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The next-generation database system
for intelligent data apps

based on  relational knowledge graphs



Innovations for Relational Knowledge Graphs

1. Immutability - Cloud native architecture

2. Expressive relational language (Rel) 

3. Join algorithms                                          

4. Semantic optimization                                 

5. Vectorized and JIT compilation of WCOJ

6. Live - Incrementality (for data and logic)
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Challenges in Database System Design and Implementation

Data structures and memory management
● In-memory performance for modern workloads exceeding available memory and disk
● Write-optimized data structures for modern workloads in cloud native architecture

Query processing
● Index selection (what indexes to define for a workload)
● Efficient evaluation of subqueries
● Relational query processing of graph workloads (complex joins)
● Materialized view selection (with views to materialize for a workload)
● Incremental computation (recursion) and maintenance wrt input changes

Concurrency and workload management
● Optimization of bottom-up vs top-down (demand-driven) evaluation
● Optimization of very large computation graphs
● Strong consistency, scalability of read-only and write workload

General Architecture
● Eliminate the split brain: moving computations to the data management system
● Maximal independence of application logic vs machine representation and organization of data (relational model)
● Language support for abstraction (libraries)
● Language support for schema abstraction (generic programming) 4



Dependency Graph of Tax Analysis Logic
3.6K relations, 13K dependencies

replacing millions of lines of procedural code



Dependency Graph of Tax Analysis Logic
Focus: Single strongly-connected component (recursion)



The Modern Data Stack



Modern database systems are cloud native
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Modern database systems are implemented with cloud native architecture that 
separates storage from compute.

This architecture makes it possible to provide compelling features like:

● Infinite storage - store all your data regardless of structure or volume

● Infinite compute - run any number of workloads without concurrency limits

● Versioning - time-travel, zero-copy cloning

● Fully managed - workload management with minimal user intervention

● Data sharing - collaboration, live sharing, access to external data



Cloud Data Platform
(warehouse, lakehouse)

System of
Record

The Modern Data Stack

BI Tools

Notebooks

ML Feature 
Engineering

Data Apps
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The Semantic Layer
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Let's build a data app for an order database (TPC-H, Northwind etc)

Example functionality:
- What is the average charge of orders by week

- What percentage of orders were late this year

- If two consecutive orders for a customer are late,
alert the account manager

The system cannot answer such questions if it does not know
what late and charge mean to begin with!

The Semantic Layer and Data Apps
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How many movies has Meryl Streep been in per decade

What movies has Johnny Depp acted in since 2015



dimension: is_order_paid {

    type: yesno

    sql: ${status} = 'paid' ;;

}

dimension: full_name {

    type: string

    sql: CONCAT(${first_name}, ' ', ${last_name}) ;;

}

dimension: profit {

    type: number

    sql: ${revenue} - ${cost} ;;

}

dimension: distance_to_pickup {

    type: distance

    start_location_field: customer.home_location

    end_location_field: rental.pickup_location

    units: miles

}

dimension: store_location {

    type: location

    sql_latitude: ${store_latitude} ;;

    sql_longitude: ${store_longitude} ;;

}
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measure: cumulative_total_revenue {

    type: running_total

    sql: ${total_sale_price} ;;

}

measure: total_gross_margin {

    type: sum

    value_format_name: usd

    sql: ${gross_margin} ;;

}

measure: percent_of_total_gross_margin {

    type: percent_of_total

    sql: ${total_gross_margin} ;;

}

https://docs.looker.com/reference 

https://docs.looker.com/reference


Malloy
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https://github.com/looker-open-source/malloy 

source: users is table('malloy-data.ecomm.users') {

    primary_key: id

    dimension: full_name is concat(first_name, ' ', last_name)

    measure: user_count is count()

}

source: iowa is table('malloy-data.iowa_liquor_sales.sales_deduped') {

    dimension: gross_margin is 100 * (state_bottle_retail - state_bottle_cost) / nullif(state_bottle_retail, 0)

    dimension: price_per_100ml is state_bottle_retail / nullif(bottle_volume_ml, 0) * 100

}

source: flights is table('malloy-data.faa.flights') {

    dimension: distance_km is distance / 1.609344

    measure: flight_count is count()

    rename: destination_code is destination

}

https://github.com/looker-open-source/malloy
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order_payments as (
   select
       order_id,
       {% for payment_method in payment_methods -%}
       sum(case when payment_method = '{{ payment_method }}'
               then amount else 0 end
       ) as {{ payment_method }}_amount,
       {% endfor -%}
       sum(amount) as total_amount
   from payments
   group by order_id)

upvote_count AS (
    SELECT
      awardable_id                                        AS dim_issue_id,
      SUM(IFF(award_emoji_name LIKE 'thumbsup%', 1, 0))   AS thumbsups_count,
      SUM(IFF(award_emoji_name LIKE 'thumbsdown%', 1, 0)) AS thumbsdowns_count,
      thumbsups_count - thumbsdowns_count                 AS upvote_count
    FROM gitlab_dotcom_award_emoji_source
    WHERE awardable_type = 'Issue'
    GROUP BY 1)

customer_orders as (
    select
        customer_id,
        min(order_date) as first_order,
        max(order_date) as most_recent_order,
        count(order_id) as number_of_orders
    from orders
    group by customer_id)

gitlab_dotcom_issues_source AS (
    SELECT *
    FROM {{ ref('gitlab_dotcom_issues_source')}}
    {% if is_incremental() %}
      WHERE updated_at >= (SELECT MAX(updated_at) FROM {{this}})
    {% endif %})



Knowledge Graphs

Semantic Layer

Reasoning

Views
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Data Apps, Reasoning & Knowledge

changes

Views  /  Reasoning  /  Knowledge  /  The Semantic Layer



The Semantic Layer - Rel



Let's build a data app for an order database (TPC-H, Northwind etc)

Example functionality:
- What is the average charge of orders by week

- What percentage of orders were late this year

- If two consecutive orders for a customer are late,
alert the account manager

The system cannot answer such questions if it does not know
what late and charge mean to begin with!

The Semantic Layer and Data Apps
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Data Apps, Reasoning & Knowledge

Given: extendedprice, discount, tax

def item_revenue[o, num] = 
    extendedprice[o, num] * (1 - discount[o, num])

def revenue[o] =
    sum[num: item_revenue[o, num]]

def item_charge[o, num] = 
    item_revenue[o, num] * (1 + tax[o, num])

def charge[o] =
    sum[num: item_charge[o, num]]
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Data Apps, Reasoning & Knowledge

def received_late(o, num) =
    commitdate[o, num] < receiptdate[o, num]

def late(o) =
    exists(num: received_late(o, num))

Given: commitdate, receiptdate

24
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Better Conceptual Model
def Heliport(x in Airport) =

    fac_type(x, "HELIPORT")

def cancelled(f in Flight) =

    flight(f) and flight_cancelled(f, "Y")

def arrival_delay[f in Flight] =

    ^Minute[maximum[0, arr_delay[f]]

def coordinate[x in Airport] =

    ^LLA[latitude[x], longitude[x], elevation[x]]

def airport_distance[a1 in Airport, a2 in Airport] =

    distance[coordinate[a1], coordinate[a2]]



Reasoning manages app logic with the data

Reasoning subsumes business logic now 
implemented procedurally in languages like Java, 
C#, Python, Scala, PL/SQL, T/SQL etc.

Fixing the “split brain” problem where the data is 
managed in one layer and knowledge/semantics
in another will have huge impact.

Bringing the app logic to the data makes it 
possible for one (cloud native) system to manage 
the semantics, integrity, and resources needed for 
the application.



Relational Models
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1

2

4

Directed Graphs as a Relation

edge(2, 1)
edge(2, 4)

edge(3, 1)
edge(3, 2)
edge(3, 4)
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Labelled Property Graphs as Relational Graphs
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      Movie
                                   title: Dune
                                   year: 2021
                      id: 3

      

     Director
      Writer
      name: Villeneuve
                   id: 2

      
       Actor
  name: Chalamet
                     id: 1

movie(3)
title(3, "Dune")
year(3, 2021)

director(2)
writer(2)
name(2, "Villeneuve")

directed(2, 3)

actor(1)
name(1, "Chalamet")

acted(1, 3)
role(1, 3, "Paul Atreides")

acted
role: Paul Atreides

directed



Tables as a Collection of Relations
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 orderkey customer date  price

 1  500  2022-03-27  75

 2  23  2022-03-27  43

1
75

500

price

date

customer

2

2022-03-27

43

23

price

date

customer

    customer(1, 500)
    customer(2, 23)

    date(1, 2022-03-27)
    date(2, 2022-03-27)

    price(1, 75)
    price(2, 43)

date

SQL tables are in a sense a modularity construct, 
grouping relations with the same primary key.
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Recall ...



Tensors as Relations
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A relational database system that is effective for tensors
would be an outstanding proof-point for the relational model.

(and imagine the data management benefits this would have for ML systems!)

(1, 4)
(2, 1)
(3, 8)

(1, 1, -1.3)
(1, 2,  0.6)
(2, 1, 20.4)
(2, 2,  5.5)
(3, 1,  9.7)
(3, 2, -6.2)

binary relationvector

matrix ternary relation



Tensors as Relations: Matrix Multiplication

def C[i, j] = sum[k: A[i, k] * B[k, j]]

Rel Our new relational language

Matrix multiplication diagram.svg, CC BY-SA 3.0, User:Bilou

SQL
SELECT A.row, B.col, SUM(A.val * B.val)
FROM A INNER JOIN B ON A.col = B.row
GROUP BY A.row, B.col

Math
Deep Learning with Relations at NeurIPS 

https://slideslive.com/38970787/deep-learning-with-relations?ref=account-folder-92050-folders


The Essence of the Relational Model
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Have relational database systems been sufficiently ambitious on this point



Architecture



Cloud Region

Cloud Native Deployment Architecture

Scalable, durable object storage
Immutable, versioned, write-optimized, paged data structures             

Engine
Transient

RAM, SSD cache

Serverless Engine
Transient

RAM, SSD cache

Engine
Transient

RAM, SSD cache

Services (JSON, Arrow)

RAI SDK (Python, Julia, JS, Go, Java, C#)

RAI CLIRAI ConsoleVSCode

          CAS Key-Value Store
       (Only database root pointers)

Data Apps SQL Apps Legend Apps



Future

                  LLVM

Coexist as One Happy Relational Family
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       Relational Knowledge Graph System

          

           SQL

Core Rel IR

   Legend

GQL

SPARQL

GraphQL        Rel

Specialized 
Solvers          

RDF

SQL RDBMS CDC

CSV

LPG

Tensor data

JSON

Parquet, Iceberg

Binary objects



Internal Engine Architecture

Parse

Type Inference

Specialization to first-order logic

Dependency analysis Semantic optimization

Physical optimization

Evaluation (vectorized + JIT)

Dependency analysis

Metadata database (Salsa + Arroyo)
Demand-driven computation and provenance for incrementality and live programming

Rel Model

JuliaCon 2020 - Salsa.jl - Nathan Daly 

https://www.youtube.com/watch?v=0uzrH2Ee494


Core Innovations for 
Relational Knowledge Graphs

Immutable Data Structures
for Cloud Object Storage



RAI Storage and Memory Management
(inspired by Snowflake and Umbra/Leanstore)
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Scalable, durable object storage

Ephemeral SSD cache

RAM cache (buffer pool)

fetch and evict

evict

fetch
evict
commit



RAI databases are immutable, including the catalog

demo

key/value store with CAS
rel A

rel B

rel C

...



RAI databases are immutable, including the catalog

demo

key/value store with CAS

transaction
updates C

rel A

rel B

rel C

rel C'

...



RAI databases are immutable, including the catalog

demo

demo-2022-03-25

key/value store with CAS

transaction
updates C

rel A

rel B

rel C

rel C'

...



demo-2022-03-25

demo

RAI databases are immutable, including the catalog

key/value store with CAS
rel A

rel B

rel C'

...



RAI databases are immutable, including the catalog

demo-2022-03-25

demo

key/value store with CAS
rel A

rel B

rel C'

transaction

...



Key: immutable tables ⟶ immutable catalog

Isolation: strict serializability
- Must: Anything weaker causes inconsistencies for data apps (depending on lock granularity)

- No locks need to be acquired (concurrent writes can be executed optimistically)

- Effectively unlimited read scalability
- No limit on the duration of a transaction

DDL  is atomic
- Must: Schema changes are common in data apps and live programming
- Cloning a database is an atomic O(1) operation
- Perfect for as-of (system time) queries, what-if analysis

Write-optimized data structures 💕 immutable object storage
- Must: Removing write amplification is critical for object storage (Bε-tree)
- Group commits and variable page sizes to reduce write throughput needs

No transaction log is needed for durability or recovery
- Previous version immutable. Commits atomic in KV store (CAS)
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Elastic Storage Management
● The Snowflake Elastic Data Warehouse

Dageville et al., SIGMOD 2016
● Building an Elastic Query Engine on Disaggregated Storage

Vuppalapati et al., NSDI 2020

Write Optimization
● Lower Bounds for External Memory Dictionaries

Brodal et al., SODA 2003
● An Introduction to Bε -trees and Write-Optimization

Bender et al., :login: magazine, 2015
● Design and Implementation of the LogicBlox System

Aref et al. SIGMOD 2015

In-Memory Performance
● LeanStore: In-Memory Data Management Beyond Main Memory

Leis et al., ICDE 2018
● Umbra: A Disk-Based System with In-Memory Performance

Neumann et al., CIDR 2020

Storage Management: Influences and Resources



Rel
A Productive and Expressive Relational Language

Core Innovations for 
Relational Knowledge Graphs
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Datalog and First-order Logic

Transitive closure

    ancestor(x, y) :- parent(x, y)

    ancestor(x, y) :- parent(x, t) and ancestor(t, y)

    reachable(x, y) :- edge(x, y)

    reachable(x, y) :- edge(x, t) and reachable(t, y)

Functional dependency

    function_age()     :- forall(x, v, w: age(x, v)     and age(x, w)     implies v = w)

    function_name()    :- forall(x, v, w: name(x, v)    and name(x, w)    implies v = w)

    function_address() :- forall(x, v, w: address(x, v) and address(x, w) implies v = w)

Average

    average_sales(x, y, w)   :- sum_sales(x, y, u)   and count_sales(x, y, v)   and w = u / v

    average_returns(x, y, w) :- sum_returns(x, y, u) and count_returns(x, y, v) and w = u / v
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Datalog

Good
● Outstanding formal foundation
● Mutually recursive definitions

More is needed
● Classic Datalog (globally stratified) is too limited for graph workloads:

○ Value creation in recursion
○ Aggregation in recursion
○ Negation in recursion

● Datalog does not support abstraction (similar to SQL, Cypher, SPARQL etc)
○ Abstract over concrete relations
○ Abstract over schema

                                                        Rel: Datalog is the IR
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Small core     Designed for growth: whole is greater than sum of the parts

Declarative                            Maximize opportunities for executing programs in different ways

Relational                               Data independence (representation, ordering, semantic stability)

Abstraction                              Libraries of reusable functionality (eg statistics, graph analytics)
Encourage an ecosystem of reusable components

Abstraction without regret   Aggressive optimizations to compile abstraction cost aways.

Schema abstraction              Logically treating schema as data to support schema-generic logic
Prevent the need for code generators
Support interactive schema discovery (reflection)

Live programming                  Support arbitrary schema changes
Ingest data without upfront schema into an efficient representation
Incorrect application logic is a valid state
Support gradually enforcing a schema with integrity constraints 

Rel - Design Objectives
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Better Conceptual Model

def Heliport(x in Airport) =
    fac_type(x, "HELIPORT")

def cancelled(f in Flight) =
    flight(f) and flight_cancelled(f, "Y")

def origin(f in Flight, a in Airport) =
    flight_origin(f, code) and
    airport_code(a, code)
    from code

def destination(f in Flight, a in Airport) =
    flight_destination(f, code) and
    airport_code(a, code)
    from code

def airport_distance[a1 in Airport, a2 in Airport] =
    distance[coordinate[a1], coordinate[a2]]

def located_in(x, y) =
    exists(t: located_in(x, t) and located_in(t, y))
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Data Integrity

Nodes involved in relationships

    ic forall(f, ap: origin(f, ap) implies Flight(f) and Airport(ap))

Required relationships

    ic forall(f: Flight(f) implies exists origin[f])

Functional dependency (flight can have only one origin)

    ic forall(x, v, w: origin(x, v) and origin(x, w) implies v = w)

Arbitrarily complex

    ic forall(f in cancelled: not exists flight_duration[f])

    ic forall(f in flight: cancelled(f) xor diverted(f) xor arrived(f))
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Aggregation

Total number of flights
    count[Flight]                                    

Carrier with most flights
    c: count[f: operated_by(f, c)]

Carriers mean arrival delay
    c: mean[f.arrival_delay for f where operated_by(f, c)]

Airport ratio of cancelled arriving flights
    ap: ratio[cancelled, ap.arriving_flight]

Southwest        5,775,777
Delta               4,477,929
American            4,434,727

37,561,525

Airtran             15 min
Atlantic Coast      13 min
United Airlines     13 min
...
Aloha Airlines      6 min
Hawaiian Airlines   3 min

Unalaska            19%
Worcester Regional  11%
Nantucket Memorial   9%
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Abstraction and Value Types

Recall from the model
    def airport_distance[ap1 in Airport, ap2 in Airport] =

        distance[coordinate[ap1], coordinate[ap2]]

    def coordinate[a in Airport] =

        ^LLA[latitude[a], longitude[a], elevation[a]]

    def arrival_delay[f in Flight] =

        ^Minute[maximum[0, arr_delay[f]]

Units of measurements to prevent miscalculation
    def LengthUnit = :Feet; :Meters; :Miles; :Kilometers

    value type Length = LengthUnit, Number

    value type Degree = Number

    value type LLA = Degree, Degree, Length

    def distance[x in LLA, y in LLA] =

        haversine[earth_radius, x, y]

    def earth_radius = ^Length[:Kilometers, 6378.1]

The type system of Rel prevents a 
runtime cost of tracking units of 
measurement.

Statically Rel guarantees that the 
correct conversions are applied and 
no incompatible values can be used 
in operations.
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Schema Abstraction

Count all nodes

    count[x, v: flight_graph(x, v)]

Count all nodes, grouped by type

    x: count[v: flight_graph(x, v)]

    38,061,144

    Flight           37,561,525

    Aircraft            359,928

    AircraftModel        60,461

    City                 50,944

    Airport              19,793

    Heliport              5,135

    County                3,009

    Major                   270

    State                    58

    Carrier                  21

Rel is not a dynamic language (nor a triple store). Rel exposes the schema logically as data 
and uses partial evaluation methods to infer and specialize the program to the schema.
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Graph Analytics

Rel can express graph algorithms, for example pagerank and shortest path.

Shown: pagerank for
major airports

Highlighted is a shortest
path between two nodes.

Rel supports geographical data and JSON. 
The maps are computed in Rel from shapes 
of the states, part of the knowledge graph.
Visualization is Vega-Lite.
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Basic graph algorithms

Neighbor (undirected edge)
    def neighbor(x, y) = edge(x, y) or edge(y, x)

    def cn[x, y] = count[intersect[neighbor[x], neighbor[y]]]

Degree
    def outdegree[x] = count[edge[x]]

    def degree[x] = count[neighbor[x]]

Similarity
    def cosine_sim[x, y]  = cn[x, y] / sqrt[degree[x] * degree[y]]

    def jaccard_sim[x, y] = cn[x, y] / count[neighbor[x]] + count[neighbor[y]] - cn[x, y]

Transitive closure (reachability)
    def reachable(x, y) = edge(x, y)

    def reachable(x, y) = exists(t: edge(x, t) and reachable(t, y))
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Basic graph algorithms

Weakly connected components
    def wcc[x] = min[reachable_undirected[x]]

Weakly connected components (without reachable)
    def wcc[x] = minimum[ min[neighbor[x]], min[wcc[z] for z in neighbor[x] ]

Strongly connected components
    def scc[x] = min[v: reachable(x, v) and reachable(v, x)]

The purpose of the semantic 
optimizer of RelationalAI is to 
automate this optimization by using 
the algebraic properties of minimum.
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Basic graph algorithms

Breadth-first search

   def bfs[x in root] = 0

   def bfs[x] = min[ bfs[x];  bfs[y: edge(y, x)] + 1  ]
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Shortest Distance

Shortest distance between two nodes

    def path[x, y] = distance[x, y]
    def path[x, y] = path[x, t] + distance[t, y] from t

    def shortest_distance[x, y] = min[path[x, y]]

Shortest distance between two nodes (Bellman-Ford)

    def shortest_distance[x, y] =

        min[ distance[x, y];

             (shortest_distance[x, t] + distance[t, y] from t)]

The purpose of the semantic 
optimizer of RelationalAI is to 
automate this optimization by 
using the algebraic 
properties of minimum and 
addition.
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def bacon_number[p] =
    shortest_distance[(co_star, 1)[KevinBacon, p]

def bacon_number[p] =
    min[num:
        co_star(KevinBacon, p) and num = 1
        or exists(t: co_star(t, p) and num = bacon_number[t] + 1)
    ]

Optimize all-pairs shortest path to single-source shortest path using
 demand transformation

optimizer

Semantic Optimizer: Push Demand into Recursion
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Pagerank

Non-monotonic, relying on reaching a fixpoint

def damping = 0.85

def pagerank[x in node] = 1.0, not(pagerank(x, _))

def pagerank[y in node] =
    (1.0 - damping) +

    damping * sum[pagerank[x] / outdegree[x] for x where edge(x, y)]

Iterative

def damping = 0.85

def pagerank[x in node, 0] = 1.0

def pagerank[y in node, i in range[0, 20, 1]] =
    (1.0 - damping) +

    damping * sum[pagerank[x, i - 1] / outdegree[y] for x where edge(x, y)]



TigerGraph Graph Data Science Library

MinAccum<INT> @min_cc_id = 0;

MapAccum<INT, INT> @@comp_sizes_map;

MapAccum<INT, ListAccum<INT>> @@comp_group_by_size_map;

Start = {v_type};

S = SELECT x

   FROM Start:x

   POST-ACCUM x.@min_cc_id = getvid(x);

WHILE (S.size()>0) DO

   S = SELECT t

       FROM S:s -(e_type:e)- v_type:t

ACCUM t.@min_cc_id += s.@min_cc_id

HAVING t.@min_cc_id != t.@min_cc_id';

END;

HeapAccum<Vertex_Score>(top_k, score DESC) @@top_scores_heap;

MaxAccum<FLOAT> @@max_diff = 9999;

SumAccum<FLOAT> @sum_recvd_score = 0;

SumAccum<FLOAT> @sum_score = 1;   

SetAccum<EDGE> @@edge_set;        

Start = {v_type};                 

WHILE @@max_diff > max_change

   LIMIT max_iter DO

       @@max_diff = 0;

   V = SELECT s

FROM Start:s -(e_type:e)- v_type:t

ACCUM

           t.@sum_recvd_score += s.@sum_score/(s.outdegree(e_type))

POST-ACCUM

           s.@sum_score = (1.0-damping) + damping * s.@sum_recvd_score,

    s.@sum_recvd_score = 0,

    @@max_diff += abs(s.@sum_score - s.@sum_score');

END; # END WHILE loop

https://github.com/tigergraph/gsql-graph-algorithms 

Pagerank WCC

https://github.com/tigergraph/gsql-graph-algorithms
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Recursion: Program Analysis (Doop)

def VarPointsTo(var, heap) =
    AssignHeapAllocation(var, heap)

def VarPointsTo(to, heap) =
    Assign(from, to) and
    VarPointsTo(from, heap)

def VarPointsTo(to, heap) =
    LoadInstanceField(base, signature, to) and
    VarPointsTo(base, baseheap) and
    InstanceFieldPointsTo(baseheap, signature, heap)

def InstanceFieldPointsTo(baseheap, signature, heap) =
    StoreInstanceField(from, base, signature) and
    VarPointsTo(base, baseheap) and
    VarPointsTo(from, heap) 
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Syntactic Second-order Features

Transitive closure (reachability)

   def ancestor(x, y) = parent(x, y)

   def ancestor(x, y) = exists(t: parent(x, t) and ancestor(t, y))

Abstract 

   def tc[E](x, y) = E(x, y)

   def tc[E](x, y) = exists(t: E(x, t) and tc[E](t, y))

Use

   def ancestor = tc[parent]
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Syntactic Second-order Features

Mean (average)

    sum[sales] / count[sales]

Abstract

    def mean[F] = sum[F] / count[F]

Use

    mean[sales]
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Syntactic Second-order Features

Functional dependency

    forall(x, v, w: origin(x, v) and origin(x, w) implies v = w)

Abstract

    def function(R) =

        forall(k..., v1, v2 where R(k..., v1) and R(k..., v2): v1 = v2)

Use

    function(origin)



Library Example: Graph Analytics
module graph_analytics[G]

  with G use node, edge

  def neighbor(x, y) = edge(x, y) or edge(y, x)

  def outdegree[x] = count[edge[x]]

  def degree[x] = count[neighbor[x]]

  def cn[x, y] = count[intersect[neighbor[x], neighbor[y]]]

  def reachable = edge; reachable.edge

  def reachable_undirected = neighbor; reachable_undirected.neighbor

  def scc[x] = min[v: reachable(x, v) and reachable(v, x)]

  def wcc[x] = min[reachable_undirected[x]]

  def cosine_sim[x, y]  = cn[x, y] / sqrt[degree[x] * degree[y]]

  def jaccard_sim[x, y] = cn[x, y] / count[neighbor[x]] + count[neighbor[y]] - cn[x, y]

  ...

end
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Library Example: Relational Algebra to Calculus

def intersect[R, S](x...) = R(x...) and S(x...)

def union[R, S](x...)     = R(x...) or S(x...)

def diff[R, S](x...)      = R(x...) and not S(x...)

def subset[R, S]   = forall(x... where R(x...): S(x...))

def disjoint(R, S) = empty(R ∩ S)
def empty(R)       = not exists(x...: R(x...))

def (∩) = intersect
def (∪) = union

def (×) = cart

def (⊂) = proper_subset

def (⊆) = subset
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Library Example: Statistics

RelationalAI features a large library of reusable functionality implemented in Rel.

def mean[F] = sum[F] / count[F]

def frequency[R, elem] = count[x...: R(x..., elem)]

def mse[Yhat, Y] = sum[x: (Y[x] - Yhat[x]) ^ 2] / count[Y]

def rmse[Yhat, Y] = sqrt[mse[Yhat, Y]]
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Library Example: Machine Learning

Generic abstractions for feature scaling

    def mean_normalization[F][x...] =

        (F[x...] - mean[F]) / (max[F] - min[F]), (max[F] > min[F])

    def min_max_normalization[F][x...] =

        (F[x...] - min[F]) / (max[F] - min[F]), (max[F] > min[F])

    def zscore_normalization[F][x...] =

        (F[x...] - mean[F]) / standard_deviation[F]
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{%- if include_columns=='*' -%}
{%- set all_source_columns = adapter.get_columns_in_relation(source_table) | map(attribute='quoted') -%}
{% set include_columns = all_source_columns %}
{%- endif -%}

-- generate a CTE for each source column, a single row containing the aggregates
with 
{% for source_column in source_columns %}
    {{ source_column }}_aggregates as (
        select
            min({{ source_column }}) as min_value,
            max({{ source_column }}) as max_value
        from {{ source_table }}
    )
{% if not loop.last %}, {% endif %}
{% endfor %}

select 
    {% for column in include_columns %}
        source_table.{{ column }},
    {% endfor %}
    {% for source_column in source_columns %}
        ({{ source_column }} - {{ source_column }}_aggregates.min_value) 
             / ({{ source_column }}_aggregates.max_value - {{ source_column }}_aggregates.min_value) as {{ source_column }}_scaled
    {% if not loop.last %}, {% endif %}
    {% endfor %}
from  
    {% for source_column in source_columns %}
        {{ source_column }}_aggregates,
    {% endfor %}
    {{ source_table }} as source_table
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Library Example: Machine Learning

The (simplified) linear prediction function uses schema abstraction (f) to compute a 
prediction for a module of features (Feature).

    def linear_predict[Feature, Weight][x...] =

        sum[f: Weight[f] * Feature[f, x...]] +

        sum[f: Weight[f, Feature[f, x...]]] +

        Weight[:bias]

    def linear_regression[Feature, Response, Weight] =

        minimize[rmse[linear_predict[Feature, Weight], Response]]

Rel => Core Rel generates a sum of the features (which typically have a specific schema).
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Example: Gradient Descent

Simplified batch gradient descent:

def max_k = 200

def alpha = 0.01

def predict[i] = linear_predict[features, weight[i]]

def predict_error[i] = rmse[response, predict[i]]

def gradient = jacobian[predict_error, weight]

def weight[i, f] =

    weight[i - 1, f] - alpha * gradient[i - 1, i - 1, f],

    i < max_k

Instantiation:

def features:gdp_per_capita = min_max_normalization[gdp_per_capita]

def response = life_satisfaction

                               (This is for illustration purposes: linear regression does not normally use gradient descent)
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Schema Abstraction

Query the schema and visualize with graphviz

module schema_graph[G]

    def node(x) = G(x, _)

    def edge(e, tx, ty) =

        G(e, x, y) and

        G(tx, x) and

        G(ty, y) and

        Entity(x) and

        Entity(y) 

        from x, y

end

def output = graphviz[schema_graph[flight_graph]]

Schema = data: library applies to both
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Schema Abstraction

Schema: shortest path from Flight to State 

    shortest_path[schema_graph[flight_graph], :Flight, :State]

         Flight -> destination -> Airport -> located_in -> State

         Flight -> origin      -> Airport -> located_in -> State

Schema: all acyclic paths from Flight to State

    acyclic_path[schema_graph[flight_graph], :Flight, :State]

        Flight -> destination -> Airport -> located_in -> City -> located_in -> County -> located_in -> State

        Flight -> destination -> Airport -> located_in -> City -> located_in -> State

        Flight -> destination -> Airport -> located_in -> County -> located_in -> State

        Flight -> destination -> Airport -> located_in -> State

        ...

Note: The path algorithms are written in Rel (not foreign functions)
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Feature Engineering: Describe

Similar to Dataframes, describe, implemented in Rel, generically reports statistics for a 
collection of relations.

describe[airport]

describe[t: ActualAirport <: airport[t]]

         Elevation  State    Facility    ....
---------------------------------------
min           -210     AK    AIRPORT                (Furnace Creek, CA)
max         12,442     WY    ULTRALIGHT             (Berthoud Pass, CO)
mean         1,143
std          1,444
25%     270
50%     745
75%          1,220
unique                 58    7
mode  TX    AIRPORT

         Elevation  ...
------------------
max         9,927                                   (Lake County, CO)
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Describe Implementation in Rel

def describe[R][column] = describe_full[R[column]]

def describe_full[R, :count] = count[R]

def describe_full[R, :min]   = min[R]

def describe_full[R, :max]   = max[R]

def describe_full[R, :unique]    = count[last[R :> (x: not Number(x))]]

def describe_full[R, :mode]      = mode[R :> (x: not Number(x))]

def describe_full[R, :mode_freq] = max[frequency[R :> (x: not Number(x))]]

def describe_full[R, :mean]  = mean[R :> Number]

def describe_full[R, :std]   = sample_stddev[R :> Number]

def describe_full[R, :"25%"] = percentile[(R :> Number), 25]

def describe_full[R, :"50%"] = median[R :> Number]

def describe_full[R, :"75%"] = percentile[(R :> Number), 75]

This implementation feels 
very dynamic in nature but 
this is all handled at 
compile-time and the logic is 
specialized to the actual R. 



Incremental Computation

Core Innovations for 
Relational Knowledge Graphs



Incremental Computation

changes

View / Reasoning / Knowledge / Semantics Layer



Dependency Graph of Tax Analysis Logic
3.6K relations, 13K dependencies

replacing millions of lines of procedural code



Dependency Graph of Tax Analysis Logic
Focus: Single strongly-connected component (recursion)



Incremental Computation
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database
at time t1

database
at time t2

result
(materialized view)

result
(materialized view)

computation

changes

maintenance

computation

Inputs can change along 
two dimensions:

I) Changes caused by 
changes to the state of  
the database

Goal: maintain computations (views) incrementally wrt changes in the inputs.



Incremental Computation
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Goal: maintain computations (views) incrementally wrt changes in the inputs.

Inputs can change along 
two dimensions:

I) Changes caused by 
changes to the state of  
the database

II) Changes caused by 
iterative computations



The Incremental Maintenance Stack
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RAI aims to support incremental processing of changes to code as well as data.

Dependency tracking to determine which computations are affected by a change.

Demand-driven execution to only compute what users are actively interested in.

Differential computation to incrementally maintain even general recursion.

Semantic information to determine that a recursive computation is monotonic

Semantic optimization to recover better maintenance algorithms where possible.



Algorithms for Incremental Computation

● Semi-naive evaluation for stratified Datalog

● Generalized semi-naive evaluation (recognize more logic as monotonic)

● Differential dataflow for general non-monotonic logic

Naive

for t = 1, 2, … do
Rt = F(Rt-1)
if Rt = Rt-1 return Rt

end

Generalized Semi-naive

for t = 1, 2, … do
δRt =  F(Rt-1) ⛔ Rt-1

Rt = Rt-1 ⊕ δRt
if δRt = ∅ return Rt

end

F : recursive 
program

Differential
Program
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● Convergence of Datalog over (Pre-) Semirings
Abo Khamis, Ngo, Pichler, Suciu, Wang, PODS 2022 (Best paper award)

● Differential dataflow
McSherry, Murray, Isaacs, Isard, CIDR 2013

● Reconciling Differences
Green, Ives, Tannen, Theory of Computing Systems 2011

● F-IVM: Incremental View Maintenance with Triple Lock Factorization Benefits
Nikolic and Olteanu, SIGMOD 2018

Incremental Computation: Resources and Influences



Join Algorithms

Core Innovations for 
Relational Knowledge Graphs



Join algorithms used in SQL-based relational databases are binary join algorithms. 
For knowledge graphs intermediate results are too large. Example:

      directed(d, m) and child(d, a) and acted_in(a, m)

Binary join options:

      directed(d, m) and child(d, a)

        not selective: most directors have children!

      directed(d, m) and acted_in(a, m)

        not selective: every movie has a director and actors!

      child(d, a) and acted_in(a, m)

        not selective: every actor has parents!

This is one reason for the stigma 'joins are bad'

d

a

mdirected

acted_in
child

Movie

Actor

Director

Triangle Graph Pattern

Knowledge Graphs need different join algorithms

92



Three ways of looking at WCOJ

We use worst-case optimal join algorithms. This is a new class of algorithms 
whose properties and trade-offs are not yet well understood.

Leapfrog Triejoin (LFTJ), GenericJoin and Dovetail Join are WCOJ algorithms.

We look at the properties from three angles:

⇒ Exploit sparsity in data

⇒ Recast the subquery problem and embrace correlation

⇒ Recast index selection problem
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WCOJ uses sparsity of all relations to narrow down search

ma

14

Female

Asian

Director

OscarWinner

ponb

7) seek m 

6) seek m 

3) seek f

5) seek m

4) seek g 

2) seek c

1) seek c

c d e f g

Worst-case optimal join (WCOJ) algorithms use the sparsity of all relations 
to narrow down the search.

Chloé Zhao



Worst-case Optimal Joins: Basic Background
Multi-way joins are used continuously, not just for unary joins

d

a

mdirected

acted_in
child

    child(d, a) and directed(d, m) and acted_in(a, m)

Given a variable ordering of d, a,  m (determined by query optimizer)

     child(d, _)
    directed(d, _)

    child[d](a)
    acted_in(a, _)

    directed[d](m)
    acted_in[a](m)

WCOJ exploits all correlation simultaneously

find directors d who directed some 
movie and have some child

find children a of director d who 
acted_in some movie

find movies m directed by d and 
acted_in by actor a (intersection)

Movie

Actor

Director



How we recast the subquery problem
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Two undesirable approaches
(SQL systems attempt to rewrite and decorrellate to avoid these)

We address subqueries with two powerful and general methods

1. Uncorrelated subqueries are handled by semantic optimizer
2. Embrace correlation: WCOJ is also a correlated join device!

select 
  user.id, 
  (

   
  )
from user
where user.country = 'Mordor'

Outer query
for each row do

Subquery

Top-down:  Nested Loop Bottom-up:  (over)-compute once and reuse

Outer query
join with S

S = Subquery

select count(*)
from post
where post.user_id = user.id



How we recast the index selection problem
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Index-selection and auto-tuning is an unsolved problem.

RelationalAI users cannot be asked to manually define indexes, and 
even supervised tuning approaches are not acceptable.

Our solution:
● Everything is an index in our graph-like schemas

Compare: RDF triple stores that create indexes for all orderings
Compare: SQL table stores with an index for every functional dependency

● WCOJ is a device to create composite indexes on-the-fly, cheaply



model

brand

How we recast the index selection problem
WCOJ is a device to create composite indexes on-the-fly, cheaply
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Our Evaluation Strategy: Compiled and Vectorized
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Compiler and vectorized interpreter are implemented in Julia,
which helps with the maintenance concerns of two back-ends.

Compiled and vectorized evaluation can be mixed in single plan!

Tuple at-a-time
Interpreter

Compiler Vectorized
Interpreter

Low latency

Good performance
per tuple

Vectorized WCOJ is an 
open research problem!



Dovetail Join Compiler (not yet published)
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Dovetail Join is a new join algorithm invented in January 2019.
It addresses typical sources of inefficiency with worst-case optimal join 
algorithms: 

Dovetail/FSM is an implementation of Dovetail that leverages Julia's runtime code 
generation to produce ultra-efficient join kernels.

OVERHEAD ADDRESSED VIA

Runtime bookkeeping for join state Encode as finite state machine

Overhead from abstract iterators Works directly on raw iterators

Dynamic dispatch Specialization
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Worst-case optimal join algorithms
● Worst-case Optimal Join Algorithms

Ngo, PODS 2012 (Best paper award)
● Leapfrog Triejoin: A Simple, Worst-Case Optimal Join Algorithm

Veldhuizen, ICDT 2015 (Best Newcomer Award)
● A Worst-case Optimal Join Algorithm for SPARQL

Hogan, ISWC 2019
● Worst-Case Optimal Graph Joins in Almost No Space

Arroyuelo, SIGMOD 2021

Correlated Subqueries
● Unnesting Arbitrary Queries

Neumann, BTW 2015
● How Materialize and other databases optimize SQL subqueries

Brandon, Materialize Deep Dive, March 2021

Join Algorithms: Resources and Influences



Semantic Optimization

Core Innovations for 
Relational Knowledge Graphs



Semantic Optimization
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Data Answer
Rel 

model

Equivalent Rel 
modelsKnowledge

Semantic
Optimizer

Optimized 
Rel model
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What Knowledge

User-specified constraints
● Functional dependencies etc
● Total functions, disjoint etc

Mathematical axioms
● Semirings, rings, fields, lattices, ...

Learned from the data
● Data: Summary statistics, histograms
● Query: Samples cardinality estimation
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Semantic Optimization

min[i, j: f[i] + g[j]]

min[f] + min[g]

count[f ✕ g]

count[f] * count[g]

Using mathematical knowledge in semantic optimization

optimizer optimizer

min[i: f[i] + g[i]]

min[f] + min[g]

optimizer
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count[a, b, c: R(a) and S(b) and T(c) and a < b < c]

sum[b: count[a: R(a) and S(b) and a < b] *

       count[c: S(b) and T(c) and b < c]]

Semantic Optimization is not Syntactic or Ad-hoc

optimizer



             count[x, y: R(x) and S(y) and x != y]

      count[R] * count[S] - count[x, y: R(x) and S(y) and x = y]

107

Semantic Optimization is not Syntactic or Ad-hoc

optimizer
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LSQB Query 6

def q6 =
    count[p1, p2, p3, tag:
        knows(p1, p2) and
        knows(p2, p3) and
        interest(p3, tag) and
        p1 != p3]

def q6   = sum[tmp[p3] for p1, p2, p3 where knows(p1, p2) and knows(p2, p3)] - err1 - err2
def err2 = sum[tmp[p3] for p1, p2, p3 where knows(p1, p2) and knows(p2, p3) and p1 = p3]
def err1 = sum[tmp[p1] for p1, p2 where knows(p1, p2)]
def tmp[p3] = count[tag: interest(p3, tag)]

RAI on 1 core: 11s
Umbra on 1 core: 76s
Umbra on 48 cores: 2.5s

p1 p2 p3 tag
knows knows interest

!=

LSQB: A Large-Scale Subgraph Query Benchmark 

optimizer

https://dl.acm.org/doi/pdf/10.1145/3461837.3464516


109

Semantic Optimization: Running Total

def running_total[t] =
    sum[series[prev] for prev where prev <= t]

def running_total[t] =
    series[t], first(t)

def running_total[t] =
    running_total[previous[t]] + series[t]

(imagine not having to remember window function syntax!)

optimizer Knowledge: ordering 
on the temporal 
dimension

def partial_order(D, ≼) =
    reflexive(D, ≼) and
    antisymmetric(D, ≼) and
    transitive(D, ≼)

def reflexive(D, ∼) =
    forall(a ∈ D: a ∼ a)

def transitive(D, ∼) =
    forall(a ∈ D, b ∈ D, c ∈ D:
        a ∼ b and b ∼ c implies a ∼ c)
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    def path[x, y] = edge[x, y]
    def path[x, y] = path[x, t] + edge[t, y] from t

  def shortest_path[x, y] = min[path[x, y]]

    def shortest_path[x, y] =
      min[edge[x, y]; shortest_path[x, t] + edge[t, y] from t]

optimizer

Push min aggregation into a recursive path to derive Dijkstra's algorithm

Semantic Optimization: Push Agg into Recursion
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def bacon_number[p] =
    shortest_path[co_star ✕ 1][KevinBacon, p]

def bacon_number[p] =
    min[num:
        co_star(KevinBacon, p) and num = 1
        or exists(t: co_star(t, p) and num = bacon_number[t] + 1)
    ]

Optimize all-pairs shortest path to single-source shortest path using
 demand transformation

optimizer

Semantic Optimizer: Push Demand into Recursion
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Optimization supports Abstraction

def shortest_path[x, y] = min[path[x, y]]

   No need for separate single-source vs all-pairs definitions
Reuse the very large path relation.

def scc[x] = min[v: reachable(x,v) and reachable(v, x)]

Reuse the very large reachable relation.

def wcc[x] = min[reachable_undirected[x]]

Reuse the very large reachable_undirected relation.

def mean[R] = sum[R] / count[R]

Pretty bad without aggregation optimization



113

● FAQ: Questions Asked Frequently
Khamis, Ngo, Rudra, PODS 2016 (Best Paper Award)

● What Do Shannon-type Inequalities, Submodular Width, and 
Disjunctive Datalog Have to Do with One Another
Khamis, Ngo, Suciu, PODS 2017

● Precise complexity analysis for efficient Datalog queries
Tekle et al., PPDP 2010

● Functional Aggregate Queries with Additive Inequalities
Khamis et al., PODS 2019

● Convergence of Datalog over (Pre-) Semirings
Khamis, Ngo, Pichler, Suciu, Wang, PODS 2022 (Best paper award)

● Factorised representations of query results: size bounds and readability
Olteanu, Zavodny, ICDT 2012 (2022 Test of time award)

Semantic Optimization: Resources and Influences



Live Programming and 
Incrementality

Core Innovations for 
Relational Knowledge Graphs



The Incremental Maintenance Stack
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RAI aims to support incremental processing of changes to code as well as data.

Dependency tracking to determine which computations are affected by a change.

Demand-driven execution to only compute what users are actively interested in.

Differential computation to incrementally maintain even general recursion.

Semantic information to determine that a recursive computation is monotonic

Semantic optimization to recover better maintenance algorithms where possible.



Eagerly maintaining the entire model is not a good idea at this scale.

RAI is entirely demand-driven, which means that computations only happen when the result is 
needed (or when executed in the background to catch up). The architecture is based on PL 
incremental compiler research for IDEs.

Challenges:

- when to do invalidation and evaluation
- incrementally maintaining cyclic computation (scc)

Incrementality and Demand-driven Evaluation

116
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Eager maintenance is bad

Lazy maintenance is bad
detecting dirty computations is too 
expensive when an output is quered.

Best: Eager invalidation
lazy evaluation

Inputs

Outputs

Inputs

Outputs

Inputs

Outputs



Dependency Graph of Tax Analysis Logic
3.6K relations, 13K dependencies

replacing millions of lines of procedural code



Dependency Graph of Tax Analysis Logic
Focus: Single strongly-connected component (recursion)



Dependency Graph for Application Logic in Tax Analysis
Focus: Single node with many dependencies
Dependency Graph of Tax Analysis Logic
Focus: Single node with many dependencies



The architecture is based on PL incremental compiler research for IDEs.

Key ingredients:
- Precise dependency tracking (treat access to the catalog as queries)
- Memoization and invalidation (on input changes)

We've open-sourced Salsa.jl, our framework for writing responsive compilers.
- Responsive compilers - Nicholas Matsakis - PLISS 2019 
- JuliaCon 2020 - Salsa.jl - Nathan Daly 

Incrementality and Demand-driven Evaluation
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https://www.youtube.com/watch?v=N6b44kMS6OM
https://www.youtube.com/watch?v=0uzrH2Ee494


Relational Models for
Machine Learning
Unconstrained Optimization Models

Core Innovations for 
Relational Knowledge Graphs



⨝

Step 1: throw away all 
the structure and 
knowledge on the data 
set (eg dependencies).

Feature extraction query

k f1 f2 f3 ... y

Current Practice in Machine Learning

123

Beautiful relational schema
without redundancy

Design matrix: the ultimate 
denormalization

⨝



sku store date sold

1 S1  2022-03-26 5

1 S1  2022-03-27 7

1 S1  2022-03-28 3

sku color price

 1 Red $5.14

store city size

S1 Seattle 4000 sqft

city state

Seattle WA

date temp

 2022-03-26 53

sku store date sold color price city size state temp

1 S1  2022-03-26 5 Red $5.14 Seattle 4000 sqft WA 53

1 S1  2022-03-27 7 Red $5.14 Seattle 4000 sqft WA 53

1 S1  2022-03-28 3 Red $5.14 Seattle 4000 sqft WA 53

sku store date sold Red Green price Seattle San Diego size WA CA temp

1 S1 2022-03-26 5 1 0 $5.14 1 0 4000 sqft 1 0 53

1 S1 2022-03-27 7 1 0 $5.14 1 0 4000 sqft 1 0 53



Relational Modelling for Machine Learning
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With our research network we have developed training methods that do not 
require creating a design matrix of features and operate directly on the 
relational structure.

Key innovations:

● Rel language  - concisely expressing generic machine learning models

● Automatic differentiation of relational cost function

● Semantic optimizer - exploit relational structure and independence

● Optimization method executed iteratively in RAI system 

● Execute large numbers of aggregations efficiently



Rel - Math for Linear Regression
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Generic models
This is in a reusable library. Note this uses Rel schema abstraction (features is schema)

    def predict_linear[X, M][k...] =

        sum[f: M[f] * X[f, k...]] + sum[f: M[f, X[f, k...]]] + M[:bias]

    def linear_regression[X, Y, M] =

        minimize[rmse[predict_linear[X, M], Y]]

Application-specific instantiation

    def features[:gdp_per_capita] = ...

    def response = life_satisfaction

    def model = linear_regression[features, response, initial_point]



Semantic Optimization for Covariance Matrix
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Generic covariance matrix:
    def covariance[j, k] =

        sum[st, sk, d: design_matrix[j, st, sk, d] * design_matrix[k, st, sk, d]]

Imagine the specialize to price and size:
    def covariance[:price, :size] =

        sum[st, sk, d: design_matrix[:size, st, sk, d] * design_matrix[:price, st, sk, d]]

Price is independent of store and date
Size is independent of sku and date

    def covariance[:price, :size] =

        (sum[st: features[:price, st]] * count[stores] * count[dates]) *

        (sum[sk: features[:size, sk]] * count[skus] * count[dates])

sku store date sold Red Green price Seattle San Diego size WA CA

1 S1 2022-03-26 5 1 0 $5.14 1 0 4000 sqft 1 0

1 S1 2022-03-27 7 1 0 $5.14 1 0 4000 sqft 1 0
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Relational Machine Learning: Resources and Influences

● A Layered Aggregate Engine for Analytics Workloads
Schleich, Olteanu, Khamis, Ngo, Nguyen, SIGMOD 2019

● Learning Models over Relational Data Using Sparse Tensors and Functional Dependencies
Khamis, Ngo, Nguyen, Olteanu, Schleich, PODS 2018, TODS 2020

● The Relational Data Borg is Learning
Olteanu, VLDB 2020 Keynote (youtube recording: /watchv=0ic0jMjOpM0, /watchv=kWm-0BnbEoU)

● Structure-Aware Machine Learning over Multi-Relational Databases
Schleich, PhD thesis, Honorable mention for the 2021 SIGMOD Jim Gray Doctoral Dissertation Award

● Relational Knowledge Graphs as the Foundation for Artificial Intelligence
Aref (youtube recording: /watchv=VpyGbjUzG7Y)

● Rk-means: Fast Clustering for Relational Data
Curtin, Moseley, Ngo, Nguyen, Olteanu, Schleich, AISTATS 2020

https://www.youtube.com/watch?v=0ic0jMjOpM0
https://www.youtube.com/watch?v=kWm-0BnbEoU
https://www.youtube.com/watch?v=VpyGbjUzG7Y


Relational Models for 
Mathematical Optimization
Constrained Optimization Models

Core Innovations for 
Relational Knowledge Graphs



Optimization
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Unconstrained Optimization
● Objective: the error/loss function
● Solver: differentiable function, often gradient descent
● All solutions are acceptable

Constrained optimization
● Objective: minimize or maximize the function
● Solver: LP, ILP, MIP etc
● Not all solutions are acceptable: constraints
● Mathematical optimization problems are specified in high-level math 

expressions (AMPL, JuMP). The problems are easily written in Rel



Model for
Manufacturing
Problem

var Make{p in PROD}           

maximize Profit: sum{p in PROD} prod_profit[p] * Make[p];

subject to Time: sum{p in PROD} (1 / prod_rate[p]) * Make[p] <= 40;

subject to Limit{p in PROD}: 0 <= Make[p] <= prod_max[p]

@variable(model, make[products]) 
@objective(model, Max, sum(prod_profit[p] * make[p] for p in products))
@constraint(model, sum(1 / prod_rate[p] * make[p] for p in products) <= 40)
@constraint(model, [p in products], 0 <= make[p] <= prod_max[p])



Relational Model
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Rel supports expressing the objective function and constraints.

The system grounds the constraint in the database and pass the problem to a 
solver (eg CPLEX, Gurobi, Xpress)

    def total_profit =
        sum[prod_profit[p] * make[p] for p in products]

    def time_avail() =
        sum[(1 / prod_rate[p]) * make[p] for p in products] ≼ avail

    def demand_market() =
        forall(p in products: make[p] ≼ prod_market[p])

Optimization happens in the dependency graph, so inputs to the solver can 
computed Rel definitions or even other optimization problems.



Interfaces: SQL 💗 Rel

Core Innovations for 
Relational Knowledge Graphs



DuckDB-based SQL Interface
DuckDB is an embeddable SQL OLAP database management system with great 
performance, excellent quality, small footprint and enjoying quick adoption.

RAI uses DuckDB for SQL support. Rel is used to model SQL tables, which are used 
by DuckDB for SQL query evaluation. Individual 'columns' can be data vs views.

DuckDB has outstanding support
for working with a dynamic catalog.

Other approaches we evaluated:

- Calcite
- DuckDB query plan
- PostgreSQL parser

RelationalAI is partner of DuckDB Labs and member of the DuckDB foundation

module order
    def orderkey[o] = ...
    def customer[o] = ...
    def orderdate[o] = ...
    def totalprice[o] = sum[num: charge[o, num]]
end

SELECT orderkey, customer, orderdate
FROM order
WHERE totalprice > 100



Recap
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Incremental computation for
fixpoint computation and 
database changes

Rel - An expressive 
relational language Semantic optimization 

Vectorized engine and 
compiled WCOJ algorithms, 
addressing subquery and 
index selection.

Relational machine learning 
utilizing semantic optimization.

SQL support with
DuckDB engine

Large scale 
reasoning

Relational models for 
mathematical optimization

Immutable database in 
durable object storage, 
including immutable 
catalog. Write-optimized.
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"KGC Bob Muglia" for modern data stack and relational knowledge graph 

Youtube 

"CMU RelationalAI" for RAI system overview

Youtube

"DSDSD Bravenboer" for different RAI system overview

Youtube

https://twitter.com/RelationalAI 

Learn More

https://www.youtube.com/watch?v=Smbr-SW-fuQ
https://www.youtube.com/watch?v=WRHy7M30mM4
https://www.youtube.com/watch?v=KUf7xG3zGrI
https://twitter.com/RelationalAI


Thank you! 


