Instance
explanations

CSEP 5908B: Explainable Al
lan Covert & Su-In Lee
University of Washington



Motivation

= So far, we've focused on the role of features,
concepts and neurons

= We haven't considered an important ingredient
for ML models: the data

= Which training examples influence an individual
prediction?

= How does each example contribute to the model's
accuracy?



Instance explanations

= Consider training the model with subsets of the
training dataset

= This can help understand the influence of
individual data examples

= Either on an individual prediction, or on global model
behavior (e.g., accuracy)

= Score the training examples
= |dentify valuable or problematic examples
= Determine possible changes to the dataset



Analogy to removal-based
explanations

= Recall: removal-based explanations measure
the impact of holding out features (columns)

= Here, we'll measure the impact of holding out
training data (rows)

= Clear parallels:
= How to efficiently remove training examples?
= Which model behavior to explain?
= How to summarize a sample’s importance?



Today

= Section 1
= Counterfactual explanations

= Section 2

= Leave-one-out <:

= Data Shapley

= Monitoring training dynamics



Main idea

= Score each example by the /eave-one-out
approach

= Modify training dataset by removing only that
example, then retrain the model|

= Measure change in the desired quantity (e.g.,
accuracy)

= Can be computationally costly, but there are
special cases and approximations



Brute force approach

= Simply retrain the model with each new dataset

= Practical when model training is fast and
dataset size is not too large

= Linear regression
= Random forests

= Can warme-start initialization (e.g., linear/logistic
regression)

= Otherwise, can be very slow
= E.g., neural networks, large datasets



Data deletion

= Train a model with the full dataset

= Then update the model (exactly or approximately) to
reflect data deletion

= Approximations for linear regression

= Cook & Weisberg, “Residuals and influence in regression” (1982)

= |zzo et al, "Approximate data deletion from machine learning
models” (2021)

= Exact approach for random forests
» Brophy & Lowd, “Machine unlearning for random forests” (2020)

= Approximation for deep learning models

= Koh & Liang, “Understanding black-box predictions via influence
functions” (2017)

©2022 Su-In Lee



Example result

Accurate for linear
regression

Approximating
loss change from
removing single

samples

Linear (exact) Linear (approx) CNN

0.03 ° P

WS / '
/ I/ -. 't'

-0.03 [ ]

Predicted diff in loss

-0.03 0.00 0.03 -0.03 0.00 0.03 -0.03 0.00 0.03
Actual diff in loss Actual diff in loss Actual diff in loss

Figure 2. Influence matches leave-one-out retraining. We arbi-
trarily picked a wrongly-classified test point z.s:, but this trend
held more broadly. These results are from 10-class MNIST. Left:
For each of the 500 training points z with largest |Iup,1oss(z, ztest) | ,
we plotted —% - Tupjioss (2, iest) against the actual change in test
loss after removing that point and retraining. The inverse HVP
was solved exactly with CG. Mid: Same, but with the stochastic
approximation. Right: The same plot for a CNN, computed on
the 100 most influential points with CG. For the actual difference
in loss, we removed each point and retrained from 6 for 30k steps.

Decently accurate
for CNNs

Koh & Liang, “Understanding black-box predictions via influence functions” (2017)

©2022 Su-In Lee



Example result (cont.)

Introducing and then identifying mislabeled examples

0.98 1.0

o
©
a2}

Influence function
approximation
outperforms ranking by
loss value

=== Clean data|
—}— Influence
—}— Loss

—}— Random

Test accuracy
o
8

Fraction of flips fixed

o

©

o
o©
)

0.
0.00 0.05 0.10 0.5 0.20 0.25 0.30 0.00 005 0.10 0.15 020 0.25 0.30
Fraction of train data checked Fraction of train data checked

. ) Ag'ure 6. Fixing mislabeled examples. Plots of how test accu-
Checkin gan d correcti ng racy (left) and the fraction of flipped data detected (right) change
exam p[e s in different orders with the fraction of train data checked, using different algorithms
for picking points to check. Error bars show the std. dev. across
40 repeats of this experiment, with a different subset of labels
flipped in each; error bars on the right are too small to be seen.
These results are on the Enronl spam dataset (Metsis et al., 2006),
with 4,147 training and 1,035 test examples; we trained logistic

regression on a bag-of-words representation of the emails.

Koh & Liang, “Understanding black-box predictions via influence functions” (2017)

©2022 Su-In Lee



Related: leverage scores

In linear regression, a measure of training sample influence
= Training data X € R™*?¢ and Y € R"
= Optimal parameters for y = BT x are given by:

B* = (XTX)"1xTy

Then, predictions are given by:
Y=Xp*=X(XTX)"1XTY = HY

Entries of “hat matrix” H have the following interpretation:
0y

Entries H;; € [0, 1] are known as leverage scores (self-influence)
= Can be used to identify outliers



Related: Cook’s distance

= |In linear regression, measures the impact of removing
individual samples

= For the ith sample, Cook’s distance is defined as:

~ ~ 2
_ L0 - Sw)

D.
l ds?
= 9 Is prediction for x; when excluding (x;,y;) from data
—VI2
= 5% = ”’;_’2' is normalized mean squared error (using all data)

= Perhaps surprisingly, Cook’s distance can be calculated
using leverage scores:

(yid—sfi)z [(1 —H:I ii)zl

Di=



Remarks

* Pros:
= Leave-one-out is simple, easy to explain
= Relatively efficient

= Approximations available for cases that aren't
efficient

= Cons:

= Removing individual samples may not properly
quantify influence



Today

= Section 1
= Counterfactual explanations

= Section 2
= [eave-one-out

= Data Shapley <:

= Monitoring training dynamics




Main idea

= Removing individual samples is not informative

= |nstead, consider all possible subsets of training data
and calculate Shapley values

= Shapley value = impact from adding a sample,
averaged across all training data permutations

= Here, we focus on model accuracy as a function
of training data

= Application to data valuation: compensating users for
their data, or pricing for data markets

Ghorbani & Zou, “Data Shapley: Equitable valuation of data for machine learning” (2019)



Notation

= Consider a model fy, often a neural network

= Given training data D = {(x;, y;)}i=,, the model is
trained by minimizing loss:

1 n
min ;Zizlf(fe (x:), ¥i)

» |nstead, we can train on subsetofdataS < D

= Let V(S) represent model’s performance score
(e.g., accuracy) after trainingon S

= We want Shapley values ¢; (V) for all training
samplesi=1,..,n



Approximate retraining

= Data Shapley uses an approximate approach for
retraining deep neural networks

= Freeze all but last layer's parameters

= Apply PCA to reduce dimensionality of final
representation

= Retraining reduces to low-dimensional logistic
regression (much faster)

= Alternatively, take a single gradient step per
training example

= A worse approximation, and order matters (not ideal)



Shapley value computation

= Problem: Shapley values require checking all
possible training sets (or all possible data

orderings)
= |ntractable even for small datasets (100 samples)

= Data Shapley uses a permutation estimator

= Recall Lecture 3, HW1
= Small modifications for further acceleration (early
truncation)
= Correct given enough sampled permutations
In practice, keep sampling until roughly converged



Results

« Removing high-value
data hurts performance

* Removing low-value
data helps performance

» Gradient approximation
(G-Shapley) is only
slightly worse

(Similar to insertion & deletion metrics, see Lecture 5)

Removing high Removing low
value data value data
76
| .
_65 _
8 = €74
c 3 >
© Seo £72
O ¢ g
v 2 £70
8 £55] —— TMC-Shapley <
o £ | == G-Shapley £68
m 50| — " LOO
= Random 66
0 20 40 0 20 40

60
56 .
CTJ 54 \ v'"v'-(,,/ 59
& g
o 3z 58
c g52 e
© 257
© z= 4 |k,
c = N 556
L £248) —— TMC-Shapley \\\ S o Reemiesss
X £ | —— GShapl o £s5 b
<46 -Shapley \ b ] 7
7)) ey N VN L
54 : s
44{ ---- Random b THC \J \
53
0 20 40 5 20 70

Fraction of train data removed (%) Fraction of train data removed (%)

(@) (b)

Ghorbani & Zou, “Data Shapley: Equitable valuation of data for machine learning” (2019)

©2022 Su-In Lee

19



Results

—u— TMC-Shapley —a— TMC-Shapley

Spam Classification Flower Classification T-Shirt/Top vs Shirt Classification
Naive Bayes Classifier Multinomial Logistic Regression ConvNet Classifier
20% mislabeled 10% mislabeled 10% mislabeled

K100 £100] g

g 2 880

& 80 & 80| B

K] un o

[ [ Q

Q Q 260/

£ 60| —=— TMC-Shapley £ 60 s

] —— LOO o g /
S 40| **++ Random 5 40/ £ 40

o [v] O

£ £ £

N Y u—

o IS} o

c c c

2 k) o

9] S s

o £ &

w w w

20 201 LT G-Shapley 201 7. —e— G-Shapley
—v— LOO =% OO
0 ol d° + Random ol * Random
0 20 40 0 20 40 0 20 40
Fraction of data checked(%) Fraction of data checked(%) Fraction of data checked(%)

Figure 3. Correcting Flipped Labels We inspect train data points from the least valuable to the most valuable and fix the mislabeled
examples. As it is shown, Shapley value methods result in the earliest detection of mislabeled examples. While leave-one-out works
reasonably well on the Logistic Regression model, it’s performance on the two other models is similar to random inspection.

Ghorbani & Zou, “Data Shapley: Equitable valuation of data for machine learning” (2019)

©2022 Su-In Lee 20



Remarks

= Pros:

= Removing groups of samples gives better
understanding of data importance

= Data Shapley performs better than leave-one-out on
dataset refinement metrics

= Cons:

= Much more computationally costly
Challenging for large datasets (>10k examples)

Faster approximations exist for some special cases (not
discussed here)



Further reading

= (Ghorbani et al., “A distributional framework for data valuation”
(2020)

= Jia et al, “Towards efficient data valuation based on the Shapley
value” (2019)

= Kwon et al,, “Efficient computation and analysis of distributional
Shapley values” (2021)

= Kwon & Zou, “Beta Shapley: A unified and noise-reduced data
valuation framework for machine learning” (2022)

» Tang et al,, “Data valuation for medical imaging using Shapley
value and application to large-scale chest X-ray dataset” (2021)

©2022 Su-In Lee 22



Today

= Section 1
= Counterfactual explanations

= Section 2
= Leave-one-out
= Data Shapley
= Monitoring training dynamics <_




Main idea

= Retraining a model with different training data
is slow

= |nstead, monitor a model’s performance over the
course of single training run

Only for models trained via SGD (DNNs, which are
challenging for other approaches)

Aim to understand training sample influence
ldeally adds minimal time to model training

= Can be approached in many different ways
= We'll discuss just a couple examples



(Un)forgettable examples

= While training DNN via SGD, check a sample’s
loss every time it appears in a minibatch

= An example is said to be forgotten if it was once
correctly classified, and later becomes incorrect

= Forgettable examples: those that are forgotten at least
once

= Unforgettable examples. examples that are never
forgotten after being learned

Toneva et al.,, “An empirical study of example forgetting during deep neural network
learning” (2019)

©2022 Su-In Lee 25



Results

Unforgettable examples are simpler, more prototgpical

l |

do

--“”“
T (=l

Figure 2: Pictures of unforgettable (7Top) and forgettable examples (Bottom) of every CIFAR-10
class. Forgettable examples seem to exhibit peculiar or uncommon features. Additional examples
are available in Supplemental Figure 15.

g9
Qo
©
+—
)
(]
(@]
—
]
y—
C
>
@
Qo
©
4+
+
[
(@)}
—
]
y—

Toneva et al,, “An empirical study of example forgetting during deep neural network
learning” (2019)

©2022 Su-In Lee 26



Results (cont.)

Can remove simpler, unforgettable examples without hurting performance

Toneva et al., "An empirical study of example forgetting during deep neural network

96.5

—— selected removed
96.0 - 96.2 1"\ —— random removed
g
95.5 1 S 9604 | f\ - - :
> o X \ ] ! !
9 95.0 © ‘
o c
5 5 95.84
g 94.5 A E
T 94.0 £ 95.6 1
[%2)
+ ©
93.5 1 © |
—— none removed g 954
93.0 { — selected removed =}
—— random removed 95.2
925 T T T T T T T T T T T T
0 10 20 30 40 50 60 0 5 10 15 20

percentage of training set removed average number of forgetting events in removed subset

Figure 5: Left Generalization performance on CIFAR-10 of ResNet18 where increasingly larger sub-
sets of the training set are removed (mean +/- std error of 5 seeds). When the removed examples are
selected at random, performance drops very fast. Selecting the examples according to our ordering
can reduce the training set significantly without affecting generalization. The vertical line indicates
the point at which all unforgettable examples are removed from the training set. Right Difference
in generalization performance when contiguous chunks of 5000 increasingly forgotten examples are
removed from the training set. Most important examples tend to be those that are forgotten the most.

learning” (2019)

©2022 Su-In Lee

27



Ranking classification margin

* ldea: mislabeled samples are more likely to be
incorrectly classified

= Rather than checking at the end of training, check
throughout training

= At each epoch t, calculate margin for sample (x, y) as
follows:

(t) — (t) _ (t) True logit minus
M (X,y) Zy (x) r{lqg,x 2 (x) max of other logits

= Then, average across T epochs for AUM(x, y)

(Pleiss et al,, “ldentifying mislabeled data using the area under the margin ranking”
2020)

©2022 Su-In Lee 28



Results

Use scores for mislabeled samples to
determine which real ones to delete

Pleiss et al., “Identifying mislabeled data using the area under the margin ranking”

(2020)

©2022 Su-In Lee

Injecting mislabeled examples

CIFARI10 CIFAR100
: i DOG <THRESHOLD> DOG

Nz

I Correctly Labeled
[ Mislabeled

"""" Thrshld. Samples
mmmm 99% Threshold

Density

AUM AUM

Figure 3: Illustrating the role of threshold samples on CI-
FAR10/100 with 40% mislabeled samples. Histograms of
AUMs for correctly-labeled (blue) and mislabeled samples
(orange). Dashed lines represent the AUM values of thresh-
old samples. The 99" percentile of threshold AUMs (solid
gray line) separates correctly- and mislabeled data.

—4 -2 0 2 -5 0 5

29



Results (cont.)

Table 3: Test-error on real-world datasets (ResNet-32 for CIFAR/Tiny I.N., ResNet-50 for others).

WebVision50 Clothing100K CIFAR10 CIFAR100 Tiny ImageNet ImageNet

Standard Error 21.4 35.8 81+0.1  33.0+03  49.3+0.1 24.2
Data Param [52] Error 21.5 35.5 81400 364414  484+02 24.1
5 Bootstean B Error 25.8 38.4 10.04£0.0 349401 516400 32.0
P (% Removed) (4.6) (12.1) (155+0.2) (7.3+0.1) (125+00)  (10.7)
INCV (T3] Error 22.1 33.3 91400 382401  56.1+0.1 29.5
(% Removed) (26.2) (25.2) (85+0.1) (27.4+0.1) (27.6+1.4) (7.4)

) - Error 19.8 335 |  79+00 318401 486+01 244
(% Removed) (17.8) (16.7) (3.0+0.1) (13.0£0.9) (19.940.1) @.7)

I

Deleting data from weakly labeled datasets
(crowdsourced labels) improves performance

(Pleiss et al,, “ldentifying mislabeled data using the area under the margin ranking”
2020)

©2022 Su-In Lee

30



Tracln

= Considers sample-to-sample influence when
training model f,

= Taking gradient step on sample z = (x,y) influences
loss on another sample z', denoted ¢(6, z")

= Consider training steps t where z; = z
= Define idealized version as:

Traclnldeal(z,z") = z f(H(Hl),Z’) — f(e(t),z’)

t:Zt:Z

Garima et al., “Estimating training data influence by tracing gradient descent” (2020)

©2022 Su-In Lee 31



Tracln (cont.)

= |dealized version is impractical
= Can't check loss after every gradient step
= We typically train using minibatches, not single examples

= The authors approximate Traclnldeal(z, z") using
model checkpoints

= Model versions are saved after multiple gradient steps
= Derivation/equation is complicated (see Garima et al.)
= Practical version called TracInCP(z, z")

Garima et al., “Estimating training data influence by tracing gradient descent” (2020)

©2022 Su-In Lee 32



Results

Introduced mislabeled examples, then tried to identify via self-influence
(mislabeled examples should be strong proponents for themselves)

Mislabeled examples are highly ranked

|

Test Acc

Fraction of mislabled identified
Fraction of mislabled identified

—— Tracdn

—e— Influence Fns
*— Representer

—=— TracinCP

—+ Tracin RP

—e— Influence Fns
+— Representer
~a— TradinCP
—4+— TracinCP (Equally Weighted)

o1 o2 o3 o 3 [ o6 o f 02 03 o4 7 o [ [
Fraction of training data checked Fraction of training data checked Fraction of training data checked Fraction of training data checked

(a) CIFAR-10 (b) MNIST

Figure 1: CIFAR-10 and MNIST Mislabelled Data Identification with TracIn Representer points,
and Influence Functions. We use “Fraction of mislabelled identified” on the y axis to compare the
effectiveness of each method. (RP = Random Projections, CP = CheckPoints)

Garima et al., "Estimating training data influence by tracing gradient descent” (2020)

©2022 Su-In Lee 33



esults (cont.)

Proponents Opponents

s P
microphone microphone microphone microphone

church church church castle castle

af-chameleon

'l; .

oo

bostonbull bostonbull bostonbull bostonbull fr-bulldog fr-bulldog fr-bulldog

-

e o

carwheel carwheel carwheel candle spotlight loupe bathtowel

Figure 4: TracIn applied on Imagenet. Each row starts with the test example followed by three
proponents and three opponents. The test image in the first row is classfied as band-aid and is the
only misclassified example. (af-chameleon: african-chameleon, fr-bulldog: french-bulldog)

Garima et al., "Estimating training data influence by tracing gradient descent” (2020)

©2022 Su-In Lee

34



Remarks

= Pros:

= Monitoring training dynamics has low computational
cost compared to previous methods

= Cons:

= Many different approaches for analyzing training
dynamics, less clear which offer best performance

= Results are stochastic, depend on training run and
hyperparameters



Summary

= Diverse methods for understanding training
data influence

= As with feature importance, instance
importance can be used in a local or global
manner

= Focus on individual prediction, or dataset accuracy

= Computation is often challenging, but recent
methods suggest interesting approximations



