z.pcolor = ‘blue’);

⋉x.sno=y.sno

Supplier x

⋈(.5%&'6.5%&

Supply y Part z

𝜎6.5)&/&3'!7/8-0

Semi-join
does not
introduce
duplicates

Anti-semi-Join

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

Find suppliers that supply only ‘red’ parts
SELECT x.sno
FROM Supplier x
WHERE not exists (SELECT * FROM Supply y, Part z

WHERE x.sno=y.sno
and y.pno=z.pno
and z.pcolor != ‘red’);

Anti-semi-Join

Supplier(sno,sname,scity,sstate)
Supply(sno,pno,qty,price)
Part(pno,pname,psize,pcolor)

Find suppliers that supply only ‘red’ parts

⊳x.sno=y.sno

Supplier x

⋈(.5%&'6.5%&

Supply y Part z

𝜎6.5)&/&3!'!3-40

SELECT x.sno
FROM Supplier x
WHERE not exists (SELECT * FROM Supply y, Part z

WHERE x.sno=y.sno
and y.pno=z.pno
and z.pcolor != ‘red’);

Discussion

• RA does not have variables
– Exception: “dependent” join allows

variables, but needs to be removed
• Query unnesting: rewriting a query with

subqueries into a query without
subqueries

• Some systems fail to unnest
complicated queries: nested loop join

Operator Interface

CSEP590d 137

How Do We Combine Them?

CSEP590d 138

⨝

⨝ ⨝

⨝

R

S T K

W

σ

σ

How Do We Combine Them?

CSEP590d 139

⨝

⨝ ⨝

⨝

R

S T K

W

σ

σOption 1:
materialize intermediate results

Option 2:
Pipeline tuples btw. ops

How Do We Combine Them?

CSEP590d 140

⨝

⨝ ⨝

⨝

R

S T K

W

σ

σOption 1:
materialize intermediate results

Option 2:
Pipeline tuples btw. ops

Implementation:
Iterator Interface

Operator Interface
Volcano model:
• open(), next(), close()
• Pull model
• Volcano optimizer: G.

Graefe’s (Wisconsin) à
SQL Server

• Supported by most
DBMS today

• Will discuss next

141

Operator Interface
Volcano model:
• open(), next(), close()
• Pull model
• Volcano optimizer: G.

Graefe’s (Wisconsin) à
SQL Server

• Supported by most
DBMS today

Data-driven model:
• open(),produce(),

consume(),close()
• Push model
• Introduced by Thomas

Neumann in Hyper (at
TU Munich), later
acquired by Tableau

142

Discussion

• Most systems adopt the Volcano-model,
a.k.a. the iterator interface

• Vectorized processing = iterator
interface that processes a block of
tuples (vector?) instead of one tuple

• Compiled model = compile to machine
code and use the push model

CSEP590d 143

