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The next-generation database system
for intelligent data apps
based on relational knowledge graphs



Innovations for Relational Knowledge Graphs

1. Immutability - Cloud native architecture
2. Expressive relational language (Rel)

3. Join algorithms

4. Semantic optimization

5. Vectorized and JIT compilation of WCOJ

6. Live - Incrementality (for data and logic)

RelationalAI



Challenges in Database System Design and Implementation

In-memory performance for modern workloads exceeding available memory and disk
Write-optimized data structures for modern workloads in cloud native architecture

Index selection (what indexes to define for a workload)

Efficient evaluation of subqueries

Relational query processing of graph workloads (complex joins)
Materialized view selection (with views to materialize for a workload)
Incremental computation (recursion) and maintenance wrt input changes

Optimization of bottom-up vs top-down (demand-driven) evaluation
Optimization of very large computation graphs
Strong consistency, scalability of read-only and write workload

Eliminate the split brain: moving computations to the data management system

Maximal independence of application logic vs machine representation and organization of data (relational model)
Language support for abstraction (libraries)

Language support for schema abstraction (generic programming)
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" Dependency Graph of Tax Analysis Logic
\ N 3.6K relations, 13K dependencies
- \ replacing millions of lines of procedural code




Dependency Graph of Tax Analysis Logic
Focus: Single strongly-connected component (recursion)




<> Relational AI

The Modern Data Stack
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Modern database systems are cloud native

Modern database systems are implemented with cloud native architecture that
separates storage from compute.

This architecture makes it possible to provide compelling features like:

Infinite storage - store all your data regardless of structure or volume
Infinite compute - run any number of workloads without concurrency limits
Versioning - time-travel, zero-copy cloning

Fully managed - workload management with minimal user intervention

Data sharing - collaboration, live sharing, access to external data
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The Semantic Layer



Primary key
carrier  origin
F9 MCI
WN LBB
NW ATL
DL SLC
WN PHX
WN LAS
WN sJC
WN LAS
DL MSP
DL MSP
WN SJC
WN SJC
NwW ATL
DL MSP
us CHS
FL TPA
WN RDU
HP PHX
us PBI
us PBI
DL GSO

destination
DEN

ELP

MEM

BOI

SAN

AUS

AUS
SLC
SLC

LAS
MEM
ATL
CLT
ATL
PHL
BOS
cLr
cLT
CVG

Include helicopters

Hours
Minutes

flight_num
818
819
819
819
819
819
819
819
819
819
819
819
819
819
820
820
820
820
821
821
821

flight_time  tail_num
89 N916FR
41 N708SW
52 N607NW
48 N296WA
51 N391SW
135 N519SW
63 N528SW
137 N502SW
149 N3754A
145 N37458
54 N730SW
60 N501SW
51 N785NC
120 N906DE
38 N592US
64 NI9S5AT
73 N382swW
0 N826AW

90

N624AU
87

70

dep_time

2005-09-26 08:23:00 UTC
2000-08-18 07:30:00 UTC
2001-11-16 07:15:00 UTC
2001-12-04 22:12:00 UTC
2001-12-05 09:11:00 UTC
2002-04-05 08:18:00 UTC
2002-07-14 06:30:00 UTC
2002-09-16 08:20:00 UTC
2002-09-29 19:34:00 UTC
2002-12-06 19:27:00 UTC
2003-06-26 06:30:00 UTC
2003-09-15 06:30:00 UTC
2003-11-20 07:11:00 UTC
2004-02-10 09:59:00 UTC
2002-07-01 19:32:00 UTC
2003-01-31 11:29:00 UTC

2004-12-02 11:10:00 UTC

2005-10-25 00:00:00 UTC

2002-05-18 06:35:00 UTC

Risk of

messing up
aggregates

Period
Minutes
Hours

arr_time

2005-09-26 09:07:00 UTC
2000-08-18 07:20:00 UTC
2001-11-16 07:29:00 UTC
2001-12-04 23:53:00 UTC
2001-12-05 09:17:00 UTC
2002-04-0512:47:00 UTC
2002-07-14 07:47:00 UTC
2002-09-16 12:52:00 UTC
2002-09-29 21:35:00 UTC
2002-12-06 21:16:00 UTC
2003-06-26 07:44:00 UTC
2003-09-15 07:50:00 UTC
2003-11-20 07:15:00 UTC
2004-02-10 13:36:00 UTC
2002-07-01 20:54:00 UTC
2003-01-31 12:55:00 UTC
2004-12-02 12:31:00 UTC
2005-10-25 00:00:00 UTC
uTC

07:43:.00 UTC

dep_delay

7

Miles
Kilometers

taxi_in

arr_delay  taxi_out
-8 9 6
-5 7 2
-9 19 3
4
Not a delay
3 T 3
-8 1 4
15 25 7
-9 18 6
-1 15 5
0 18 2
-23 10 3
0 30 7
64 9 35
-5 13 9
-19 5 3
0 0 0
-8 10 6
-7 16 7
1 14 74
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distance
533
295
332
291
304
1085
386
1085
991
991
386
386
332
906
168
406
336
2300
590
590
330

Are these
exclusive

cancelled

Z| 22| <:Z| Z|Z[2| Z|Z | 2 2|2 | Z|Z | 22| 2| 2|2 | 2

diverted  id2

36606824
4369021
11838308
12060416
12383068
13763279
15284777
16027516
16399211
17417961
20460576
22113592
23383534
25206983
15142411
17949329
30796766
37174931
14247814

20289351

& | & |P& | BB | | [ | | | | |t | | | | | B | | &

21396171

Possible values
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The Semantic Layer and Data Apps

Let's build a data app for an order database (TPC-H, Northwind etc)

Example functionality:

- Whatis the average charge of orders by week
- What percentage of orders were late this year

- If two consecutive orders for a customer are late,
alert the account manager

The system eannot answer such questions if it does not know

what late and charge mean to begin with! 13



Building Artificial
Intelligence We Can Trust

GARY MARCUS
and ERNEST DAVIS

Suppose, for example, that we hand you a piece of paper with
this short passage:

Two children, Chloe and Alexander, went for a walk. They
both saw a dog and a tree. Alexander also saw a cat and
pointed it out to Chloe. She went to pet the cat.

It is trivial to answer questions like “Who went for a walk?,” in
which the answer (“Chloe and Alexander”) is directly spelled out
in the text, but any competent reader should just as easily be able
to answer questions that are not directly spelled out, like “Did
Chloe see the cat?” and “Were the children frightened by the cat?”
If you can’t do that, you aren’t really following the story. Because
SQuAD didn’t include any questions of this sort, it wasn’t really a
strong test of reading; as it turns out the new AI systems would
not have been able to cope with them.-2 By way of contrast, Gary
tested the story on his daughter Chloe, then four and a half years
old, and she had no trouble making the inference that the ficti-
tious Chloe had seen a cat. (Her older brother, then not quite six
years old, went a step further, musing about what would happen
if the dog actually turned out to be a cat; no current Al could be-
gin to do that.)

<> RelationalAl



How many movies has Meryl Streep been in per decade

=

how many movies has meryl streep been in per decade

TRANSLATED

_count, decade:
_count = count[movie_id:

movie_release_date(movie_id, release_date) and

movie_actor(movie_id, person_id) and
date_year(release_date, year) and

person_name(person_id, "Meryl Streep"

year_decade(year, decade)
from release_date, person_id, year

RESULTS
_count
5
n
12
15
22
Showing all 5 results

) and

decade
1970
1980
1990
2010
2000

<> Relational Al

What movies has Johnny Depp acted in since 2015

what movies has johnny depp acted in since 2015

IIHII

TRANSLATED

movie_id, title, release_date:
movie_title(movie_id, title) and

movie_release_date(movie_id, release_date) and
movie_actor(movie_id, person_id) and
date_after_year(release_date, 2015) and
person_name(person_id, "Johnny Depp")

from person_id

RESULTS

movie_id
166426
241259
259316
290825
382079

title

Pirates of the Caribbean: Dead Men Tell No Tales
Alice Through the Looking Glass

Fantastic Beasts and Where to Find Them

Yoga Hosers

Donald Trump's The Art of the Deal: The Movie

Showing all 5 results

not right?

release_date
2017-05-23
2016-05-25
2016-11-16
2016-07-08
2016-02-10



lookML

measure: cumulative_total revenue {
type: running_total
sql: ${total_sale price} ;;

measure: total _gross_margin {
type: sum
value_format_name: usd
sql: ${gross_margin} ;;

measure: percent_of_total gross_margin {
type: percent_of_total
sql: ${total_gross_margin} ;;

https://docs.looker.com/reference

dimension: is_order_paid {
type: yesno
sql: ${status} = 'paid' ;;

dimension: full_name {

type: string

sql: CONCAT(${first_name}, " ', ${last_name}) ;;
}

dimension: profit {
type: number
sgl: ${revenue} - ${cost} ;;

dimension: distance_to_pickup {
type: distance
start_location_field: customer.home_location
end_location_field: rental.pickup_location
units: miles

}

dimension: store_location {
type: location
sgl latitude: ${store_latitude} ;;
sql longitude: ${store_longitude} ;;

16


https://docs.looker.com/reference

https://github.com/looker-open-source/malloy
/\\ Malloy

source: users is table('malloy-data.ecomm.users') {
primary_key: id
dimension: full name is concat(first_name, ' ', last_name)
measure: user_count is count()

source: iowa is table('malloy-data.iowa liquor_sales.sales_deduped') {
dimension: gross_margin is 100 * (state_bottle retail - state_bottle cost) / nullif(state bottle retail, )
dimension: price_per_100ml is state_bottle_retail / nullif(bottle_volume_ml, @) * 100

source: flights is table('malloy-data.faa.flights') {
dimension: distance_km is distance / 1.609344
measure: flight count is count()
rename: destination _code is destination

17


https://github.com/looker-open-source/malloy

order_payments as (
select
‘ order_id,

{% for payment_method in payment_methods -%}
sum(case when payment_method = '{{ payment_method }}'
then amount else 0 end
) as {{ payment_method }} amount,
{% endfor -%}
sum(amount) as total amount
from payments
group by order_id)

customer_orders as (

select

customer_id, gitlab_dotcom_issues_source AS (

min(order_date) as first_order, SELECT *

max(order_date) as most_recent_order, FROM {{ ref('gitlab_dotcom_issues_source')}}

count(order_id) as number_of_orders {% if is_incremental() %}
from orders WHERE updated _at >= (SELECT MAX(updated_at) FROM {{this}})
group by customer_id) {% endif %})

upvote_count AS (

SELECT
awardable_id AS dim_issue_id,
SUM(IFF(award_emoji_name LIKE 'thumbsup%', 1, @)) AS thumbsups_count, REHCEIEIED.
SUM(IFF(award_emoji_name LIKE 'thumbsdown%', 1, ©)) AS thumbsdowns_count,
thumbsups_count - thumbsdowns_count AS upvote_count Bl Tools st b
FROM gitlab_dotcom award_emoji_source — :::}/} R
WHERE awardable_type = 'Issue’
GROUP BY 1)

Operations
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Knowledge Graphs
Semantic Layer
Reasoning

Views

19
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Data Apps, Reasoning & Knowledge

changes
>

Views [ Reasoning [ Knowledge / The Semantic Layer

A K
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The Semantic Layer - Rel
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The Semantic Layer and Data Apps

Let's build a data app for an order database (TPC-H, Northwind etc)

Example functionality:

- Whatis the average charge of orders by week
- What percentage of orders were late this year

- If two consecutive orders for a customer are late,
alert the account manager

The system eannot answer such questions if it does not know

what late and charge mean to begin with! -



Data Apps, Reasoning & Knowledge

Given: extendedprice, discount, tax
def item_revenue|o, ] =
extendedprice[o, ] * (1 - discount[o,
def revenue[o] =
sum|[ : item_revenue|o, 1]
def item_charge|o, ] =

item_revenue[o, ] * (1 + tax[o, D

def charge[o] =
sum|[ : item_charge[o, 1]

D

RelationalAI

23
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Data Apps, Reasoning & Knowledge

Given: commitdate, receiptdate

def received late(o, ) =
commitdate[o, ] < receiptdatefo, ]

def late(o) =
exists( : received_late(o, ))

24



Primary key
carrier  origin
F9 MCI
WN LBB
NW ATL
DL SLC
WN PHX
WN LAS
WN sJC
WN LAS
DL MSP
DL MSP
WN SJC
WN SJC
NwW ATL
DL MSP
us CHS
FL TPA
WN RDU
HP PHX
us PBI
us PBI
DL GSO

destination
DEN

ELP

MEM

BOI

SAN

AUS

AUS
SLC
SLC

LAS
MEM
ATL
CLT
ATL
PHL
BOS
cLr
cLT
CVG

Include helicopters

Hours
Minutes

flight_num
818
819
819
819
819
819
819
819
819
819
819
819
819
819
820
820
820
820
821
821
821

flight_time  tail_num
89 N916FR
41 N708SW
52 N607NW
48 N296WA
51 N391SW
135 N519SW
63 N528SW
137 N502SW
149 N3754A
145 N37458
54 N730SW
60 N501SW
51 N785NC
120 N906DE
38 N592US
64 NI9S5AT
73 N382swW
0 N826AW

90

N624AU
87

70

dep_time

2005-09-26 08:23:00 UTC
2000-08-18 07:30:00 UTC
2001-11-16 07:15:00 UTC
2001-12-04 22:12:00 UTC
2001-12-05 09:11:00 UTC
2002-04-05 08:18:00 UTC
2002-07-14 06:30:00 UTC
2002-09-16 08:20:00 UTC
2002-09-29 19:34:00 UTC
2002-12-06 19:27:00 UTC
2003-06-26 06:30:00 UTC
2003-09-15 06:30:00 UTC
2003-11-20 07:11:00 UTC
2004-02-10 09:59:00 UTC
2002-07-01 19:32:00 UTC
2003-01-31 11:29:00 UTC

2004-12-02 11:10:00 UTC

2005-10-25 00:00:00 UTC

2002-05-18 06:35:00 UTC

Risk of

messing up
aggregates

Period
Minutes
Hours

arr_time

2005-09-26 09:07:00 UTC
2000-08-18 07:20:00 UTC
2001-11-16 07:29:00 UTC
2001-12-04 23:53:00 UTC
2001-12-05 09:17:00 UTC
2002-04-0512:47:00 UTC
2002-07-14 07:47:00 UTC
2002-09-16 12:52:00 UTC
2002-09-29 21:35:00 UTC
2002-12-06 21:16:00 UTC
2003-06-26 07:44:00 UTC
2003-09-15 07:50:00 UTC
2003-11-20 07:15:00 UTC
2004-02-10 13:36:00 UTC
2002-07-01 20:54:00 UTC
2003-01-31 12:55:00 UTC
2004-12-02 12:31:00 UTC
2005-10-25 00:00:00 UTC
uTC

07:43:.00 UTC

dep_delay

7

Miles
Kilometers

taxi_in

arr_delay  taxi_out
-8 9 6
-5 7 2
-9 19 3
4
Not a delay
3 T 3
-8 1 4
15 25 7
-9 18 6
-1 15 5
0 18 2
-23 10 3
0 30 7
64 9 35
-5 13 9
-19 5 3
0 0 0
-8 10 6
-7 16 7
1 14 74
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distance
533
295
332
291
304
1085
386
1085
991
991
386
386
332
906
168
406
336
2300
590
590
330

Are these
exclusive

cancelled

Z| 22| <:Z| Z|Z[2| Z|Z | 2 2|2 | Z|Z | 22| 2| 2|2 | 2

diverted  id2

36606824
4369021
11838308
12060416
12383068
13763279
15284777
16027516
16399211
17417961
20460576
22113592
23383534
25206983
15142411
17949329
30796766
37174931
14247814

20289351

& | & |P& | BB | | [ | | | | |t | | | | | B | | &

21396171

Possible values
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Better Conceptual Model

def Heliport(x in Airport) =
fac_type(x, "HELIPORT")

def cancelled(f in Flight) =
flight(f) and flight cancelled(f, "Y")

def arrival _delay[f in Flight] =
AMinute[maximum[@, arr_delay[f]]

Jocated in

def coordinate[x in Airport] =
ALLA[latitude[x], longitude[x], elevation[x]]

def airport_distance[ in Airport, in Airport] =
distance[coordinate[al], coordinate[a2]]
26
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Reasoning manages app logic with the data

Reasoning subsumes business logic now
implemented procedurally in languages like Java,
C#, Python, Scala, PL/SQL, T/SQL etc.

Fixing the “split brain” problem where the data is
managed in one layer and knowledge/semcmtics
in another will have huge impact.

Wwh 61‘ they hear

) Hlaw

W ‘ \,,u«c (£,
Y\

Bringing the app logic to the data makes it
possible for one (cloud native) system to manage
the semantics, integrity, and resources needed for
the application.

With thanks to Peter Bailis...
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Relational Models
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Directed Graphs as a Relation

edge(2, 1)
edge(2, 4)

edge(3, 1)
edge(3, 2)
edge(3, 4)

29
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Labelled Property Graphs as Relational Graphs

Director
Writer

name: Chalamet name: Villeneuve
id: 1 id: 2

Actor

acted directed

role: Paul Atreides

Movie

title: Dune

year: 202]
id: 3

movie(3)
title(3, "Dune")
year(3, 2021)

director(2)
writer(2)
name(2, "Villeneuve™)

directed(2, 3)

actor(1)
name(1l, "Chalamet")

acted(1, 3)

role(1, 3, "Paul Atreides")
30
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Tables as a Collection of Relations

orderkey customer date price

1 500 2022-03-27 75
customer date
2 23 2022-03-27 43
customer(1l, 500) 500 [ 2022-03-27 ]
customer(2, 23)
date(1, 2022-03-27) date

date(2, 2022-03-27)
price(1, 75)

price(2. 43) customer price

SQL tables are in a sense a modularity construct,
grouping relations with the same primary key.
31
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Recall ...

Tensors are relations!

N O =
O = N
v—a’OO

-~ N - o o =
) o — - O | —
-~ N - N - H*

32



Tensors as Relations

—1.3
20.4
9.7

A

would be an outstanding proof-point for the relational model.

(and imagine the data management benefits this would have for ML systems!)

0.6
5.9

—6.2

(1,
(2,
(3,

(1,
(1,
(2,
(2,
(3,
(3,

)
)
)

-1.3)
0.6)
20.4)
5.5)
9.7)
-6.2)

database system that is effective

RelationalAI
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Tensors as Relations: Matrix Multiplication

Deep Learning with Relations at NeurlPS

Math
B n
by 2b, s Cij - Z alkbk]
I b, b23‘ k=1
— — 1_ — Rel our new relational language
T ¥ ) def C[i, j] = sum[k: A[i, k] * B[k, j]]
a,,|a,;
A as, a3.2, o S L
- Q
= — = — SELECT A.row, B.col, SUM(A.val * B.val)

FROM A INNER JOIN B ON A.col = B.row
GROUP BY A.row, B.col

Matrix multiplication diagram.svg, CC BY-SA 3.0, User.Bilou


https://slideslive.com/38970787/deep-learning-with-relations?ref=account-folder-92050-folders
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The Essence of the Relational Model

Information Retrieval

P. BAXENDALE, Editor

A Relational Model of Data for
Large Shared Data Banks

E. F. Copp
IBM Research Laboratory, San Jose, California

Future users of large data banks must be protected from
having to know how the data is organized in the machine (the
intemnal representation). A prompting service which supplies
such information is not a satisfactory solution. Activities of users
at terminals and most application programs should remain
unaffected when the intemal representation of data is changed
and even when some aspects of the extemal representation
are changed. Changes in data representation will often be
needed as a result of changes in query, update, and report
traffic and natural growth in the types of stored information.

Existing noninferential, formatted data systems provide users
with tree-structured files or slightly more general network
models of the data. In Section 1, inadequacies of these models
are discussed. A model based on n-ary relations, a normal
form for data base relations, and the concept of a universal
data sublanguage are introduced. In Section 2, certain opera-
tions on relations (other than logical inference) are discussed
and applied to the problems of redundancy and consistency
in the user's model.

KEY WORDS AND PHRASES: data bank, dota base, dota structure, data
organization, hierarchies of data, networks of date, relations, derivability,
redundancy, consistency, composition, foin, refrieval language, predicate
calculus, security, dato integrity

CR CATEGORIES: 3.70, 3.73, 3.75, 4.20, 4.22, 4.29

purposes. Accordingly, it
data language which will

tween programs on the on
tion and organization of d:

orms a sound basis for tre
d consistency of relationg
2\The network model, on
ber of confusions, not
the\derivation of connecti
tions| (see remarks in Sectiff

Finplly, the relational vj
of thecope and logical I;
data sy\ems, and also thd
standpoilpt) of competing
single sys\em. Examples
cited in vaious parts of
systems to s\pport the rel;

facilitate changingycertain
sentation stored in\a data)
data representation \gharas
without logically impird
still quite limited. Fulhe
users interact is still cligts

Qe relational view (or model) of data described in

The relational view (or model) of data described in
Section 1 appears to be superior in several respects to the
graph or network model [3, 4] presently in vogue for non-
inferential systems. It provides a means of describing data
with its natural structure only—that is, without superim-
posing any additional structure for machine representation
purposes. Accordingly, it provides a basis for a high level
data language which will yield maximal independence be-
tween programs on the one hand and machine representa-

tion and organization of data on the other.

Have relational database systems been sufficiently ambitious on this point

35
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Architecture



RelationalAI

Cloud Native Deployment Architecture
VSCode RAI Console RAI CLI Data Apps SQL Apps Legend Apps

RAI SDK (python, Julia, Js, Go, Java, c#)

Cloud Region Services (sowaron) DO A D aws

Transient Transient Transient

{o

RAM, SSD cache RAM, SSD cache RAM, SSD cache

Engine  {s 4=k | | Engine  {skdsk | Serverless Engine {uF {af
L

DAL

@ Scalable, durable object storage @ CAS Key-Value Store

Immutable, versioned, write-optimized, paged data structures (Only database root pointers)



Future

Coexist as One Happy Relational Family
GQL

SPARQL

Rel m sQL — Legend GraphQl

Csv

CoreRelIR
RDF

SQLRDBMS CDC

Binary objects Relational Knowledge Graph System

Tensor data
Parquet, Iceberg

Specialized

LLVM I I...
Ju 1d Solvers

LPG
JSON

38
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Internal Engine Architecture

Rel Model Evaluation (vectorized + JIT)
» Parse Physical optimization ,
“ Dependency analysis Semantic optimization ‘
” Type Inference Dependency analysis ,

“ Specialization to first-order logic ,

gggs g g $ 8 8

Metadata database (Salsa + Arroyo)
Demand-driven computation and provenance for incrementality and live programming

JuliaCon 2020 - Salsa.jl - Nathan Daly



https://www.youtube.com/watch?v=0uzrH2Ee494

<> Relational AI

Core Innovations for
Relational Knowledge Graphs

Immutable Data Structures
for Cloud Object Storage
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RAI Storage and MEI‘“OI‘Y Mcmagement

(inspired by Snowflake and Umbra/Leanstore)

RAM cache (buffer pool)

fetch and evict

fetch
evict

commit Ephemeral SSD cache

evict

aws /A Azure D Scalable, durable object storage

41
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RAl databases are immutable, including the catalog

rel A
key/value store with CAS J rel B

rel C

demo
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RAl databases are immutable, including the catalog

I |
I |
— | rel A
key/value store with CAS J rel B
rel C
demo transaction
updates C
|
I relc’ M

N III
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RAl databases are immutable, including the catalog

] |
I l
— | rel A
key/value store with CAS J rel B
rel C
demo-2022-03-25 transaction
demo updates C |
I relc’ N

N III
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RAl databases are immutable, including the catalog

rel A
key/value store with CAS rel B

demo-2022-03-25

demo

relc’

N III
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RAl databases are immutable, including the catalog

rel A
key/value store with CAS rel B
demo-2022-03-25
demo |
I relc’

N III

transaction

N III
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Key:immutable tables — immutable catalog

- Must: Anything weaker causes inconsistencies for data apps (depending on lock granuiarity)
- No locks need to be ocquired (concurrent writes can be executed optimistically)

- Effectively unlimited read scalability

- No limit on the duration of a transaction

- Must: Schema changes are common in data apps and live programming
- Cloning a database is an atomic O(1) operation

- Perfect for as-of (system time) queries, what-if analysis
'
- Must: Removing write amplification is critical for object storage (Be-tree)
- Group commits and variable page sizes to reduce write throughput needs

- Previous version immutable. Commits atomic in KV store (CAS)
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Storage Management: Influences and Resources

e The Snowflake Elastic Data Warehouse
Dageville et al, SIGMOD 2016

e Building an Elastic Query Engine on Disaggregated Storage
Vuppalapati et al, NSDI 2020

e Lower Bounds for External Memory Dictionaries
Brodal et al, SODA 2003

e AnIntroduction to Bs -trees and Write-Optimization
Bender et al, login: magazine, 2015

e Design and Implementation of the LogicBlox System
Aref et al. SIGMOD 2015

e LeanStore: In-Memory Data Management Beyond Main Memory
Leis et al, ICDE 2018
e Umbra: A Disk-Based System with In-Memory Performance
Neumann et al, CIDR 2020 48
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Core Innovations for
Relational Knowledge Graphs

A Productive and Expressive Relational Language
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Datalog and First-order Logic

Transitive closure

ancestor(x, y) :- parent(x, V)
ancestor(x, y) :- parent(x, t) and ancestor(t, v)

reachable(x, y) :- edge(x, v)
reachable(x, y) :- edge(x, t) and reachable(t, v)

Functional dependency

function_age() :- forall(x, v, w: age(x, V) and age(x, w) implies v = w)

function_name() :- forall(x, v, w: name(x, V) and name(x, w) implies v = w)

function_address() :- forall(x, v, w: address(x, v) and address(x, w) implies v = w)
Average

average_sales(x, v, w) :- sum_sales(x, vy, u) and count_sales(x, v, V) and w = u /

average_returns(x, v, w) :- sum_returns(x, vy, u) and count_returns(x, vy, v) and w = u /

50
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Datalog

Good

e Outstanding formal foundation
e Mutually recursive definitions

More is needed

e Classic Datalog (globally stratified) is too limited for graph workloads:
o Value creation in recursion
o Aggregation in recursion
o Negation in recursion

e Datalog does not support abstraction (similar to SQL, Cypher, SPARQL etc)

o Abstract over concrete relations
o Abstract over schema

Rel: Datalogis the IR 51
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Rel - Design Objectives

Small core
Declarative
Relational

Abstraction

Abstraction without regret

Schema abstraction

Live programming

Designed for growth: whole is greater than sum of the parts
Maximize opportunities for executing programs in different ways
Data independence (representation, ordering, semantic stability)

Libraries of reusable functionality (eg statistics, graph analytics)
Encourage an ecosystem of reusable components

Aggressive optimizations to compile abstraction cost aways.

Logically treating schema as data to support schema-generic logic
Prevent the need for code generators
Support interactive schema discovery (reflection)

Support arbitrary schema changes
Ingest data without upfront schema into an efficient representation
Incorrect application logic is a valid state

Support gradually enforcing a schema with integrity constraints o



Primary key
carrier  origin
F9 MCI
WN LBB
NW ATL
DL SLC
WN PHX
WN LAS
WN sJC
WN LAS
DL MSP
DL MSP
WN SJC
WN SJC
NwW ATL
DL MSP
us CHS
FL TPA
WN RDU
HP PHX
us PBI
us PBI
DL GSO

destination
DEN

ELP

MEM

BOI

SAN

AUS

AUS
SLC
SLC

LAS
MEM
ATL
CLT
ATL
PHL
BOS
cLr
cLT
CVG

Include helicopters

Hours
Minutes

flight_num
818
819
819
819
819
819
819
819
819
819
819
819
819
819
820
820
820
820
821
821
821

flight_time  tail_num
89 N916FR
41 N708SW
52 N607NW
48 N296WA
51 N391SW
135 N519SW
63 N528SW
137 N502SW
149 N3754A
145 N37458
54 N730SW
60 N501SW
51 N785NC
120 N906DE
38 N592US
64 NI9S5AT
73 N382swW
0 N826AW

90

N624AU
87

70

dep_time

2005-09-26 08:23:00 UTC
2000-08-18 07:30:00 UTC
2001-11-16 07:15:00 UTC
2001-12-04 22:12:00 UTC
2001-12-05 09:11:00 UTC
2002-04-05 08:18:00 UTC
2002-07-14 06:30:00 UTC
2002-09-16 08:20:00 UTC
2002-09-29 19:34:00 UTC
2002-12-06 19:27:00 UTC
2003-06-26 06:30:00 UTC
2003-09-15 06:30:00 UTC
2003-11-20 07:11:00 UTC
2004-02-10 09:59:00 UTC
2002-07-01 19:32:00 UTC
2003-01-31 11:29:00 UTC

2004-12-02 11:10:00 UTC

2005-10-25 00:00:00 UTC

2002-05-18 06:35:00 UTC

Risk of

messing up
aggregates

Period
Minutes
Hours

arr_time

2005-09-26 09:07:00 UTC
2000-08-18 07:20:00 UTC
2001-11-16 07:29:00 UTC
2001-12-04 23:53:00 UTC
2001-12-05 09:17:00 UTC
2002-04-0512:47:00 UTC
2002-07-14 07:47:00 UTC
2002-09-16 12:52:00 UTC
2002-09-29 21:35:00 UTC
2002-12-06 21:16:00 UTC
2003-06-26 07:44:00 UTC
2003-09-15 07:50:00 UTC
2003-11-20 07:15:00 UTC
2004-02-10 13:36:00 UTC
2002-07-01 20:54:00 UTC
2003-01-31 12:55:00 UTC
2004-12-02 12:31:00 UTC
2005-10-25 00:00:00 UTC
uTC

07:43:.00 UTC

dep_delay

7

Miles
Kilometers

taxi_in

arr_delay  taxi_out
-8 9 6
-5 7 2
-9 19 3
4
Not a delay
3 T 3
-8 1 4
15 25 7
-9 18 6
-1 15 5
0 18 2
-23 10 3
0 30 7
64 9 35
-5 13 9
-19 5 3
0 0 0
-8 10 6
-7 16 7
1 14 74
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distance
533
295
332
291
304
1085
386
1085
991
991
386
386
332
906
168
406
336
2300
590
590
330

Are these
exclusive

cancelled

Z| 22| <:Z| Z|Z[2| Z|Z | 2 2|2 | Z|Z | 22| 2| 2|2 | 2

diverted  id2

36606824
4369021
11838308
12060416
12383068
13763279
15284777
16027516
16399211
17417961
20460576
22113592
23383534
25206983
15142411
17949329
30796766
37174931
14247814

20289351

& | & |P& | BB | | [ | | | | |t | | | | | B | | &

21396171

Possible values
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Better Conceptual Model

def Heliport(x in Airport) =
fac_type(x, "HELIPORT")

def cancelled(f in Flight) =
flight(f) and flight_cancelled(f, "Y")

def origin(f in Flight, in Airport) =

flight _origin(f, ) and

airport_code(a, )

from

ocated in

def destination(f in Flight, in Airport) =

flight_destination(f, ) and )

airport_code(a, ) located_in

from
def airport_distancel[ in Airport, in Airport] =

distance[coordinate[al], coordinate[a2]]

def located_in(x, vy) =
exists(t: located_in(x, t) and located _in(t, v)) 54



Data Integrity

Nodes involved in relationships

ic forall(f, ap: origin(f, ap) implies Flight(f) and Airport(ap))

Required relationships

ic forall(f: Flight(f) implies exists origin[f])

Functional dependency (flight can have only one origin)

ic forall(x, v, w: origin(x, v) and origin(x, w) implies v = w)

Arbitrarily complex

ic forall(f in cancelled: not exists flight duration[f])
ic forall(f in flight: cancelled(f) xor diverted(f) xor arrived(f))

<> Relational Al
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Aggregation

Total number of flights
count[Flight]

Carrier with most flights
c: count[f: operated by(f, c)]

Carriers mean arrival delay
c: mean[f.arrival_delay for f where operated by(f, c)]

Airport ratio of cancelled arriving flights
ap: ratio[cancelled, ap.arriving flight]

<> Relational Al

37,561,525

Southwest
Delta
American

Airtran
Atlantic Coast
United Airlines

Aloha Airlines
Hawaiian Airlines

Unalaska
Worcester Regional
Nantucket Memorial

5,775,777
4,477,929
4,434,727

15 min
13 min
13 min

6 min
3 min

19%

11%

9%
56
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Abstraction and Value Types

Recall from the model The type system of Rel prevents a
def airport_distance[ in Airport, in Airport] = runtime cost of tracking units of
distance[coordinate[ ], coordinate[ 1] measurement.

def coordinate[a in Airport] =

) , , Statically Rel guarantees that the
ALLA[latitude[a], longitude[a], elevation[a]]

correct conversions are applied and
def arrival delay[f in Flight] = no incompatible values can be used

AMinute[maximum[@, arr_delay[f]] IN operations.

Units of measurements to prevent miscalculation
def LengthUnit = :Feet; :Meters; :Miles; :Kilometers

value type Length LengthUnit, Number
value type Degree = Number
value type LLA = Degree, Degree, Length

def distance[x in LLA, in LLA] =
haversine[earth_radius, x, v]

def earth_radius = ~Length[:Kilometers, 6378.1] 57



Schema Abstraction

<> RelationalAl

Rel is not a dynamic language (nor a triple store). Rel exposes the schema logically as data
and uses partial evaluation methods to infer and specialize the program to the schema.

Count all nodes

count|[x,

Count all nodes, grouped by type

X

count[

: flight_graph(x,

: flight _graph(x,

)]

)]

38,061,144

Flight
Aircraft
AircraftModel
City

Airport
Heliport
County

Major

State

Carrier

37,561,525
359,928
60,461
50,944
19,793
5,135
3,009

270

58

21

58
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Graph Analytics

Rel can express graph algorithms, for example pagerank and shortest path.

Shown: pagerank for .
major airports ® o

Highlighted is a shortest
path between two nodes.

Rel supports geographical data and JSON.
The maps are computed in Rel from shapes
of the states, part of the knowledge graph.
Visualization is Vega-Lite.
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Basic graph algorithms

Neighbor (undirected edge)

def neighbor(x, y) = edge(x, y) or edge(y, x)
def cn[x, y] = count[intersect[neighbor[x], neighbor[y]]]

Degree

def outdegree[x] = count[edge[x]]
def degree[x] = count[neighbor[x]]

Similarity
def cosine_sim[x, v]
def jaccard_sim[x, v]

cn[x, v] / sqrt[degree[x] * degree[Vy]]
cn[x, yv] / count[neighbor[x]] + count[neighbor[y]] - cn[x, V]

Transitive closure (reachability)

def reachable(x, y) = edge(x, V)
def reachable(x, y) = exists(t: edge(x, t) and reachable(t, vy))

60
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Basic graph algorithms

The purpose of the semantic
optimizer of RelationalAl is to
Weakly connected components automate this optimization by using

def wcc[x] = min[reachable_undirected[x]] the algebraic properties of minimum.

Weakly connected components (without reachabile)

def wcc[x] = minimum[ min[neighbor[x]], min[wcc[z] for z in neighbor[x] ]

Strongly connected components

def scc[x] = min[v: reachable(x, v) and reachable(v, x)]
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Basic graph algorithms

Breadth-first search

def bfs[x in root] = ©
def bfs[x] = min[ bfs[x]; bfs[y: edge(y, x)] + 1 ]

62
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Shortest Distance

The purpose of the semantic
optimizer of RelationalAl is to
automate this optimization by
using the algebraic
properties of minimum and
addition.

Shortest distance between two nodes

def path[x, v]
def path[x, v]

distance[x, v]
path[x, t] + distance[t, y] from t

def shortest distance[x, y] = min[path[x, v]]

Shortest distance between two nodes (Bellman-Ford)

def shortest distance[x, y] =
min[ distance[x, v];
(shortest distance[x, t] + distance[t, y] from t)]
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Semantic Optimizer: Push Demand into Recursion

Optimize all-pairs shortest path to single-source shortest path using
demand transformation

def bacon_number[p] =
shortest _distance[(co star, 1)[KevinBacon, p]

optimizer

def bacon _number[p] =
min|
co_star(KevinBacon, p) and
or exists(t: co _star(t, p) and = bacon number[t] + 1)

Il
=



Pagerank

Non-monotonic, relying on reaching a fixpoint

def damping = 0.85
def pagerank[x in node]

1.0, not(pagerank(x, _))

def pagerank[y in node]
(1.0 - damping) +
damping * sum[pagerank[x] / outdegree[x] for x where edge(x, v)]

lterative

def damping = 0.85
def pagerank[x in node, 0] = 1.0
def pagerank[y in node, i in range[0, 20, 1]] =
(1.0 - damping) +
damping * sum[pagerank[x, i - 1] / outdegree[y] for x where edge(x, v)]

65



TigerGraph Graph Data Science Library

Pagerank

HeapAccum<Vertex_Score>(top_k, score DESC) @@top_scores_heap;
MaxAccum<FLOAT> @@max_diff = 9999;

SumAccum<FLOAT> @sum_recvd_score = 0;

SumAccum<FLOAT> @sum_score = 1;

SetAccum<EDGE> @@edge_set;

Start = {v_type};
WHILE @@max_diff > max_change
LIMIT max_iter DO
@@max_diff = 0;
V = SELECT s
FROM Start:s -(e_type:e)- v_type:t
ACCUM
t.@sum_recvd_score += s.@sum_score/(s.outdegree(e_type))
POST-ACCUM
s.@sum_score = (1.0-damping) + damping * s.@sum_recvd_score,
s.@sum_recvd_score = 0,
@@max_diff += abs(s.@sum_score - s.@sum_score');
END; # END WHILE loop

WCC

MinAccum<INT> @min_cc_id = ©;
MapAccum<INT, INT> @@comp_sizes_map;
MapAccum<INT, ListAccum<INT>> @@comp_group_by size_map;

Start = {v_type};

S = SELECT x
FROM Start:x
POST-ACCUM x.@min_cc_id = getvid(x);

WHILE (S.size()>@) DO
S = SELECT t
FROM S:s -(e_type:e)- v_type:t
ACCUM t.@min_cc_id += s.@min_cc_id
HAVING t.@min_cc_id != t.@min_cc_id"';
END;

https://qithub.com/tigergraph/gsal-graph-algorithms



https://github.com/tigergraph/gsql-graph-algorithms

Recursion: Program Analysis (Doo

def VarPointsTo(var, heap)
AssignHeapAllocation(var, heap)

def VarPointsTo(to, heap)
Assign(from, to) and
VarPointsTo(from, heap)

def VarPointsTo(to, heap)
LoadInstanceField(base, signature, to) and
VarPointsTo(base, baseheap) and
InstanceFieldPointsTo(baseheap, signature, heap)

def InstanceFieldPointsTo(baseheap, signature, heap)
StorelInstanceField(from, base, signature) and
VarPointsTo(base, baseheap) and
VarPointsTo(from, heap)

<> Relational Al

Strictly Declarative Specification of Sophisticated Points-to Analyses

Martin Bravenboer

Department of Computer Scienc

University of Ma
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Abstract

We present the Door framework for points-to analysis of
Java programs. Door builds on the idea of specifying pointer
analysis algorithms declaratively, using Datalog: a logic-
based language for defining (recursive) relations. We carry
the declarative approach further than past work by deserib-
ing the full end-to-end analysis in Datalog and optimizing
aggressively using a novel technique specifically targeting
highly recursive Datalog programs.

As a result, Door achieves several benefits, including full
order-of-magnitude improvements in runtime. We compare
Door with Lhotik and Hendren’s Paoote, which defines the
state of the art for context-sensitive analyses. For the exact
same logical points-to definitions (and, consequently, identi-
cal precision) Door is more than 15x faster than PxpoL for
a I-call-site sensitive analysis of the DaCapo benchmarks,
with lower but stil substantial speedups for other important
analyses. Additionally, Doo scales to very precise analyses
that are impossible with PxooLe and Whaley etal s bddbddb,
direetly addressing open problems in past lterature. Finally,
our implementation is modular and can be easily configured
to analyses with a wide range of characteristics, largely due
to its declarativeness.

Categories and Subject Descriptors Fl 2 (Logics and
Meanings of Programs]: Semantic

analyses. It is, thus, not surprising that a wealth of resarch
has been devoted to efficient and precise pointer analysis
techniques. Context-sensiive analyses are the most common
class of p Contexts
approaches qualify the analysis facts with a context abstrac-
tion, which captures a static notion of the dynamic context
of a method. Typical contexts include abstractions of method
call-sites (for a call-site sensitive analysis—the traditional
meaning of “context-sensitive”) or receiver objects (for an
object-sensitive analysis)

In this work we present Door: a general and ves

Door implements a range of algorithms, including context
sensitive, and objct-senstive analyses
de ba

se.
Compared to the pnur state of the art, Door often achieves
speedups of an order-of-magnitude for several important

“The main elements of our approach are the use of the Dat-
alog language for specifying the program analyses, and the
aggressive optimization of the Datalog program. The use of
Datalog for program analysis (both low-level [13,23,29] and
high-level [6,9]) is far from new. Our novel optimization ap-
proach, however, accounts for several orders of magnitude of

Languages—Program  Analysis; D16 [ngmmmmg
Techniques): Logic Programming

General Terms  Algorithms, Languages, Performance
1. Introduction

Points-to (or pointer) analysis intends to answer the question
“what objects can a program variable point t0?” This ques-
tion forms the basis for practically all higher-level program

Purmission 1 make digitalor hard copies of all or part of tis work for personsl o
clastoorn use i

o the frst page. To copy otherwse, o republsh, 0 post on servrs o o rdistibute
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analyses typically
run over 1000 times more slowly. Generally our optimiza-
tious 6t well the approach of handiiag prograrn facs 25 &
database, by pcr.ll ally targeting the indexing scheme and
the incremental evaluation of Datalog implementations. Fur-
thermore, our approach is entirely Datalog based, encoding
declaratively the logic required both for call graph construc-
tion as well as for handling the full semantic complexity
of the Java language (e.g., static initialization, finalization,
reference objects, threads, e s, reflection, etc.). This
makes our pointer analysis specifications elegant, modular,
but also efficient and casy to tune. Generally, our work is a
strong data point in support of declarative languages: we ar-
gue that prohibitively much human effort is required for im-
plementing and optimizing complex mutually-recursive def-
initions at an operational level of abstraction. On the other
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Syntactic Second-order Features

Transitive closure (reachability)

def ancestor(x, v)
def ancestor(x, v)

parent(x, v)
exists(t: parent(x, t) and ancestor(t, v))

Abstract

def tc[E](x, V)
def tc[E](x, V)

E(x, V)
exists(t: E(x, t) and tc[E](t, v))

Use

def ancestor = tc[parent]

68
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Syntactic Second-order Features
Mean (average)
sum[sales] / count[sales]

Abstract

def mean[F] = sum[F] / count[F]

Use

mean[sales]

69
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Syntactic Second-order Features

Functional dependency

forall(x, v, w: origin(x, v) and origin(x, w) implies v = w)

Abstract

def function(R) =
forall( , vl, v2 where R( , vl) and R( , V2): vl = v2)

Use

function(origin)
70
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Library Example: Graph Analytics

module graph_analytics[G]
with G use node, edge

def neighbor(x, y) = edge(x, y) or edge(y, x)
def outdegree[x] = count[edge[x]]
def degree[x] = count[neighbor[x]]
def cn[x, y] = count[intersect[neighbor[x], neighbor[y]]]

def reachable = edge; reachable.edge
def reachable_undirected = neighbor; reachable_undirected.neighbor

def scc[x]
def wcc[x]

min[v: reachable(x, v) and reachable(v, x)]
min[reachable_undirected[x]]

def cosine sim[x, v]
def jaccard_sim[x, v]

cn[x, v] / sqrt[degree[x] * degree[vy]]
cn[x, yv] / count[neighbor[x]] + count[neighbor[y]] - cn[x, v]

end
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Library Example: Relational Algebra to Calculus

def intersect[R, S]( )
def union[R, S]( )
def diff[R, S]( )

R( ) and S( )

R( ) or S( )
R( ) and not S( )

def subset[R, S] = forall( where R( ): S( ))
def disjoint(R, S) = empty(R N S)
def empty(R) = not exists( : R( ))

def (N) = intersect

def (U) = union

def (x) = cart

def (C) = proper_subset
def (&) = subset

72
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Library Example: Statistics
RelationalAl features a large library of reusable functionality implemented in Rel.

def mean[F] = sum[F] / count[F]

def frequency[R, ] = count] : R( , )]

def mse[Yhat, Y] = sum[x: (Y[x] - Yhat[x]) ~ 2] / count[Y]

def rmse[Yhat, Y] = sqrt[mse[Yhat, Y]] -

)2
RMSE = |} Gi — i)

i=1 n 73




Library Example: Machine Learning

Generic abstractions for feature scaling

def mean_normalization[F][ ] =
(F[ ] - mean[F]) / (max[F] - min[F]), (max[F] > min[F])

def min_max_normalization[F][ ] =
(F[ ] - min[F]) / (max[F] - min[F]), (max[F] > min[F])

def zscore_normalization[F][ ] =
(F[ ] - mean[F]) / standard_deviation[F]

RelationalAI
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{%- if include_columns=="*" -%}

{%- set all_source_columns = adapter.get_columns_in_relation(source_table) | map(attribute='quoted') -%}
{% set include_columns = all_source_columns %}

{%- endif -%}

-- generate a CTE for each source column, a single row containing the aggregates
with
{% for source_column in source_columns %}
{{ source_column }}_aggregates as (
select
min({{ source_column }}) as min_value,
max({{ source_column }}) as max_value
from {{ source_table }}
)
{% if not loop.last %}, {% endif %}
{% endfor %}

select
{% for column in include_columns %}
source_table.{{ column }},
{% endfor %}
{% for source_column in source_columns %}
({{ source_column }} - {{ source_column }}_aggregates.min_value)
/ ({{ source_column }}_aggregates.max_value - {{ source_column }}_aggregates.min_value) as {{ source_column }}_scaled
{% if not loop.last %}, {% endif %}
{% endfor %}
from
{% for source_column in source_columns %}
{{ source_column }}_aggregates,
{% endfor %}

{{ source_table }} as source_table “ II t
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Library Example: Machine Learning

The (simplified) linear prediction function uses schema abstraction (f) to compute a
prediction for a module of features (Feature).

def linear_predict[Feature, Weight][ ] =
sum[f: Weight[f] * Feature[f, 11 +
sum[f: Weight[f, Feature[f, 111 +
Weight[:bias]

def linear_regression[Feature, Response, Weight] =
minimize[rmse[linear_predict[Feature, Weight], Response]]

Rel => Core Rel generates a sum of the features (which typically have a specific schema).
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Example: Gradient Descent

Simplified batch gradient descent: )

200
0.01

def max_k
def alpha

1l
Life satisfaction

def predict[i] = linear_predict[features, weight[i]] H
def predict_error[i] = rmse[response, predict[i]] "

de-F gradient = j aCObian [ pr\edic-t_er‘r\or‘, Weight ] ¢ 0 10“000 20600 30.600 40.600 50“030 60,000 70,000 80.600 90,600 100.000110,000
def weight[i, f] =
weight[i - 1, f] - alpha * gradient[i - 1, -1, f],
< max_k

Instantiation:

def features:gdp_per_capita = min_max_normalization[gdp_per_ capita]
def response = life_satisfaction

77
(This is for illustration purposes: linear regression does not normally use gradient descent)



Schema Abstraction

Query the schema and visualize with graphviz

module schema_graph[G]
def node(x) = G(x, _)
def edge(e, s ) =
G(e, x, y) and
G(tx, x) and
G(ty, y) and
Entity(x) and
Entity(y)
from x,
end

def output = graphviz[schema_graph[flight graph]]

Schema = data: library applies to both

RelationalAI

ocated in
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Schema Abstraction

Schema: shortest path from Flight to State

shortest_path[schema_graph[flight_graph], :Flight, :State]

Flight -> destination -> Airport -> located_in -> State
Flight -> origin -> Airport -> located_in -> State

Schema: all acyclic paths from Flight to State

acyclic_path[schema_graph[flight _graph], :Flight, :State]

Flight -> destination -> Airport -> located_in -> City -> located_in -> County -> located_in -> State
Flight -> destination -> Airport -> located_in -> City -> located_in -> State

Flight -> destination -> Airport -> located_in -> County -> located_in -> State

Flight -> destination -> Airport -> located_in -> State

Note: The path algorithms are written in Rel (not foreign functions) 79



Feature Engineering: Describe

RelationalAI

Similar to Dataframes, describe, implemented in Rel, generically reports statistics for

collection of relations.

describe[airport]

describe[

Elevation
min -210
max 12,442
mean 1,143
std 1,444
25% 270
50% 745
75% 1,220
unique
mode

: ActualAirport <: airport[t]]

Elevation

58
X

Facility

AIRPORT (Furnace Creek, CA)
ULTRALIGHT (Berthoud Pass, CO)
7

AIRPORT

(Lake County, CO) &0
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Describe Implementation in Rel

This implementation feels
very dynamic in nature but
this is all handled at

def describe[R][column] = describe_full[R[column]]

def describe_full[R, :count] = count[R] Compile—time and the |OgiC is
def describe_full[R, :min] = min[R] specialized to the actual r.
def describe full[R, :max] = max[R]

def describe_ full[R, :unique]
def describe full[R, :mode]
def describe full[R, :mode_freq]

count[last[R :> (x: not Number(x))]]
mode[R :> (x: not Number(x))]

max[frequency[R :> (x: not Number(x))]]

def describe_full[R, :mean]
def describe full[R, :std]
def describe full[R, :"25%"]
def describe_ full[R, :"50%"]
def describe full[R, :"75%"]

mean[R :> Number]

sample_stddev[R :> Number]
percentile[ (R :> Number), 25]

median[R :> Number]

percentile[ (R :> Number), 75] o1
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Incremental Computation

changes
>

View [ Reasoning [ Knowledge [ Semantics Layer

K
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" Dependency Graph of Tax Analysis Logic
\ N 3.6K relations, 13K dependencies
- \ replacing millions of lines of procedural code




Dependency Graph of Tax Analysis Logic
Focus: Single strongly-connected component (recursion)
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Incremental Computation

Goal: maintain computations (views) incrementally wrt changes in the inputs.

D D

Inputs can change along [~ _~ N
i i : changes
two dimensions database g »| database
attime t, attimet,
) Changes caused by _ -
changes to the state of
the database
result result

(materialized view) (materialized view)
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Incremental Computation

Goal: maintain computations (views) incrementally wrt changes in the inputs.

Inputs can change along

two dimensions:
5A00 \L l 6A10
0A 10

) Changes caused by Aqo . > Ao
changes to the state of iteration peaERgS e
the database 0Ao1 0A 11
Il) Changes caused by 0A10 + A1,

A()1 > A1

iterative computations
5A02l,

Aoz
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The Incremental Maintenance Stack

RAI aims to support incremental processing of changes to as well as
to determine which computations are affected by a change.
to only compute what users are actively interested in.
to incrementally maintain even general recursion.
to determine that a recursive computation is monotonic

to recover better maintenance algorithms where possible.
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Algorithms for Incremental Computation
e Semi-naive evaluation for stratified Datalog
e Generalized semi-naive evaluation (recognize more logic as monotonic)

e Differential dataflow for general non-monotonic logic

Naive Generalized Semi-naive
fort=1,2,..do fort=1,2,..do
R, = F(R¢y) 6R =/FR_ ) @R,
. if R =R _, return R, R =R, @8R
en

if cSRt = return Rt
end
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Incremental Computation: Resources and Influences

e Convergence of Datalog over (Pre-) Semirings
Abo Khamis, Ngo, Pichler, Suciu, Wang, PODS 2022 (Best paper award)

e Differential dataflow
McSherry, Murray, Isaacs, Isard, CIDR 2013

e Reconciling Differences
Green, lves, Tannen, Theory of Computing Systems 201

e F-IVM:Incremental View Maintenance with Triple Lock Factorization Benefits
Nikolic and Olteanu, SIGMOD 2018
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Knowledge Graphs need different join algorithms

Join algorithms used in SQL-based relational databases are binary join algorithms.
For knowledge graphs intermediate results are too large. Example:

directed(d, m) and child(d, a) and acted _in(a, m) Actor

Binary join options: acted_in

child

directed(d, m) and child(d, a)
not selective: most directors have children!

directed(d, m) and acted _in(a, m)
not selective: every movie has a director and actors!

Director

directed

child(d, a) and acted_in(a, m)
Movie

not selective: every actor has parents!

This is one reason for the stigma jjoins are bad’ Triangle Graph Pattern 9
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Three ways of looking at WCO)

We use worst-case optimal join algorithms. This is a new class of algorithms
whose properties and trade-offs are not yet well understood.

Leapfrog Triejoin (LFTJ), GenericJoin and Dovetail Join are WCOJ algorithm:s.

We look at the properties from three angles:

=
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WCOJ uses sparsity of all relations to narrow down search

1) seek c

5) seek m \*
Female {‘\‘ 0 00 00
2)seek c

6) seek m\
Asian Q/\‘o/ o
3) seek f 7) seek m
Director

4) seek g
OscarWinner ../“ \‘ C W ]

a b ¢ d e f g m n

Worst-case optimal join (WCO0OJ) algorithms use the sparsity of all relations
to narrow down the search.
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Worst-case Optimal Joins: Basic Background

Multi-way joins are used continuously, not just for unary joins

child(d, a) and directed(d, m) and acted _in(a, m)
Given a variable ordering of d, a, m (determined by query optimizer)

child(d, _) _ _ )
directed(d, ) find directors d who directed some

movie and have some child

. acted_in
child[d](2) child

acted_in(a, ) find children a of director d who

acted_in some movie

directed[d](m)
acted _inf[a](m)

find movies m directed by d and directed
acted_in by actor a (intersection)

WCOJ exploits all correlation simultaneously



How we recast the subquery problem

Two undesirable approaches
(SQL systems attempt to rewrite and decorrellate to avoid these)

Top-down: Nested Loop

S = Subquery

Outer query

select
user.id,

(

select count(*)

from post
where post.user_id = user.id

)

from

user

where user.country = ‘'Mordor'

for each row do

Outer guery
join with S

Subquery

Bottom-up: (over)-compute once and reuse

We address subqueries with two powerful and general methods

1. Uncorrelated subqueries are handled by semantic optimizer
2. Embrace correlation: WCOJ is also a correlated join device!
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How we recast the index selection problem
Index-selection and auto-tuning is an unsolved problem.

RelationalAl users cannot be asked to manually define indexes, and
even supervised tuning approaches are not acceptable.

Our solution:
e Everythingis anindexin our graph-like schemas

Compare: RDF triple stores that create indexes for all orderings
Compare: SQL table stores with an index for every functional dependency

e WCOJis adevice to create composite indexes on-the-fly, cheaply
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How we recast the index selection problem

WCOJ is a device to create composite indexes on-the-fly, cheaply

Graph Index Building Blocks Indexes available w/o sorting
brand Ford Ford |Escape Ford |Escape 1
Jeep | |Jeep |Cherokee ||Jeep |Cherokee | 2
1 For
brand oI Ford | 1 Ford | 1 |Escape
2 |Jeep Jeep | 2 Jeep | 2 |Cherokee
1
Ford
model Jeep 2 Escape Escape |Ford ||Escape |Ford | 1
Cherokee | | Cherokee | Jeep || Cherokee |Jeep | 2
model Escape 1 Escape 1 |Ford
Cherokee | 2 Cherokee | 2 | Jeep
brand
2 |Cherokee
1 1 |Ford 1 |Ford |Escape
2 Escape 2 2 | Jeep 2 | Jeep | Cherokee
model Cherokee ) 1 |Escape 1 |Escape | Ford
2 | Cherokee 2 | Cherokee | Jeep




RelationalAI

Our Evaluation Strategy: Compiled and Vectorized

Tuple at-a-time Compiler Vectorized
Interpreter Interpreter

Low latency J X J
Good performance X J J
per tuple

Vectorized WCOJ is an
open research problem!

Compiler and vectorized interpreter are implemented in Julig,
which helps with the maintenance concerns of two back-ends. . I.Q.

Compiled and vectorized evaluation can lbe mixed in single plan!
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Dovetail Join Compiler (not yet pubiished)

Dovetail Join is a new join algorithm invented in January 2019.

It addresses typical sources of inefficiency with worst-case optimal join
algorithms:

OVERHEAD ADDRESSED VIA

Runtime bookkeeping for join state | Encode as finite state machine

Overhead from abstract iterators Works directly on raw iterators

Dynamic dispatch Specialization

Dovetail/FSM is an implementation of Dovetail that leverages Julia's runtime code

generation to produce ultra-efficient join kernels.
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Join Algorithms: Resources and Influences

e Worst-case Optimal Join Algorithms
Ngo, PODS 2012 (Best paper award)
e Leapfrog Triejoin: A Simple, Worst-Case Optimal Join Algorithm
Veldhuizen, ICDT 2015 (Best Newcomer Award)
e A Worst-case Optimal Join Algorithm for SPARQL
Hogan, ISWC 2019
e Worst-Case Optimal Graph Joins in Almost No Space
Arroyuelo, SIGMOD 2021

e Unnesting Arbitrary Queries
Neumann, BTW 2015

e How Materialize and other databases optimize SQL subqueries
Brandon, Materialize Deep Dive, March 2021
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Semantic Optimization

Rel
model Answer
Semantic Optimized
Optimizer Rel model
E‘
QA
Equivalent Rel
Knowledge models
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What Knowledge

User-specified constraints

e Functional dependencies etc
e Total functions, disjoint etc

Mathematical axioms
e Semirings, rings, fields, lattices, ...

Learned from the data

e Data: Summary statistics, histograms
e Query: Samples cardinality estimation

rTt+y=y+zx

TXY=YXax
zx(x+y)=zxc+2Xy

Tt

rt+l—=

A 0="0

<> Relational Al

commutativity of +
commutativity of x
distributivity of x over +
identity of x is 1

identity of +is 0

0 is an annihilator

min(z,y) = min(y, x)
rt+ty=y+cz
z + min(z,y) = min(z + z, z + y)
z+0==z
min(z, +00) =z

T+ 00 =00

commutativity of min
commutativity of+
distributivity of + over min
identity of +is 0

identity of min is oo

oo is an annihilator
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Semantic Optimization

Using mathematical knowledge in semantic optimization

min[i, J: f[1] + g[J]1] min[i: F[i] + g[i]] count[f X g]

optimizer optimizer

min[f] + min[g] count[f] * count[g]
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Semantic Optimization is not Syntactic or Ad-hoc

count[a, b, c: R(a) and S(b) and T(c) and a < b < ]

optimizer

sum[b: count[z: R(a) and S(b) and a < b] *
count[c: S(b) and T(c) and b < c]]
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Semantic Optimization is not Syntactic or Ad-hoc

count[x, y: R(x) and S(y) and I= v]

optimizer

Lpzy =1 — 1=y

count[R] * count[S] - count[x, y: R(x) and S(y) and x = vy]
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LSQB Query 6

knows knows interest
— —
def g6 =
I

count[pl, p2, p3, tag:
knows(pl, p2) and F=
knows(p2, p3) and
interest(p3, tag) and

pl 1= p3]

RAIon1core: Ns
Umbra on 1 core; 76s
Umbra on 48 cores: 2.6s

optimizer

def g6 = sum[tmp[p3] for pl, p2, p3 where knows(pl, p2) and knows(p2, p3)] - errl - err2
def err2 = sum[tmp[p3] for pl, p2, p3 where knows(pl, p2) and knows(p2, p3) and pl = p3]
def errl = sum[tmp[pl] for pl, p2 where knows(pl, p2)]

def tmp[p3] = count[tag: interest(p3, tag)]

LSQB: A Large-Scale Subgraph Query Benchmark 108



https://dl.acm.org/doi/pdf/10.1145/3461837.3464516

RelationalAI

Semantic Optimization: Running Total

def running_total[t] =

sum[series|[ ] for where <= 1]
optimizer Knowledge: ordering
on the temporal
dimension
def partial_order(D, <) =
. reflexive(D, <) and
def Punnlng—tOtal[ ] - antisymmetric(D, <) and
series[t], first(t) transitive(D, <)

. def reflexive(D, ~) =
def running_total[t] = forall(a € D: a ~ a)
running total[previous[t]] + series[t]
def transitive(D, -~) =
forall(a € D, b € D, ¢ € D:
~band b ~ ¢ implies a ~ c)

(imagine not having to remember window function syntax!)
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Semantic Optimization: Push Agg into Recursion

Push min aggregation into a recursive path to derive Dijkstra's algorithm

def
def

def

def

path[x, y]
path[x, y]

edge[x, V]
path[x, t] + edge[t, y] from t

shortest _path[x, yv] = min[path[x, v]]

optimizer

shortest_path[x, y] =
min[edge[x, v]; shortest path[x, t] + edge[t, y] from t]
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Semantic Optimizer: Push Demand into Recursion

Optimize all-pairs shortest path to single-source shortest path using
demand transformation

def bacon_number[p] =
shortest path[co star X 1][KevinBacon, p]

optimizer

def bacon _number[p] =
min|
co_star(KevinBacon, p) and
or exists(t: co_star(t, p) and = bacon number[t] + 1)

Il
=



Optimization supports Abstraction

def shortest_path[x, yv] = min[path[x, v]]

No need for separate single-source vs all-pairs definitions
Reuse the very large path relation.

def scc[x] = min[v: reachable(x,v) and reachable(v, x)]
Reuse the very large reachable relation.
def wcc[x] = min[reachable undirected[x]]
Reuse the very large reachable_undirected relation.
def mean[R] = sum[R] / count[R]

Pretty bad without aggregation optimization

RelationalAI
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Semantic Optimization: Resources and Influences

FAQ: Questions Asked Frequently
Khamis, Ngo, Rudra, PODS 2016 (Best Paper Award)

What Do Shannon-type Inequalities, Submodular Width, and
Disjunctive Datalog Have to Do with One Another
Khamis, Ngo, Suciu, PODS 2017

Precise complexity analysis for efficient Datalog queries
Tekle et al, PPDP 2010

Functional Aggregate Queries with Additive Inequalities
Khamis et al, PODS 2019

Convergence of Datalog over (Pre-) Semirings
Khamis, Ngo, Pichler, Suciu, Wang, PODS 2022 (Best paper award)

Factorised representations of query results: size bounds and readability

Olteanu, Zavodny, ICDT 2012 (2022 Test of time award)

RelationalAI
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The Incremental Maintenance Stack

RAI aims to support incremental processing of changes to as well as
to determine which computations are affected by a change.
to only compute what users are actively interested in.
to incrementally maintain even general recursion.
to determine that a recursive computation is monotonic

to recover better maintenance algorithms where possible.
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Incrementality and Demand-driven Evaluation
Eagerly maintaining the entire model is not a good idea at this scale.
RAlis entirely demand-driven, which means that computations only happen when the result is

needed (or when executed in the background to catch up). The architecture is based on PL
incremental compiler research for IDEs.

Challenges:

- when to do invalidation and evaluation
- incrementally maintaining cyclic computation (scc)
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Outputs
Eager maintenance is bad
Inputs
Outputs . .

P Lazy maintenance is bad
detecting dirty computations is too
expensive when an output is quered.

Inputs
Outputs — X A : = |
, - / 58 Best: Eager invalidation
ReT foreTe) = lazy evaluation

Inputs ' — S5 | 117
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" Dependency Graph of Tax Analysis Logic
\ N 3.6K relations, 13K dependencies
- \ replacing millions of lines of procedural code




Dependency Graph of Tax Analysis Logic
Focus: Single strongly-connected component (recursion)




\Q\\\ NN Wit nr it oo e 7 T3
X\ Dependency Graph of Tax Analysis Logic Tk
\

§ Focus: Single node with many dependencies
€
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Incrementality and Demand-driven Evaluation

The architecture is based on PL incremental compiler research for IDEs.

Key ingredients:

- Precise dependency tracking (treat access to the catalog as queries)
- Memoization and invalidation (on input changes)

We've open-sourced Salsa.jl, our framework for writing responsive compilers.

- Responsive compilers - Nicholas Matsakis - PLISS 2019
- JuliaCon 2020 - Salsa.jl - Nathan Daly

RelationalAI
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<> Relational AI

Core Innovations for
Relational Knowledge Graphs

Relational Models for
Machine Learning

Unconstrained Optimization Models
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Current Practice in Machine Learning

Beautiful relational schema Design matrix: the ultimate
without redundancy denormalization
' ” Kk fl f2 f3 . vy

TensorFlow

O
PyTorch

- Feature extraction query

= Step I: throw away all
1=l 1! the structure and
Py knowledge on the data
-~ set(egdependencies).
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sku

sku

store date
Sl 2022-03-26
Sl 2022-03-27
Sl 2022-03-28
store date
Sl 2022-03-26
Sl 2022-03-27
Sl 2022-03-28
sold
Sl 2022-03-26 5
Sl 2022-03-27 7

sold sku color
5 1 Red
7
date
3 2022-03-26
sold color price
5 Red $5.14
7 Red $5.14
3 Red $5.14

Red Green
1 0 $5.14 1
1 0 $5.14 1

price store city size
$5.14 S Seattle 4000 sqgft
temp city state
53 Seattle WA
city size state temp
Seattle 4000 sqft WA 53
Seattle 4000 sqft WA 53
Seattle 4000 sqgft WA 53
Seattle = San Diego
0 4000 sqft 1 0 53
0 4000 sgft | 1 0 53
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Relational Modelling for Machine Learning

With our research network we have developed training methods that do not
require creating a design matrix of features and operate directly on the
relational structure.

Key innovations:

e Rellanguage - concisely expressing generic machine learning models
e Automatic differentiation of relational cost function

e Semantic optimizer - exploit relational structure and independence

e Optimization method executed iteratively in RAI system

e Execute large numbers of aggregations efficiently
125
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Rel - Math for Linear Regression

This is in a reusable library. Note this uses Rel schema abstraction (features is schema)

def predict_linear[X, M][ ] =
sum[£: M[F] * X[f, 11 + sum[+: M[F, X[, 111 + M[:bias]

def linear_regression[X, Y, M] =
minimize[rmse[predict _linear[X, M], Y]]

def features[:gdp per capita] = ...
def response = life satisfaction

def model = linear _regression[features, response, initial point]
126
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Semantic Optimization for Covariance Matrix

sku store date sold Red Green price Seattle = San Diego size WA CA
1 Si 2022-03-26 5 1 0 $5.14 1 0 4000 sgft | 1 0
1 Si 2022-03-27 7 1 0 $5.14 1 0 4000 sgft | 1 0

Generic covariance matrix:
def covariance[], k] =
sum[st, sk, d: design matrix[7j, st, sk, d] * design matrix[k, st, sk, d]]
Imagine the specialize to price and size:
def covariance[:price, :size] =

sum[st, sk, d: design matrix[:size, st, sk, d] * design_matrix[:price, st, sk, d]]

Price is independent of store and date
Size is independent of sku and date

def covariance[:price, :size] =
(sum[st: features[:price, st]] * count[stores] * count[dates]) *
(sum[sk: features[:size, sk]] * count[skus] * count[dates]) 127
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Relational Machine Learning: Resources and Influences

e Alayered Aggregate Engine for Analytics Workloads
Schleich, Olteanu, Khamis, Ngo, Nguyen, SIGMOD 2019

e Learning Models over Relational Data Using Sparse Tensors and Functional Dependencies
Khamis, Ngo, Nguyen, Olteanu, Schleich, PODS 2018, TODS 2020

e The Relational Data Borg is Learning
Olteanu, VLDB 2020 Keynote (youtube recording: /watchv=0icOMjOpMQ, /watchv=kWm-0BnbEoU)

e Structure-Aware Machine Learning over Multi-Relational Databases
Schleich, PhD thesis, Honorable mention for the 2021 SIGMOD Jim Gray Doctoral Dissertation Award

e Relational Knowledge Graphs as the Foundation for Artificial Intelligence
Aref (youtube recording: /watchv=VpyGbjUzG7Y)

e Rk-means: Fast Clustering for Relational Data
Curtin, Moseley, Ngo, Nguyen, Olteanu, Schleich, AISTATS 2020
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Constrained Optimization Models
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Optimization GUROBI
OPTIMIZATION

FICO® Xpress

e Obijective: the error/loss function Optimization

e Solver: differentiable function, often gradient descent

e All solutions are acceptable

e Objective: minimize or maximize the function
e Solver: LP, ILP, MIP etc

N ||
1
F va
1
>< il

e Not all solutions are acceptable: constraints

e Mathematical optimization problems are specified in high-level math
expressions (AMPL, JUMP). The problems are easily written in Rel
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Given: P, a set of products RelationalAI

MOdeI for a; = tons per hour of product j, for each j € P

b = hours available at the mill

[ ]
Mq n dectu Ki I‘Ig ¢; = profit per ton of product j, for each j € P
u; = maximum tons of product j, for each j € P
Problem :

Define variables: X; = tons of product j to be made, for each j € P
Maximize: Y.c;X;

jeP
Subject to: Y. (1/a;)X; <b

jeP

0 < X; <u, foreachjeP

@variable(model, make[products])
@objective(model, Max, sum(prod_profit[p] * make[p] for p in products))

@constraint(model, sum(1 / prod_rate[p] * make[p] for p in products) <= 40) /. JUMP
@constraint(model, [p in products], @ <= make[p] <= prod_max[p]) o0

var Make{p in PROD}
maximize Profit: sum{p in PROD} prod_profit[p] * Make[p];

subject to Time: sum{p in PROD} (1 / prod_rate[p]) * Make[p] <= 40; MPL
subject to Limit{p in PROD}: @ <= Make[p] <= prod_max[p]
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Relational Model

Rel supports expressing the objective function and constraints.

The system grounds the constraint in the database and pass the problem to a
solver (eg CPLEX, Gurobi, Xpress)

def total profit =
sum[prod_profit[p] * make[p] for p in products]

def time_avail() =
sum[ (1 / prod_rate[p]) * make[p] for p in products] < avail

def demand_market() =
forall(p in products: make[p] < prod_market[p])

Optimization happens in the dependency graph, so inputs to the solver can

computed Rel definitions or even other optimization problems.
132
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DuckDB-based SQL Interface

DuckDB is an embeddable SQL OLAP database management system with great
performance, excellent quality, small footprint and enjoying quick adoption.

RAI uses DuckDB for SQL support. Rel is used to model SQL tables, which are used
by DuckDB for SQL query evaluation. Individual ‘columns’ can be data vs views.

module order

DuckDB has outstanding support def orderkey[o] =
for working with a dynamic catalog. def customer[o] = ...
def orderdate[o] = ...

Other approaches we evaluated: def totalprice[o] = sum[num: charge[o, 11

- Calcite end

- DuckDB query plan

- PostgreSQL parser SELECT orderkey, customer, orderdate

FROM order

WHERE totalprice > 100

RelationalAl is partner of DuckDB Labs and member of the DuckDB foundation



<> Relational AI

Recap



Large scale

reasoning
SQL support with Immutable database in
DuckDB engine durable object storage,
including immutable
: catalog. Write-optimized.
Relational models for J X
mathematical optimization
Vectorized engine and
Relational hine | . compiled WCOJ algorithms,
¢'ationaimachine ledrning addressing subquery and
utilizing semantic optimization. index selection
Rel - An expressive
relational language Semantic optimization

Incremental computation for
fixpoint computation and

database changes
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Learn More

Fromithe TN ® e "KGC Bob Muglia” for modern data stack and relational knowledge graph
Modern Data Stack o\ (/A
to Knowledge Graphs .

.

®
L Youtube

Carnegie Mellon University

\V/Xel&[):Yi[e]Y] "CMU RelationalAl" for RAlI system overview
Database Talks

0 Martin Bravenboer Youtube
RelationalAl

Algorithms for
Relational Knowledge Graphs

"DSDSD Bravenboer” for different RAI system overview

May 13,2022

Youtube

<> Relational AT

https://twitter.com/RelationalAl
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https://twitter.com/RelationalAI

<> Relational AI

Thank you!



