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Motivation

§ So far, we’ve focused on the role of features, 
concepts and neurons

§ We haven’t considered an important ingredient 
for ML models: the data
§ Which training examples influence an individual 

prediction?
§ How does each example contribute to the model’s 

accuracy?
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Instance explanations

§ Consider training the model with subsets of the 
training dataset

§ This can help understand the influence of 
individual data examples
§ Either on an individual prediction, or on global model 

behavior (e.g., accuracy)

§ Score the training examples
§ Identify valuable or problematic examples
§ Determine possible changes to the dataset
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Analogy to removal-based 
explanations
§ Recall: removal-based explanations measure 

the impact of holding out features (columns)
§ Here, we’ll measure the impact of holding out 

training data (rows)

§ Clear parallels:
§ How to efficiently remove training examples?
§ Which model behavior to explain?
§ How to summarize a sample’s importance?
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Today

§ Section 1
§ Counterfactual explanations

§ Section 2
§ Leave-one-out
§ Data Shapley
§ Monitoring training dynamics
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Main idea

§ Score each example by the leave-one-out
approach
§ Modify training dataset by removing only that 

example, then retrain the model
§ Measure change in the desired quantity (e.g., 

accuracy)

§ Can be computationally costly, but there are 
special cases and approximations
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Brute force approach

§ Simply retrain the model with each new dataset
§ Practical when model training is fast and 

dataset size is not too large
§ Linear regression
§ Random forests
§ Can warm-start initialization (e.g., linear/logistic 

regression)

§ Otherwise, can be very slow
§ E.g., neural networks, large datasets
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Data deletion

§ Train a model with the full dataset
§ Then update the model (exactly or approximately) to 

reflect data deletion
§ Approximations for linear regression

§ Cook & Weisberg, “Residuals and influence in regression” (1982)
§ Izzo et al., “Approximate data deletion from machine learning 

models” (2021)

§ Exact approach for random forests
§ Brophy & Lowd, “Machine unlearning for random forests” (2020)

§ Approximation for deep learning models
§ Koh & Liang, “Understanding black-box predictions via influence 

functions” (2017)
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Example result
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Koh & Liang, “Understanding black-box predictions via influence functions” (2017)

Accurate for linear 
regression

Approximating 
loss change from 
removing single 

samples

Decently accurate 
for CNNs
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Example result (cont.)
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Koh & Liang, “Understanding black-box predictions via influence functions” (2017)

Introducing and then identifying mislabeled examples

Influence function 
approximation 

outperforms ranking by 
loss value

Checking and correcting 
examples in different orders
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Related: leverage scores
§ In linear regression, a measure of training sample influence

§ Training data 𝑋 ∈ ℝ!×# and 𝑌 ∈ ℝ!

§ Optimal parameters for %𝑦 = 𝛽$𝑥 are given by:

𝛽∗ = 𝑋"𝑋 #$𝑋"𝑌

§ Then, predictions are given by:
%𝑌 = 𝑋𝛽∗ = 𝑋 𝑋"𝑋 #$𝑋"𝑌 = 𝐻𝑌

§ Entries of “hat matrix” 𝐻 have the following interpretation:

𝐻%& =
𝜕(𝑦%
𝜕𝑦&

§ Entries 𝐻%% ∈ 0, 1 are known as leverage scores (self-influence)
§ Can be used to identify outliers
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Related: Cook’s distance

§ In linear regression, measures the impact of removing 
individual samples

§ For the 𝑖th sample, Cook’s distance is defined as:

𝐷! =
∑" %𝑦" − %𝑦" !

#

𝑑𝑠#

§ !𝑦! " is prediction for 𝑥! when excluding 𝑥" , 𝑦" from data

§ 𝑠# = $%&$ !

'%(
is normalized mean squared error (using all data)

§ Perhaps surprisingly, Cook’s distance can be calculated 
using leverage scores:

𝐷! =
𝑦! − %𝑦! #

𝑑𝑠#
𝐻!!

1 − 𝐻!! #
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Remarks

§ Pros:
§ Leave-one-out is simple, easy to explain
§ Relatively efficient
§ Approximations available for cases that aren’t 

efficient

§ Cons:
§ Removing individual samples may not properly 

quantify influence
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Today

§ Section 1
§ Counterfactual explanations

§ Section 2
§ Leave-one-out
§ Data Shapley
§ Monitoring training dynamics
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Main idea

§ Removing individual samples is not informative
§ Instead, consider all possible subsets of training data 

and calculate Shapley values
§ Shapley value = impact from adding a sample, 

averaged across all training data permutations

§ Here, we focus on model accuracy as a function 
of training data
§ Application to data valuation: compensating users for 

their data, or pricing for data markets
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Ghorbani & Zou, “Data Shapley: Equitable valuation of data for machine learning” (2019)
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Notation

§ Consider a model 𝑓', often a neural network
§ Given training data 𝐷 = 𝑥! , 𝑦! !$%

& , the model is 
trained by minimizing loss:

min
'

1
𝑛2!$%

&
ℓ 𝑓' 𝑥! , 𝑦!

§ Instead, we can train on subset of data 𝑆 ⊆ 𝐷
§ Let 𝑉 𝑆 represent model’s performance score 

(e.g., accuracy) after training on 𝑆
§ We want Shapley values 𝜙( 𝑉 for all training 

samples 𝑖 = 1,… , 𝑛
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Approximate retraining

§ Data Shapley uses an approximate approach for 
retraining deep neural networks
§ Freeze all but last layer’s parameters
§ Apply PCA to reduce dimensionality of final 

representation
§ Retraining reduces to low-dimensional logistic 

regression (much faster)

§ Alternatively, take a single gradient step per 
training example
§ A worse approximation, and order matters (not ideal)
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Shapley value computation

§ Problem: Shapley values require checking all 
possible training sets (or all possible data 
orderings)
§ Intractable even for small datasets (100 samples)

§ Data Shapley uses a permutation estimator
§ Recall Lecture 3, HW1
§ Small modifications for further acceleration (early 

truncation)
§ Correct given enough sampled permutations

§ In practice, keep sampling until roughly converged
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Results
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Ghorbani & Zou, “Data Shapley: Equitable valuation of data for machine learning” (2019)

(Similar to insertion & deletion metrics, see Lecture 5)

• Removing high-value 
data hurts performance

• Removing low-value 
data helps performance

• Gradient approximation 
(G-Shapley) is only 
slightly worse
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Results
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Ghorbani & Zou, “Data Shapley: Equitable valuation of data for machine learning” (2019)
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Remarks

§ Pros:
§ Removing groups of samples gives better 

understanding of data importance
§ Data Shapley performs better than leave-one-out on 

dataset refinement metrics

§ Cons:
§ Much more computationally costly

§ Challenging for large datasets (>10k examples)
§ Faster approximations exist for some special cases (not 

discussed here)
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Further reading

§ Ghorbani et al., “A distributional framework for data valuation” 
(2020)

§ Jia et al., “Towards efficient data valuation based on the Shapley 
value” (2019)

§ Kwon et al., “Efficient computation and analysis of distributional 
Shapley values” (2021)

§ Kwon & Zou, “Beta Shapley: A unified and noise-reduced data 
valuation framework for machine learning” (2022)

§ Tang et al., “Data valuation for medical imaging using Shapley 
value and application to large-scale chest X-ray dataset” (2021)
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Today

§ Section 1
§ Counterfactual explanations

§ Section 2
§ Leave-one-out
§ Data Shapley
§ Monitoring training dynamics
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Main idea

§ Retraining a model with different training data 
is slow
§ Instead, monitor a model’s performance over the 

course of single training run
§ Only for models trained via SGD (DNNs, which are 

challenging for other approaches)
§ Aim to understand training sample influence
§ Ideally adds minimal time to model training

§ Can be approached in many different ways
§ We’ll discuss just a couple examples
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(Un)forgettable examples

§ While training DNN via SGD, check a sample’s 
loss every time it appears in a minibatch
§ An example is said to be forgotten if it was once 

correctly classified, and later becomes incorrect
§ Forgettable examples: those that are forgotten at least 

once
§ Unforgettable examples: examples that are never 

forgotten after being learned
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Toneva et al., “An empirical study of example forgetting during deep neural network 
learning” (2019)
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Results
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Toneva et al., “An empirical study of example forgetting during deep neural network 
learning” (2019)

Unforgettable examples are simpler, more prototypical
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Results (cont.)
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Toneva et al., “An empirical study of example forgetting during deep neural network 
learning” (2019)

Can remove simpler, unforgettable examples without hurting performance
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Ranking classification margin

§ Idea: mislabeled samples are more likely to be 
incorrectly classified
§ Rather than checking at the end of training, check 

throughout training
§ At each epoch 𝑡, calculate margin for sample 𝑥, 𝑦 as 

follows:

𝑀 ) 𝑥, 𝑦 = 𝑧*
) 𝑥 −max

(+*
𝑧(
) 𝑥

§ Then, average across 𝑇 epochs for AUM 𝑥, 𝑦
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Pleiss et al., “Identifying mislabeled data using the area under the margin ranking” 
(2020)

True logit minus 
max of other logits
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Results
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Pleiss et al., “Identifying mislabeled data using the area under the margin ranking” 
(2020)

Use scores for mislabeled samples to 
determine which real ones to delete

Injecting mislabeled examples
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Results (cont.)
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Pleiss et al., “Identifying mislabeled data using the area under the margin ranking” 
(2020)

Deleting data from weakly labeled datasets 
(crowdsourced labels) improves performance
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TracIn

§ Considers sample-to-sample influence when 
training model 𝑓'
§ Taking gradient step on sample 𝑧 = 𝑥, 𝑦 influences 

loss on another sample 𝑧′, denoted ℓ 𝜃, 𝑧(

§ Consider training steps 𝑡 where 𝑧) = 𝑧
§ Define idealized version as:

TracInIdeal 𝑧, 𝑧! = -
":$)%$

ℓ 𝜃 "&' , 𝑧! − ℓ 𝜃 " , 𝑧!
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Garima et al., ”Estimating training data influence by tracing gradient descent” (2020)
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TracIn (cont.)

§ Idealized version is impractical
§ Can’t check loss after every gradient step
§ We typically train using minibatches, not single examples

§ The authors approximate TracInIdeal 𝑧, 𝑧! using 
model checkpoints
§ Model versions are saved after multiple gradient steps
§ Derivation/equation is complicated (see Garima et al.)
§ Practical version called TracInCP 𝑧, 𝑧'

32

Garima et al., ”Estimating training data influence by tracing gradient descent” (2020)
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Results

33

Garima et al., ”Estimating training data influence by tracing gradient descent” (2020)

Introduced mislabeled examples, then tried to identify via self-influence 
(mislabeled examples should be strong proponents for themselves)

Mislabeled examples are highly ranked
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Results (cont.)
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Garima et al., ”Estimating training data influence by tracing gradient descent” (2020)

Proponents Opponents
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Remarks

§ Pros:
§ Monitoring training dynamics has low computational 

cost compared to previous methods

§ Cons:
§ Many different approaches for analyzing training 

dynamics, less clear which offer best performance
§ Results are stochastic, depend on training run and 

hyperparameters
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Summary

§ Diverse methods for understanding training 
data influence

§ As with feature importance, instance 
importance can be used in a local or global 
manner
§ Focus on individual prediction, or dataset accuracy

§ Computation is often challenging, but recent 
methods suggest interesting approximations
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