
Design and Implementation of the
RelationalAI System
UW - Advanced Topics in Data Management
June 17, 2022

Martin Bravenboer
VP Engineering

The next-generation database system
for intelligent data apps

based on relational knowledge graphs

Innovations for Relational Knowledge Graphs

1. Immutability - Cloud native architecture

2. Expressive relational language (Rel)

3. Join algorithms

4. Semantic optimization

5. Vectorized and JIT compilation of WCOJ

6. Live - Incrementality (for data and logic)

3

Challenges in Database System Design and Implementation

Data structures and memory management
● In-memory performance for modern workloads exceeding available memory and disk
● Write-optimized data structures for modern workloads in cloud native architecture

Query processing
● Index selection (what indexes to define for a workload)
● Efficient evaluation of subqueries
● Relational query processing of graph workloads (complex joins)
● Materialized view selection (with views to materialize for a workload)
● Incremental computation (recursion) and maintenance wrt input changes

Concurrency and workload management
● Optimization of bottom-up vs top-down (demand-driven) evaluation
● Optimization of very large computation graphs
● Strong consistency, scalability of read-only and write workload

General Architecture
● Eliminate the split brain: moving computations to the data management system
● Maximal independence of application logic vs machine representation and organization of data (relational model)
● Language support for abstraction (libraries)
● Language support for schema abstraction (generic programming) 4

Dependency Graph of Tax Analysis Logic
3.6K relations, 13K dependencies

replacing millions of lines of procedural code

Dependency Graph of Tax Analysis Logic
Focus: Single strongly-connected component (recursion)

The Modern Data Stack

Modern database systems are cloud native

8

Modern database systems are implemented with cloud native architecture that
separates storage from compute.

This architecture makes it possible to provide compelling features like:

● Infinite storage - store all your data regardless of structure or volume

● Infinite compute - run any number of workloads without concurrency limits

● Versioning - time-travel, zero-copy cloning

● Fully managed - workload management with minimal user intervention

● Data sharing - collaboration, live sharing, access to external data

Cloud Data Platform
(warehouse, lakehouse)

System of
Record

The Modern Data Stack

BI Tools

Notebooks

ML Feature
Engineering

Data Apps

System of
Record

The Modern Data Stack

BI Tools

Notebooks

ML Feature
Engineering

Data Apps

The Semantic Layer

Miles
Kilometers

Period
Minutes
HoursHours

MinutesPrimary key

Possible values

Risk of
messing up
aggregates

Are these
exclusive

Include helicopters

Not a delay

Let's build a data app for an order database (TPC-H, Northwind etc)

Example functionality:
- What is the average charge of orders by week

- What percentage of orders were late this year

- If two consecutive orders for a customer are late,
alert the account manager

The system cannot answer such questions if it does not know
what late and charge mean to begin with!

The Semantic Layer and Data Apps

13

How many movies has Meryl Streep been in per decade

What movies has Johnny Depp acted in since 2015

dimension: is_order_paid {

 type: yesno

 sql: ${status} = 'paid' ;;

}

dimension: full_name {

 type: string

 sql: CONCAT(${first_name}, ' ', ${last_name}) ;;

}

dimension: profit {

 type: number

 sql: ${revenue} - ${cost} ;;

}

dimension: distance_to_pickup {

 type: distance

 start_location_field: customer.home_location

 end_location_field: rental.pickup_location

 units: miles

}

dimension: store_location {

 type: location

 sql_latitude: ${store_latitude} ;;

 sql_longitude: ${store_longitude} ;;

}
16

measure: cumulative_total_revenue {

 type: running_total

 sql: ${total_sale_price} ;;

}

measure: total_gross_margin {

 type: sum

 value_format_name: usd

 sql: ${gross_margin} ;;

}

measure: percent_of_total_gross_margin {

 type: percent_of_total

 sql: ${total_gross_margin} ;;

}

https://docs.looker.com/reference

https://docs.looker.com/reference

Malloy

17

https://github.com/looker-open-source/malloy

source: users is table('malloy-data.ecomm.users') {

 primary_key: id

 dimension: full_name is concat(first_name, ' ', last_name)

 measure: user_count is count()

}

source: iowa is table('malloy-data.iowa_liquor_sales.sales_deduped') {

 dimension: gross_margin is 100 * (state_bottle_retail - state_bottle_cost) / nullif(state_bottle_retail, 0)

 dimension: price_per_100ml is state_bottle_retail / nullif(bottle_volume_ml, 0) * 100

}

source: flights is table('malloy-data.faa.flights') {

 dimension: distance_km is distance / 1.609344

 measure: flight_count is count()

 rename: destination_code is destination

}

https://github.com/looker-open-source/malloy

18

order_payments as (
 select
 order_id,
 {% for payment_method in payment_methods -%}
 sum(case when payment_method = '{{ payment_method }}'
 then amount else 0 end
) as {{ payment_method }}_amount,
 {% endfor -%}
 sum(amount) as total_amount
 from payments
 group by order_id)

upvote_count AS (
 SELECT
 awardable_id AS dim_issue_id,
 SUM(IFF(award_emoji_name LIKE 'thumbsup%', 1, 0)) AS thumbsups_count,
 SUM(IFF(award_emoji_name LIKE 'thumbsdown%', 1, 0)) AS thumbsdowns_count,
 thumbsups_count - thumbsdowns_count AS upvote_count
 FROM gitlab_dotcom_award_emoji_source
 WHERE awardable_type = 'Issue'
 GROUP BY 1)

customer_orders as (
 select
 customer_id,
 min(order_date) as first_order,
 max(order_date) as most_recent_order,
 count(order_id) as number_of_orders
 from orders
 group by customer_id)

gitlab_dotcom_issues_source AS (
 SELECT *
 FROM {{ ref('gitlab_dotcom_issues_source')}}
 {% if is_incremental() %}
 WHERE updated_at >= (SELECT MAX(updated_at) FROM {{this}})
 {% endif %})

Knowledge Graphs

Semantic Layer

Reasoning

Views

19

Data Apps, Reasoning & Knowledge

changes

Views / Reasoning / Knowledge / The Semantic Layer

The Semantic Layer - Rel

Let's build a data app for an order database (TPC-H, Northwind etc)

Example functionality:
- What is the average charge of orders by week

- What percentage of orders were late this year

- If two consecutive orders for a customer are late,
alert the account manager

The system cannot answer such questions if it does not know
what late and charge mean to begin with!

The Semantic Layer and Data Apps

22

Data Apps, Reasoning & Knowledge

Given: extendedprice, discount, tax

def item_revenue[o, num] =
 extendedprice[o, num] * (1 - discount[o, num])

def revenue[o] =
 sum[num: item_revenue[o, num]]

def item_charge[o, num] =
 item_revenue[o, num] * (1 + tax[o, num])

def charge[o] =
 sum[num: item_charge[o, num]]

23

Data Apps, Reasoning & Knowledge

def received_late(o, num) =
 commitdate[o, num] < receiptdate[o, num]

def late(o) =
 exists(num: received_late(o, num))

Given: commitdate, receiptdate

24

Miles
Kilometers

Period
Minutes
HoursHours

MinutesPrimary key

Possible values

Risk of
messing up
aggregates

Are these
exclusive

Include helicopters

Not a delay

26

Better Conceptual Model
def Heliport(x in Airport) =

 fac_type(x, "HELIPORT")

def cancelled(f in Flight) =

 flight(f) and flight_cancelled(f, "Y")

def arrival_delay[f in Flight] =

 ^Minute[maximum[0, arr_delay[f]]

def coordinate[x in Airport] =

 ^LLA[latitude[x], longitude[x], elevation[x]]

def airport_distance[a1 in Airport, a2 in Airport] =

 distance[coordinate[a1], coordinate[a2]]

Reasoning manages app logic with the data

Reasoning subsumes business logic now
implemented procedurally in languages like Java,
C#, Python, Scala, PL/SQL, T/SQL etc.

Fixing the “split brain” problem where the data is
managed in one layer and knowledge/semantics
in another will have huge impact.

Bringing the app logic to the data makes it
possible for one (cloud native) system to manage
the semantics, integrity, and resources needed for
the application.

Relational Models

3

1

2

4

Directed Graphs as a Relation

edge(2, 1)
edge(2, 4)

edge(3, 1)
edge(3, 2)
edge(3, 4)

29

Labelled Property Graphs as Relational Graphs

30

 Movie
 title: Dune
 year: 2021
 id: 3

 Director
 Writer
 name: Villeneuve
 id: 2

 Actor
 name: Chalamet
 id: 1

movie(3)
title(3, "Dune")
year(3, 2021)

director(2)
writer(2)
name(2, "Villeneuve")

directed(2, 3)

actor(1)
name(1, "Chalamet")

acted(1, 3)
role(1, 3, "Paul Atreides")

acted
role: Paul Atreides

directed

Tables as a Collection of Relations

31

 orderkey customer date price

 1 500 2022-03-27 75

 2 23 2022-03-27 43

1
75

500

price

date

customer

2

2022-03-27

43

23

price

date

customer

 customer(1, 500)
 customer(2, 23)

 date(1, 2022-03-27)
 date(2, 2022-03-27)

 price(1, 75)
 price(2, 43)

date

SQL tables are in a sense a modularity construct,
grouping relations with the same primary key.

32

Recall ...

Tensors as Relations

33

A relational database system that is effective for tensors
would be an outstanding proof-point for the relational model.

(and imagine the data management benefits this would have for ML systems!)

(1, 4)
(2, 1)
(3, 8)

(1, 1, -1.3)
(1, 2, 0.6)
(2, 1, 20.4)
(2, 2, 5.5)
(3, 1, 9.7)
(3, 2, -6.2)

binary relationvector

matrix ternary relation

Tensors as Relations: Matrix Multiplication

def C[i, j] = sum[k: A[i, k] * B[k, j]]

Rel Our new relational language

Matrix multiplication diagram.svg, CC BY-SA 3.0, User:Bilou

SQL
SELECT A.row, B.col, SUM(A.val * B.val)
FROM A INNER JOIN B ON A.col = B.row
GROUP BY A.row, B.col

Math
Deep Learning with Relations at NeurIPS

https://slideslive.com/38970787/deep-learning-with-relations?ref=account-folder-92050-folders

The Essence of the Relational Model

35

Have relational database systems been sufficiently ambitious on this point

Architecture

Cloud Region

Cloud Native Deployment Architecture

Scalable, durable object storage
Immutable, versioned, write-optimized, paged data structures

Engine
Transient

RAM, SSD cache

Serverless Engine
Transient

RAM, SSD cache

Engine
Transient

RAM, SSD cache

Services (JSON, Arrow)

RAI SDK (Python, Julia, JS, Go, Java, C#)

RAI CLIRAI ConsoleVSCode

 CAS Key-Value Store
 (Only database root pointers)

Data Apps SQL Apps Legend Apps

Future

 LLVM

Coexist as One Happy Relational Family

38

 Relational Knowledge Graph System

 SQL

Core Rel IR

 Legend

GQL

SPARQL

GraphQL Rel

Specialized
Solvers

RDF

SQL RDBMS CDC

CSV

LPG

Tensor data

JSON

Parquet, Iceberg

Binary objects

Internal Engine Architecture

Parse

Type Inference

Specialization to first-order logic

Dependency analysis Semantic optimization

Physical optimization

Evaluation (vectorized + JIT)

Dependency analysis

Metadata database (Salsa + Arroyo)
Demand-driven computation and provenance for incrementality and live programming

Rel Model

JuliaCon 2020 - Salsa.jl - Nathan Daly

https://www.youtube.com/watch?v=0uzrH2Ee494

Core Innovations for
Relational Knowledge Graphs

Immutable Data Structures
for Cloud Object Storage

RAI Storage and Memory Management
(inspired by Snowflake and Umbra/Leanstore)

41

Scalable, durable object storage

Ephemeral SSD cache

RAM cache (buffer pool)

fetch and evict

evict

fetch
evict
commit

RAI databases are immutable, including the catalog

demo

key/value store with CAS
rel A

rel B

rel C

...

RAI databases are immutable, including the catalog

demo

key/value store with CAS

transaction
updates C

rel A

rel B

rel C

rel C'

...

RAI databases are immutable, including the catalog

demo

demo-2022-03-25

key/value store with CAS

transaction
updates C

rel A

rel B

rel C

rel C'

...

demo-2022-03-25

demo

RAI databases are immutable, including the catalog

key/value store with CAS
rel A

rel B

rel C'

...

RAI databases are immutable, including the catalog

demo-2022-03-25

demo

key/value store with CAS
rel A

rel B

rel C'

transaction

...

Key: immutable tables ⟶ immutable catalog

Isolation: strict serializability
- Must: Anything weaker causes inconsistencies for data apps (depending on lock granularity)

- No locks need to be acquired (concurrent writes can be executed optimistically)

- Effectively unlimited read scalability
- No limit on the duration of a transaction

DDL is atomic
- Must: Schema changes are common in data apps and live programming
- Cloning a database is an atomic O(1) operation
- Perfect for as-of (system time) queries, what-if analysis

Write-optimized data structures 💕 immutable object storage
- Must: Removing write amplification is critical for object storage (Bε-tree)
- Group commits and variable page sizes to reduce write throughput needs

No transaction log is needed for durability or recovery
- Previous version immutable. Commits atomic in KV store (CAS)

48

Elastic Storage Management
● The Snowflake Elastic Data Warehouse

Dageville et al., SIGMOD 2016
● Building an Elastic Query Engine on Disaggregated Storage

Vuppalapati et al., NSDI 2020

Write Optimization
● Lower Bounds for External Memory Dictionaries

Brodal et al., SODA 2003
● An Introduction to Bε -trees and Write-Optimization

Bender et al., :login: magazine, 2015
● Design and Implementation of the LogicBlox System

Aref et al. SIGMOD 2015

In-Memory Performance
● LeanStore: In-Memory Data Management Beyond Main Memory

Leis et al., ICDE 2018
● Umbra: A Disk-Based System with In-Memory Performance

Neumann et al., CIDR 2020

Storage Management: Influences and Resources

Rel
A Productive and Expressive Relational Language

Core Innovations for
Relational Knowledge Graphs

50

Datalog and First-order Logic

Transitive closure

 ancestor(x, y) :- parent(x, y)

 ancestor(x, y) :- parent(x, t) and ancestor(t, y)

 reachable(x, y) :- edge(x, y)

 reachable(x, y) :- edge(x, t) and reachable(t, y)

Functional dependency

 function_age() :- forall(x, v, w: age(x, v) and age(x, w) implies v = w)

 function_name() :- forall(x, v, w: name(x, v) and name(x, w) implies v = w)

 function_address() :- forall(x, v, w: address(x, v) and address(x, w) implies v = w)

Average

 average_sales(x, y, w) :- sum_sales(x, y, u) and count_sales(x, y, v) and w = u / v

 average_returns(x, y, w) :- sum_returns(x, y, u) and count_returns(x, y, v) and w = u / v

51

Datalog

Good
● Outstanding formal foundation
● Mutually recursive definitions

More is needed
● Classic Datalog (globally stratified) is too limited for graph workloads:

○ Value creation in recursion
○ Aggregation in recursion
○ Negation in recursion

● Datalog does not support abstraction (similar to SQL, Cypher, SPARQL etc)
○ Abstract over concrete relations
○ Abstract over schema

 Rel: Datalog is the IR

52

Small core Designed for growth: whole is greater than sum of the parts

Declarative Maximize opportunities for executing programs in different ways

Relational Data independence (representation, ordering, semantic stability)

Abstraction Libraries of reusable functionality (eg statistics, graph analytics)
Encourage an ecosystem of reusable components

Abstraction without regret Aggressive optimizations to compile abstraction cost aways.

Schema abstraction Logically treating schema as data to support schema-generic logic
Prevent the need for code generators
Support interactive schema discovery (reflection)

Live programming Support arbitrary schema changes
Ingest data without upfront schema into an efficient representation
Incorrect application logic is a valid state
Support gradually enforcing a schema with integrity constraints

Rel - Design Objectives

Miles
Kilometers

Period
Minutes
HoursHours

MinutesPrimary key

Possible values

Risk of
messing up
aggregates

Are these
exclusive

Include helicopters

Not a delay

54

Better Conceptual Model

def Heliport(x in Airport) =
 fac_type(x, "HELIPORT")

def cancelled(f in Flight) =
 flight(f) and flight_cancelled(f, "Y")

def origin(f in Flight, a in Airport) =
 flight_origin(f, code) and
 airport_code(a, code)
 from code

def destination(f in Flight, a in Airport) =
 flight_destination(f, code) and
 airport_code(a, code)
 from code

def airport_distance[a1 in Airport, a2 in Airport] =
 distance[coordinate[a1], coordinate[a2]]

def located_in(x, y) =
 exists(t: located_in(x, t) and located_in(t, y))

55

Data Integrity

Nodes involved in relationships

 ic forall(f, ap: origin(f, ap) implies Flight(f) and Airport(ap))

Required relationships

 ic forall(f: Flight(f) implies exists origin[f])

Functional dependency (flight can have only one origin)

 ic forall(x, v, w: origin(x, v) and origin(x, w) implies v = w)

Arbitrarily complex

 ic forall(f in cancelled: not exists flight_duration[f])

 ic forall(f in flight: cancelled(f) xor diverted(f) xor arrived(f))

56

Aggregation

Total number of flights
 count[Flight]

Carrier with most flights
 c: count[f: operated_by(f, c)]

Carriers mean arrival delay
 c: mean[f.arrival_delay for f where operated_by(f, c)]

Airport ratio of cancelled arriving flights
 ap: ratio[cancelled, ap.arriving_flight]

Southwest 5,775,777
Delta 4,477,929
American 4,434,727

37,561,525

Airtran 15 min
Atlantic Coast 13 min
United Airlines 13 min
...
Aloha Airlines 6 min
Hawaiian Airlines 3 min

Unalaska 19%
Worcester Regional 11%
Nantucket Memorial 9%

57

Abstraction and Value Types

Recall from the model
 def airport_distance[ap1 in Airport, ap2 in Airport] =

 distance[coordinate[ap1], coordinate[ap2]]

 def coordinate[a in Airport] =

 ^LLA[latitude[a], longitude[a], elevation[a]]

 def arrival_delay[f in Flight] =

 ^Minute[maximum[0, arr_delay[f]]

Units of measurements to prevent miscalculation
 def LengthUnit = :Feet; :Meters; :Miles; :Kilometers

 value type Length = LengthUnit, Number

 value type Degree = Number

 value type LLA = Degree, Degree, Length

 def distance[x in LLA, y in LLA] =

 haversine[earth_radius, x, y]

 def earth_radius = ^Length[:Kilometers, 6378.1]

The type system of Rel prevents a
runtime cost of tracking units of
measurement.

Statically Rel guarantees that the
correct conversions are applied and
no incompatible values can be used
in operations.

58

Schema Abstraction

Count all nodes

 count[x, v: flight_graph(x, v)]

Count all nodes, grouped by type

 x: count[v: flight_graph(x, v)]

 38,061,144

 Flight 37,561,525

 Aircraft 359,928

 AircraftModel 60,461

 City 50,944

 Airport 19,793

 Heliport 5,135

 County 3,009

 Major 270

 State 58

 Carrier 21

Rel is not a dynamic language (nor a triple store). Rel exposes the schema logically as data
and uses partial evaluation methods to infer and specialize the program to the schema.

59

Graph Analytics

Rel can express graph algorithms, for example pagerank and shortest path.

Shown: pagerank for
major airports

Highlighted is a shortest
path between two nodes.

Rel supports geographical data and JSON.
The maps are computed in Rel from shapes
of the states, part of the knowledge graph.
Visualization is Vega-Lite.

60

Basic graph algorithms

Neighbor (undirected edge)
 def neighbor(x, y) = edge(x, y) or edge(y, x)

 def cn[x, y] = count[intersect[neighbor[x], neighbor[y]]]

Degree
 def outdegree[x] = count[edge[x]]

 def degree[x] = count[neighbor[x]]

Similarity
 def cosine_sim[x, y] = cn[x, y] / sqrt[degree[x] * degree[y]]

 def jaccard_sim[x, y] = cn[x, y] / count[neighbor[x]] + count[neighbor[y]] - cn[x, y]

Transitive closure (reachability)
 def reachable(x, y) = edge(x, y)

 def reachable(x, y) = exists(t: edge(x, t) and reachable(t, y))

61

Basic graph algorithms

Weakly connected components
 def wcc[x] = min[reachable_undirected[x]]

Weakly connected components (without reachable)
 def wcc[x] = minimum[min[neighbor[x]], min[wcc[z] for z in neighbor[x]]

Strongly connected components
 def scc[x] = min[v: reachable(x, v) and reachable(v, x)]

The purpose of the semantic
optimizer of RelationalAI is to
automate this optimization by using
the algebraic properties of minimum.

62

Basic graph algorithms

Breadth-first search

 def bfs[x in root] = 0

 def bfs[x] = min[bfs[x]; bfs[y: edge(y, x)] + 1]

63

Shortest Distance

Shortest distance between two nodes

 def path[x, y] = distance[x, y]
 def path[x, y] = path[x, t] + distance[t, y] from t

 def shortest_distance[x, y] = min[path[x, y]]

Shortest distance between two nodes (Bellman-Ford)

 def shortest_distance[x, y] =

 min[distance[x, y];

 (shortest_distance[x, t] + distance[t, y] from t)]

The purpose of the semantic
optimizer of RelationalAI is to
automate this optimization by
using the algebraic
properties of minimum and
addition.

64

def bacon_number[p] =
 shortest_distance[(co_star, 1)[KevinBacon, p]

def bacon_number[p] =
 min[num:
 co_star(KevinBacon, p) and num = 1
 or exists(t: co_star(t, p) and num = bacon_number[t] + 1)
]

Optimize all-pairs shortest path to single-source shortest path using
 demand transformation

optimizer

Semantic Optimizer: Push Demand into Recursion

65

Pagerank

Non-monotonic, relying on reaching a fixpoint

def damping = 0.85

def pagerank[x in node] = 1.0, not(pagerank(x, _))

def pagerank[y in node] =
 (1.0 - damping) +

 damping * sum[pagerank[x] / outdegree[x] for x where edge(x, y)]

Iterative

def damping = 0.85

def pagerank[x in node, 0] = 1.0

def pagerank[y in node, i in range[0, 20, 1]] =
 (1.0 - damping) +

 damping * sum[pagerank[x, i - 1] / outdegree[y] for x where edge(x, y)]

TigerGraph Graph Data Science Library

MinAccum<INT> @min_cc_id = 0;

MapAccum<INT, INT> @@comp_sizes_map;

MapAccum<INT, ListAccum<INT>> @@comp_group_by_size_map;

Start = {v_type};

S = SELECT x

 FROM Start:x

 POST-ACCUM x.@min_cc_id = getvid(x);

WHILE (S.size()>0) DO

 S = SELECT t

 FROM S:s -(e_type:e)- v_type:t

ACCUM t.@min_cc_id += s.@min_cc_id

HAVING t.@min_cc_id != t.@min_cc_id';

END;

HeapAccum<Vertex_Score>(top_k, score DESC) @@top_scores_heap;

MaxAccum<FLOAT> @@max_diff = 9999;

SumAccum<FLOAT> @sum_recvd_score = 0;

SumAccum<FLOAT> @sum_score = 1;

SetAccum<EDGE> @@edge_set;

Start = {v_type};

WHILE @@max_diff > max_change

 LIMIT max_iter DO

 @@max_diff = 0;

 V = SELECT s

FROM Start:s -(e_type:e)- v_type:t

ACCUM

 t.@sum_recvd_score += s.@sum_score/(s.outdegree(e_type))

POST-ACCUM

 s.@sum_score = (1.0-damping) + damping * s.@sum_recvd_score,

 s.@sum_recvd_score = 0,

 @@max_diff += abs(s.@sum_score - s.@sum_score');

END; # END WHILE loop

https://github.com/tigergraph/gsql-graph-algorithms

Pagerank WCC

https://github.com/tigergraph/gsql-graph-algorithms

67

Recursion: Program Analysis (Doop)

def VarPointsTo(var, heap) =
 AssignHeapAllocation(var, heap)

def VarPointsTo(to, heap) =
 Assign(from, to) and
 VarPointsTo(from, heap)

def VarPointsTo(to, heap) =
 LoadInstanceField(base, signature, to) and
 VarPointsTo(base, baseheap) and
 InstanceFieldPointsTo(baseheap, signature, heap)

def InstanceFieldPointsTo(baseheap, signature, heap) =
 StoreInstanceField(from, base, signature) and
 VarPointsTo(base, baseheap) and
 VarPointsTo(from, heap)

68

Syntactic Second-order Features

Transitive closure (reachability)

 def ancestor(x, y) = parent(x, y)

 def ancestor(x, y) = exists(t: parent(x, t) and ancestor(t, y))

Abstract

 def tc[E](x, y) = E(x, y)

 def tc[E](x, y) = exists(t: E(x, t) and tc[E](t, y))

Use

 def ancestor = tc[parent]

69

Syntactic Second-order Features

Mean (average)

 sum[sales] / count[sales]

Abstract

 def mean[F] = sum[F] / count[F]

Use

 mean[sales]

70

Syntactic Second-order Features

Functional dependency

 forall(x, v, w: origin(x, v) and origin(x, w) implies v = w)

Abstract

 def function(R) =

 forall(k..., v1, v2 where R(k..., v1) and R(k..., v2): v1 = v2)

Use

 function(origin)

Library Example: Graph Analytics
module graph_analytics[G]

 with G use node, edge

 def neighbor(x, y) = edge(x, y) or edge(y, x)

 def outdegree[x] = count[edge[x]]

 def degree[x] = count[neighbor[x]]

 def cn[x, y] = count[intersect[neighbor[x], neighbor[y]]]

 def reachable = edge; reachable.edge

 def reachable_undirected = neighbor; reachable_undirected.neighbor

 def scc[x] = min[v: reachable(x, v) and reachable(v, x)]

 def wcc[x] = min[reachable_undirected[x]]

 def cosine_sim[x, y] = cn[x, y] / sqrt[degree[x] * degree[y]]

 def jaccard_sim[x, y] = cn[x, y] / count[neighbor[x]] + count[neighbor[y]] - cn[x, y]

 ...

end

72

Library Example: Relational Algebra to Calculus

def intersect[R, S](x...) = R(x...) and S(x...)

def union[R, S](x...) = R(x...) or S(x...)

def diff[R, S](x...) = R(x...) and not S(x...)

def subset[R, S] = forall(x... where R(x...): S(x...))

def disjoint(R, S) = empty(R ∩ S)
def empty(R) = not exists(x...: R(x...))

def (∩) = intersect
def (∪) = union

def (×) = cart

def (⊂) = proper_subset

def (⊆) = subset

73

Library Example: Statistics

RelationalAI features a large library of reusable functionality implemented in Rel.

def mean[F] = sum[F] / count[F]

def frequency[R, elem] = count[x...: R(x..., elem)]

def mse[Yhat, Y] = sum[x: (Y[x] - Yhat[x]) ^ 2] / count[Y]

def rmse[Yhat, Y] = sqrt[mse[Yhat, Y]]

74

Library Example: Machine Learning

Generic abstractions for feature scaling

 def mean_normalization[F][x...] =

 (F[x...] - mean[F]) / (max[F] - min[F]), (max[F] > min[F])

 def min_max_normalization[F][x...] =

 (F[x...] - min[F]) / (max[F] - min[F]), (max[F] > min[F])

 def zscore_normalization[F][x...] =

 (F[x...] - mean[F]) / standard_deviation[F]

75

{%- if include_columns=='*' -%}
{%- set all_source_columns = adapter.get_columns_in_relation(source_table) | map(attribute='quoted') -%}
{% set include_columns = all_source_columns %}
{%- endif -%}

-- generate a CTE for each source column, a single row containing the aggregates
with
{% for source_column in source_columns %}
 {{ source_column }}_aggregates as (
 select
 min({{ source_column }}) as min_value,
 max({{ source_column }}) as max_value
 from {{ source_table }}
)
{% if not loop.last %}, {% endif %}
{% endfor %}

select
 {% for column in include_columns %}
 source_table.{{ column }},
 {% endfor %}
 {% for source_column in source_columns %}
 ({{ source_column }} - {{ source_column }}_aggregates.min_value)
 / ({{ source_column }}_aggregates.max_value - {{ source_column }}_aggregates.min_value) as {{ source_column }}_scaled
 {% if not loop.last %}, {% endif %}
 {% endfor %}
from
 {% for source_column in source_columns %}
 {{ source_column }}_aggregates,
 {% endfor %}
 {{ source_table }} as source_table

76

Library Example: Machine Learning

The (simplified) linear prediction function uses schema abstraction (f) to compute a
prediction for a module of features (Feature).

 def linear_predict[Feature, Weight][x...] =

 sum[f: Weight[f] * Feature[f, x...]] +

 sum[f: Weight[f, Feature[f, x...]]] +

 Weight[:bias]

 def linear_regression[Feature, Response, Weight] =

 minimize[rmse[linear_predict[Feature, Weight], Response]]

Rel => Core Rel generates a sum of the features (which typically have a specific schema).

77

Example: Gradient Descent

Simplified batch gradient descent:

def max_k = 200

def alpha = 0.01

def predict[i] = linear_predict[features, weight[i]]

def predict_error[i] = rmse[response, predict[i]]

def gradient = jacobian[predict_error, weight]

def weight[i, f] =

 weight[i - 1, f] - alpha * gradient[i - 1, i - 1, f],

 i < max_k

Instantiation:

def features:gdp_per_capita = min_max_normalization[gdp_per_capita]

def response = life_satisfaction

 (This is for illustration purposes: linear regression does not normally use gradient descent)

78

Schema Abstraction

Query the schema and visualize with graphviz

module schema_graph[G]

 def node(x) = G(x, _)

 def edge(e, tx, ty) =

 G(e, x, y) and

 G(tx, x) and

 G(ty, y) and

 Entity(x) and

 Entity(y)

 from x, y

end

def output = graphviz[schema_graph[flight_graph]]

Schema = data: library applies to both

79

Schema Abstraction

Schema: shortest path from Flight to State

 shortest_path[schema_graph[flight_graph], :Flight, :State]

 Flight -> destination -> Airport -> located_in -> State

 Flight -> origin -> Airport -> located_in -> State

Schema: all acyclic paths from Flight to State

 acyclic_path[schema_graph[flight_graph], :Flight, :State]

 Flight -> destination -> Airport -> located_in -> City -> located_in -> County -> located_in -> State

 Flight -> destination -> Airport -> located_in -> City -> located_in -> State

 Flight -> destination -> Airport -> located_in -> County -> located_in -> State

 Flight -> destination -> Airport -> located_in -> State

 ...

Note: The path algorithms are written in Rel (not foreign functions)

80

Feature Engineering: Describe

Similar to Dataframes, describe, implemented in Rel, generically reports statistics for a
collection of relations.

describe[airport]

describe[t: ActualAirport <: airport[t]]

 Elevation State Facility

min -210 AK AIRPORT (Furnace Creek, CA)
max 12,442 WY ULTRALIGHT (Berthoud Pass, CO)
mean 1,143
std 1,444
25% 270
50% 745
75% 1,220
unique 58 7
mode TX AIRPORT

 Elevation ...

max 9,927 (Lake County, CO)

81

Describe Implementation in Rel

def describe[R][column] = describe_full[R[column]]

def describe_full[R, :count] = count[R]

def describe_full[R, :min] = min[R]

def describe_full[R, :max] = max[R]

def describe_full[R, :unique] = count[last[R :> (x: not Number(x))]]

def describe_full[R, :mode] = mode[R :> (x: not Number(x))]

def describe_full[R, :mode_freq] = max[frequency[R :> (x: not Number(x))]]

def describe_full[R, :mean] = mean[R :> Number]

def describe_full[R, :std] = sample_stddev[R :> Number]

def describe_full[R, :"25%"] = percentile[(R :> Number), 25]

def describe_full[R, :"50%"] = median[R :> Number]

def describe_full[R, :"75%"] = percentile[(R :> Number), 75]

This implementation feels
very dynamic in nature but
this is all handled at
compile-time and the logic is
specialized to the actual R.

Incremental Computation

Core Innovations for
Relational Knowledge Graphs

Incremental Computation

changes

View / Reasoning / Knowledge / Semantics Layer

Dependency Graph of Tax Analysis Logic
3.6K relations, 13K dependencies

replacing millions of lines of procedural code

Dependency Graph of Tax Analysis Logic
Focus: Single strongly-connected component (recursion)

Incremental Computation

86

database
at time t1

database
at time t2

result
(materialized view)

result
(materialized view)

computation

changes

maintenance

computation

Inputs can change along
two dimensions:

I) Changes caused by
changes to the state of
the database

Goal: maintain computations (views) incrementally wrt changes in the inputs.

Incremental Computation

87

Goal: maintain computations (views) incrementally wrt changes in the inputs.

Inputs can change along
two dimensions:

I) Changes caused by
changes to the state of
the database

II) Changes caused by
iterative computations

The Incremental Maintenance Stack

88

RAI aims to support incremental processing of changes to code as well as data.

Dependency tracking to determine which computations are affected by a change.

Demand-driven execution to only compute what users are actively interested in.

Differential computation to incrementally maintain even general recursion.

Semantic information to determine that a recursive computation is monotonic

Semantic optimization to recover better maintenance algorithms where possible.

Algorithms for Incremental Computation

● Semi-naive evaluation for stratified Datalog

● Generalized semi-naive evaluation (recognize more logic as monotonic)

● Differential dataflow for general non-monotonic logic

Naive

for t = 1, 2, … do
Rt = F(Rt-1)
if Rt = Rt-1 return Rt

end

Generalized Semi-naive

for t = 1, 2, … do
δRt = F(Rt-1) ⛔ Rt-1

Rt = Rt-1 ⊕ δRt
if δRt = ∅ return Rt

end

F : recursive
program

Differential
Program

90

● Convergence of Datalog over (Pre-) Semirings
Abo Khamis, Ngo, Pichler, Suciu, Wang, PODS 2022 (Best paper award)

● Differential dataflow
McSherry, Murray, Isaacs, Isard, CIDR 2013

● Reconciling Differences
Green, Ives, Tannen, Theory of Computing Systems 2011

● F-IVM: Incremental View Maintenance with Triple Lock Factorization Benefits
Nikolic and Olteanu, SIGMOD 2018

Incremental Computation: Resources and Influences

Join Algorithms

Core Innovations for
Relational Knowledge Graphs

Join algorithms used in SQL-based relational databases are binary join algorithms.
For knowledge graphs intermediate results are too large. Example:

 directed(d, m) and child(d, a) and acted_in(a, m)

Binary join options:

 directed(d, m) and child(d, a)

 not selective: most directors have children!

 directed(d, m) and acted_in(a, m)

 not selective: every movie has a director and actors!

 child(d, a) and acted_in(a, m)

 not selective: every actor has parents!

This is one reason for the stigma 'joins are bad'

d

a

mdirected

acted_in
child

Movie

Actor

Director

Triangle Graph Pattern

Knowledge Graphs need different join algorithms

92

Three ways of looking at WCOJ

We use worst-case optimal join algorithms. This is a new class of algorithms
whose properties and trade-offs are not yet well understood.

Leapfrog Triejoin (LFTJ), GenericJoin and Dovetail Join are WCOJ algorithms.

We look at the properties from three angles:

⇒ Exploit sparsity in data

⇒ Recast the subquery problem and embrace correlation

⇒ Recast index selection problem

93

WCOJ uses sparsity of all relations to narrow down search

ma

14

Female

Asian

Director

OscarWinner

ponb

7) seek m

6) seek m

3) seek f

5) seek m

4) seek g

2) seek c

1) seek c

c d e f g

Worst-case optimal join (WCOJ) algorithms use the sparsity of all relations
to narrow down the search.

Chloé Zhao

Worst-case Optimal Joins: Basic Background
Multi-way joins are used continuously, not just for unary joins

d

a

mdirected

acted_in
child

 child(d, a) and directed(d, m) and acted_in(a, m)

Given a variable ordering of d, a, m (determined by query optimizer)

 child(d, _)
 directed(d, _)

 child[d](a)
 acted_in(a, _)

 directed[d](m)
 acted_in[a](m)

WCOJ exploits all correlation simultaneously

find directors d who directed some
movie and have some child

find children a of director d who
acted_in some movie

find movies m directed by d and
acted_in by actor a (intersection)

Movie

Actor

Director

How we recast the subquery problem

96

Two undesirable approaches
(SQL systems attempt to rewrite and decorrellate to avoid these)

We address subqueries with two powerful and general methods

1. Uncorrelated subqueries are handled by semantic optimizer
2. Embrace correlation: WCOJ is also a correlated join device!

select
 user.id,
 (

)
from user
where user.country = 'Mordor'

Outer query
for each row do

Subquery

Top-down: Nested Loop Bottom-up: (over)-compute once and reuse

Outer query
join with S

S = Subquery

select count(*)
from post
where post.user_id = user.id

How we recast the index selection problem

97

Index-selection and auto-tuning is an unsolved problem.

RelationalAI users cannot be asked to manually define indexes, and
even supervised tuning approaches are not acceptable.

Our solution:
● Everything is an index in our graph-like schemas

Compare: RDF triple stores that create indexes for all orderings
Compare: SQL table stores with an index for every functional dependency

● WCOJ is a device to create composite indexes on-the-fly, cheaply

model

brand

How we recast the index selection problem
WCOJ is a device to create composite indexes on-the-fly, cheaply

1 Ford

1 Escape
2 Cherokee

2 Jeep

1Ford
2Jeep

2
Escape 1
Cherokee

1

Ford

Escapemodel

brand

2

Jeep

Cherokeemodel

brand

Ford
Jeep

Graph Indexes available w/o sortingIndex Building Blocks

Cherokee
EscapeFord

JeepCherokee
EscapeFord

Jeep

Ford
Jeep

1
2 Cherokee

Escape

Cherokee
Escape

Cherokee
Escape Ford

Jeep Cherokee
Escape Ford

Jeep
1
2

Cherokee
Escape 1

2
Ford
Jeep

1
2

Ford
Jeep

Ford
Jeep

1
2

Cherokee
Escape 1

2

1
2

Ford
Jeep

1
2 Cherokee

Escape

1
2 Cherokee

Escape 1
2 Cherokee

Escape Ford
Jeep

1
2

Our Evaluation Strategy: Compiled and Vectorized

99

Compiler and vectorized interpreter are implemented in Julia,
which helps with the maintenance concerns of two back-ends.

Compiled and vectorized evaluation can be mixed in single plan!

Tuple at-a-time
Interpreter

Compiler Vectorized
Interpreter

Low latency

Good performance
per tuple

Vectorized WCOJ is an
open research problem!

Dovetail Join Compiler (not yet published)

100

Dovetail Join is a new join algorithm invented in January 2019.
It addresses typical sources of inefficiency with worst-case optimal join
algorithms:

Dovetail/FSM is an implementation of Dovetail that leverages Julia's runtime code
generation to produce ultra-efficient join kernels.

OVERHEAD ADDRESSED VIA

Runtime bookkeeping for join state Encode as finite state machine

Overhead from abstract iterators Works directly on raw iterators

Dynamic dispatch Specialization

101

Worst-case optimal join algorithms
● Worst-case Optimal Join Algorithms

Ngo, PODS 2012 (Best paper award)
● Leapfrog Triejoin: A Simple, Worst-Case Optimal Join Algorithm

Veldhuizen, ICDT 2015 (Best Newcomer Award)
● A Worst-case Optimal Join Algorithm for SPARQL

Hogan, ISWC 2019
● Worst-Case Optimal Graph Joins in Almost No Space

Arroyuelo, SIGMOD 2021

Correlated Subqueries
● Unnesting Arbitrary Queries

Neumann, BTW 2015
● How Materialize and other databases optimize SQL subqueries

Brandon, Materialize Deep Dive, March 2021

Join Algorithms: Resources and Influences

Semantic Optimization

Core Innovations for
Relational Knowledge Graphs

Semantic Optimization

103

Data Answer
Rel

model

Equivalent Rel
modelsKnowledge

Semantic
Optimizer

Optimized
Rel model

104

What Knowledge

User-specified constraints
● Functional dependencies etc
● Total functions, disjoint etc

Mathematical axioms
● Semirings, rings, fields, lattices, ...

Learned from the data
● Data: Summary statistics, histograms
● Query: Samples cardinality estimation

105

Semantic Optimization

min[i, j: f[i] + g[j]]

min[f] + min[g]

count[f ✕ g]

count[f] * count[g]

Using mathematical knowledge in semantic optimization

optimizer optimizer

min[i: f[i] + g[i]]

min[f] + min[g]

optimizer

106

count[a, b, c: R(a) and S(b) and T(c) and a < b < c]

sum[b: count[a: R(a) and S(b) and a < b] *

 count[c: S(b) and T(c) and b < c]]

Semantic Optimization is not Syntactic or Ad-hoc

optimizer

 count[x, y: R(x) and S(y) and x != y]

 count[R] * count[S] - count[x, y: R(x) and S(y) and x = y]

107

Semantic Optimization is not Syntactic or Ad-hoc

optimizer

108

LSQB Query 6

def q6 =
 count[p1, p2, p3, tag:
 knows(p1, p2) and
 knows(p2, p3) and
 interest(p3, tag) and
 p1 != p3]

def q6 = sum[tmp[p3] for p1, p2, p3 where knows(p1, p2) and knows(p2, p3)] - err1 - err2
def err2 = sum[tmp[p3] for p1, p2, p3 where knows(p1, p2) and knows(p2, p3) and p1 = p3]
def err1 = sum[tmp[p1] for p1, p2 where knows(p1, p2)]
def tmp[p3] = count[tag: interest(p3, tag)]

RAI on 1 core: 11s
Umbra on 1 core: 76s
Umbra on 48 cores: 2.5s

p1 p2 p3 tag
knows knows interest

!=

LSQB: A Large-Scale Subgraph Query Benchmark

optimizer

https://dl.acm.org/doi/pdf/10.1145/3461837.3464516

109

Semantic Optimization: Running Total

def running_total[t] =
 sum[series[prev] for prev where prev <= t]

def running_total[t] =
 series[t], first(t)

def running_total[t] =
 running_total[previous[t]] + series[t]

(imagine not having to remember window function syntax!)

optimizer Knowledge: ordering
on the temporal
dimension

def partial_order(D, ≼) =
 reflexive(D, ≼) and
 antisymmetric(D, ≼) and
 transitive(D, ≼)

def reflexive(D, ∼) =
 forall(a ∈ D: a ∼ a)

def transitive(D, ∼) =
 forall(a ∈ D, b ∈ D, c ∈ D:
 a ∼ b and b ∼ c implies a ∼ c)

110

 def path[x, y] = edge[x, y]
 def path[x, y] = path[x, t] + edge[t, y] from t

 def shortest_path[x, y] = min[path[x, y]]

 def shortest_path[x, y] =
 min[edge[x, y]; shortest_path[x, t] + edge[t, y] from t]

optimizer

Push min aggregation into a recursive path to derive Dijkstra's algorithm

Semantic Optimization: Push Agg into Recursion

111

def bacon_number[p] =
 shortest_path[co_star ✕ 1][KevinBacon, p]

def bacon_number[p] =
 min[num:
 co_star(KevinBacon, p) and num = 1
 or exists(t: co_star(t, p) and num = bacon_number[t] + 1)
]

Optimize all-pairs shortest path to single-source shortest path using
 demand transformation

optimizer

Semantic Optimizer: Push Demand into Recursion

112

Optimization supports Abstraction

def shortest_path[x, y] = min[path[x, y]]

 No need for separate single-source vs all-pairs definitions
Reuse the very large path relation.

def scc[x] = min[v: reachable(x,v) and reachable(v, x)]

Reuse the very large reachable relation.

def wcc[x] = min[reachable_undirected[x]]

Reuse the very large reachable_undirected relation.

def mean[R] = sum[R] / count[R]

Pretty bad without aggregation optimization

113

● FAQ: Questions Asked Frequently
Khamis, Ngo, Rudra, PODS 2016 (Best Paper Award)

● What Do Shannon-type Inequalities, Submodular Width, and
Disjunctive Datalog Have to Do with One Another
Khamis, Ngo, Suciu, PODS 2017

● Precise complexity analysis for efficient Datalog queries
Tekle et al., PPDP 2010

● Functional Aggregate Queries with Additive Inequalities
Khamis et al., PODS 2019

● Convergence of Datalog over (Pre-) Semirings
Khamis, Ngo, Pichler, Suciu, Wang, PODS 2022 (Best paper award)

● Factorised representations of query results: size bounds and readability
Olteanu, Zavodny, ICDT 2012 (2022 Test of time award)

Semantic Optimization: Resources and Influences

Live Programming and
Incrementality

Core Innovations for
Relational Knowledge Graphs

The Incremental Maintenance Stack

115

RAI aims to support incremental processing of changes to code as well as data.

Dependency tracking to determine which computations are affected by a change.

Demand-driven execution to only compute what users are actively interested in.

Differential computation to incrementally maintain even general recursion.

Semantic information to determine that a recursive computation is monotonic

Semantic optimization to recover better maintenance algorithms where possible.

Eagerly maintaining the entire model is not a good idea at this scale.

RAI is entirely demand-driven, which means that computations only happen when the result is
needed (or when executed in the background to catch up). The architecture is based on PL
incremental compiler research for IDEs.

Challenges:

- when to do invalidation and evaluation
- incrementally maintaining cyclic computation (scc)

Incrementality and Demand-driven Evaluation

116

117

Eager maintenance is bad

Lazy maintenance is bad
detecting dirty computations is too
expensive when an output is quered.

Best: Eager invalidation
lazy evaluation

Inputs

Outputs

Inputs

Outputs

Inputs

Outputs

Dependency Graph of Tax Analysis Logic
3.6K relations, 13K dependencies

replacing millions of lines of procedural code

Dependency Graph of Tax Analysis Logic
Focus: Single strongly-connected component (recursion)

Dependency Graph for Application Logic in Tax Analysis
Focus: Single node with many dependencies
Dependency Graph of Tax Analysis Logic
Focus: Single node with many dependencies

The architecture is based on PL incremental compiler research for IDEs.

Key ingredients:
- Precise dependency tracking (treat access to the catalog as queries)
- Memoization and invalidation (on input changes)

We've open-sourced Salsa.jl, our framework for writing responsive compilers.
- Responsive compilers - Nicholas Matsakis - PLISS 2019
- JuliaCon 2020 - Salsa.jl - Nathan Daly

Incrementality and Demand-driven Evaluation

121

https://www.youtube.com/watch?v=N6b44kMS6OM
https://www.youtube.com/watch?v=0uzrH2Ee494

Relational Models for
Machine Learning
Unconstrained Optimization Models

Core Innovations for
Relational Knowledge Graphs

⨝

Step 1: throw away all
the structure and
knowledge on the data
set (eg dependencies).

Feature extraction query

k f1 f2 f3 ... y

Current Practice in Machine Learning

123

Beautiful relational schema
without redundancy

Design matrix: the ultimate
denormalization

⨝

sku store date sold

1 S1 2022-03-26 5

1 S1 2022-03-27 7

1 S1 2022-03-28 3

sku color price

 1 Red $5.14

store city size

S1 Seattle 4000 sqft

city state

Seattle WA

date temp

 2022-03-26 53

sku store date sold color price city size state temp

1 S1 2022-03-26 5 Red $5.14 Seattle 4000 sqft WA 53

1 S1 2022-03-27 7 Red $5.14 Seattle 4000 sqft WA 53

1 S1 2022-03-28 3 Red $5.14 Seattle 4000 sqft WA 53

sku store date sold Red Green price Seattle San Diego size WA CA temp

1 S1 2022-03-26 5 1 0 $5.14 1 0 4000 sqft 1 0 53

1 S1 2022-03-27 7 1 0 $5.14 1 0 4000 sqft 1 0 53

Relational Modelling for Machine Learning

125

With our research network we have developed training methods that do not
require creating a design matrix of features and operate directly on the
relational structure.

Key innovations:

● Rel language - concisely expressing generic machine learning models

● Automatic differentiation of relational cost function

● Semantic optimizer - exploit relational structure and independence

● Optimization method executed iteratively in RAI system

● Execute large numbers of aggregations efficiently

Rel - Math for Linear Regression

126

Generic models
This is in a reusable library. Note this uses Rel schema abstraction (features is schema)

 def predict_linear[X, M][k...] =

 sum[f: M[f] * X[f, k...]] + sum[f: M[f, X[f, k...]]] + M[:bias]

 def linear_regression[X, Y, M] =

 minimize[rmse[predict_linear[X, M], Y]]

Application-specific instantiation

 def features[:gdp_per_capita] = ...

 def response = life_satisfaction

 def model = linear_regression[features, response, initial_point]

Semantic Optimization for Covariance Matrix

127

Generic covariance matrix:
 def covariance[j, k] =

 sum[st, sk, d: design_matrix[j, st, sk, d] * design_matrix[k, st, sk, d]]

Imagine the specialize to price and size:
 def covariance[:price, :size] =

 sum[st, sk, d: design_matrix[:size, st, sk, d] * design_matrix[:price, st, sk, d]]

Price is independent of store and date
Size is independent of sku and date

 def covariance[:price, :size] =

 (sum[st: features[:price, st]] * count[stores] * count[dates]) *

 (sum[sk: features[:size, sk]] * count[skus] * count[dates])

sku store date sold Red Green price Seattle San Diego size WA CA

1 S1 2022-03-26 5 1 0 $5.14 1 0 4000 sqft 1 0

1 S1 2022-03-27 7 1 0 $5.14 1 0 4000 sqft 1 0

128

Relational Machine Learning: Resources and Influences

● A Layered Aggregate Engine for Analytics Workloads
Schleich, Olteanu, Khamis, Ngo, Nguyen, SIGMOD 2019

● Learning Models over Relational Data Using Sparse Tensors and Functional Dependencies
Khamis, Ngo, Nguyen, Olteanu, Schleich, PODS 2018, TODS 2020

● The Relational Data Borg is Learning
Olteanu, VLDB 2020 Keynote (youtube recording: /watchv=0ic0jMjOpM0, /watchv=kWm-0BnbEoU)

● Structure-Aware Machine Learning over Multi-Relational Databases
Schleich, PhD thesis, Honorable mention for the 2021 SIGMOD Jim Gray Doctoral Dissertation Award

● Relational Knowledge Graphs as the Foundation for Artificial Intelligence
Aref (youtube recording: /watchv=VpyGbjUzG7Y)

● Rk-means: Fast Clustering for Relational Data
Curtin, Moseley, Ngo, Nguyen, Olteanu, Schleich, AISTATS 2020

https://www.youtube.com/watch?v=0ic0jMjOpM0
https://www.youtube.com/watch?v=kWm-0BnbEoU
https://www.youtube.com/watch?v=VpyGbjUzG7Y

Relational Models for
Mathematical Optimization
Constrained Optimization Models

Core Innovations for
Relational Knowledge Graphs

Optimization

130

Unconstrained Optimization
● Objective: the error/loss function
● Solver: differentiable function, often gradient descent
● All solutions are acceptable

Constrained optimization
● Objective: minimize or maximize the function
● Solver: LP, ILP, MIP etc
● Not all solutions are acceptable: constraints
● Mathematical optimization problems are specified in high-level math

expressions (AMPL, JuMP). The problems are easily written in Rel

Model for
Manufacturing
Problem

var Make{p in PROD}

maximize Profit: sum{p in PROD} prod_profit[p] * Make[p];

subject to Time: sum{p in PROD} (1 / prod_rate[p]) * Make[p] <= 40;

subject to Limit{p in PROD}: 0 <= Make[p] <= prod_max[p]

@variable(model, make[products])
@objective(model, Max, sum(prod_profit[p] * make[p] for p in products))
@constraint(model, sum(1 / prod_rate[p] * make[p] for p in products) <= 40)
@constraint(model, [p in products], 0 <= make[p] <= prod_max[p])

Relational Model

132

Rel supports expressing the objective function and constraints.

The system grounds the constraint in the database and pass the problem to a
solver (eg CPLEX, Gurobi, Xpress)

 def total_profit =
 sum[prod_profit[p] * make[p] for p in products]

 def time_avail() =
 sum[(1 / prod_rate[p]) * make[p] for p in products] ≼ avail

 def demand_market() =
 forall(p in products: make[p] ≼ prod_market[p])

Optimization happens in the dependency graph, so inputs to the solver can
computed Rel definitions or even other optimization problems.

Interfaces: SQL 💗 Rel

Core Innovations for
Relational Knowledge Graphs

DuckDB-based SQL Interface
DuckDB is an embeddable SQL OLAP database management system with great
performance, excellent quality, small footprint and enjoying quick adoption.

RAI uses DuckDB for SQL support. Rel is used to model SQL tables, which are used
by DuckDB for SQL query evaluation. Individual 'columns' can be data vs views.

DuckDB has outstanding support
for working with a dynamic catalog.

Other approaches we evaluated:

- Calcite
- DuckDB query plan
- PostgreSQL parser

RelationalAI is partner of DuckDB Labs and member of the DuckDB foundation

module order
 def orderkey[o] = ...
 def customer[o] = ...
 def orderdate[o] = ...
 def totalprice[o] = sum[num: charge[o, num]]
end

SELECT orderkey, customer, orderdate
FROM order
WHERE totalprice > 100

Recap

136

Incremental computation for
fixpoint computation and
database changes

Rel - An expressive
relational language Semantic optimization

Vectorized engine and
compiled WCOJ algorithms,
addressing subquery and
index selection.

Relational machine learning
utilizing semantic optimization.

SQL support with
DuckDB engine

Large scale
reasoning

Relational models for
mathematical optimization

Immutable database in
durable object storage,
including immutable
catalog. Write-optimized.

137

"KGC Bob Muglia" for modern data stack and relational knowledge graph

Youtube

"CMU RelationalAI" for RAI system overview

Youtube

"DSDSD Bravenboer" for different RAI system overview

Youtube

https://twitter.com/RelationalAI

Learn More

https://www.youtube.com/watch?v=Smbr-SW-fuQ
https://www.youtube.com/watch?v=WRHy7M30mM4
https://www.youtube.com/watch?v=KUf7xG3zGrI
https://twitter.com/RelationalAI

Thank you!

