
©2022 Su-In Lee

Instance
explanations

CSEP 590B: Explainable AI
Ian Covert & Su-In Lee

University of Washington

1

©2022 Su-In Lee

Motivation

§ So far, we’ve focused on the role of features,
concepts and neurons

§ We haven’t considered an important ingredient
for ML models: the data
§ Which training examples influence an individual

prediction?
§ How does each example contribute to the model’s

accuracy?

2

©2022 Su-In Lee

Instance explanations

§ Consider training the model with subsets of the
training dataset

§ This can help understand the influence of
individual data examples
§ Either on an individual prediction, or on global model

behavior (e.g., accuracy)

§ Score the training examples
§ Identify valuable or problematic examples
§ Determine possible changes to the dataset

3

©2022 Su-In Lee

Analogy to removal-based
explanations
§ Recall: removal-based explanations measure

the impact of holding out features (columns)
§ Here, we’ll measure the impact of holding out

training data (rows)

§ Clear parallels:
§ How to efficiently remove training examples?
§ Which model behavior to explain?
§ How to summarize a sample’s importance?

4

©2022 Su-In Lee

Today

§ Section 1
§ Counterfactual explanations

§ Section 2
§ Leave-one-out
§ Data Shapley
§ Monitoring training dynamics

5

©2022 Su-In Lee

Main idea

§ Score each example by the leave-one-out
approach
§ Modify training dataset by removing only that

example, then retrain the model
§ Measure change in the desired quantity (e.g.,

accuracy)

§ Can be computationally costly, but there are
special cases and approximations

6

©2022 Su-In Lee

Brute force approach

§ Simply retrain the model with each new dataset
§ Practical when model training is fast and

dataset size is not too large
§ Linear regression
§ Random forests
§ Can warm-start initialization (e.g., linear/logistic

regression)

§ Otherwise, can be very slow
§ E.g., neural networks, large datasets

7

©2022 Su-In Lee

Data deletion

§ Train a model with the full dataset
§ Then update the model (exactly or approximately) to

reflect data deletion
§ Approximations for linear regression

§ Cook & Weisberg, “Residuals and influence in regression” (1982)
§ Izzo et al., “Approximate data deletion from machine learning

models” (2021)

§ Exact approach for random forests
§ Brophy & Lowd, “Machine unlearning for random forests” (2020)

§ Approximation for deep learning models
§ Koh & Liang, “Understanding black-box predictions via influence

functions” (2017)

8

©2022 Su-In Lee

Example result

9

Koh & Liang, “Understanding black-box predictions via influence functions” (2017)

Accurate for linear
regression

Approximating
loss change from
removing single

samples

Decently accurate
for CNNs

©2022 Su-In Lee

Example result (cont.)

10

Koh & Liang, “Understanding black-box predictions via influence functions” (2017)

Introducing and then identifying mislabeled examples

Influence function
approximation

outperforms ranking by
loss value

Checking and correcting
examples in different orders

©2022 Su-In Lee

Related: leverage scores
§ In linear regression, a measure of training sample influence

§ Training data 𝑋 ∈ ℝ!×# and 𝑌 ∈ ℝ!

§ Optimal parameters for %𝑦 = 𝛽$𝑥 are given by:

𝛽∗ = 𝑋"𝑋 #$𝑋"𝑌

§ Then, predictions are given by:
%𝑌 = 𝑋𝛽∗ = 𝑋 𝑋"𝑋 #$𝑋"𝑌 = 𝐻𝑌

§ Entries of “hat matrix” 𝐻 have the following interpretation:

𝐻%& =
𝜕(𝑦%
𝜕𝑦&

§ Entries 𝐻%% ∈ 0, 1 are known as leverage scores (self-influence)
§ Can be used to identify outliers

11

©2022 Su-In Lee

Related: Cook’s distance

§ In linear regression, measures the impact of removing
individual samples

§ For the 𝑖th sample, Cook’s distance is defined as:

𝐷! =
∑" %𝑦" − %𝑦" !

#

𝑑𝑠#

§ !𝑦! " is prediction for 𝑥! when excluding 𝑥" , 𝑦" from data

§ 𝑠# = $%&$!

'%(
is normalized mean squared error (using all data)

§ Perhaps surprisingly, Cook’s distance can be calculated
using leverage scores:

𝐷! =
𝑦! − %𝑦! #

𝑑𝑠#
𝐻!!

1 − 𝐻!! #

12

©2022 Su-In Lee

Remarks

§ Pros:
§ Leave-one-out is simple, easy to explain
§ Relatively efficient
§ Approximations available for cases that aren’t

efficient

§ Cons:
§ Removing individual samples may not properly

quantify influence

13

©2022 Su-In Lee

Today

§ Section 1
§ Counterfactual explanations

§ Section 2
§ Leave-one-out
§ Data Shapley
§ Monitoring training dynamics

14

©2022 Su-In Lee

Main idea

§ Removing individual samples is not informative
§ Instead, consider all possible subsets of training data

and calculate Shapley values
§ Shapley value = impact from adding a sample,

averaged across all training data permutations

§ Here, we focus on model accuracy as a function
of training data
§ Application to data valuation: compensating users for

their data, or pricing for data markets

15

Ghorbani & Zou, “Data Shapley: Equitable valuation of data for machine learning” (2019)

©2022 Su-In Lee

Notation

§ Consider a model 𝑓', often a neural network
§ Given training data 𝐷 = 𝑥! , 𝑦! !$%

& , the model is
trained by minimizing loss:

min
'

1
𝑛2!$%

&
ℓ 𝑓' 𝑥! , 𝑦!

§ Instead, we can train on subset of data 𝑆 ⊆ 𝐷
§ Let 𝑉 𝑆 represent model’s performance score

(e.g., accuracy) after training on 𝑆
§ We want Shapley values 𝜙(𝑉 for all training

samples 𝑖 = 1,… , 𝑛

16

©2022 Su-In Lee

Approximate retraining

§ Data Shapley uses an approximate approach for
retraining deep neural networks
§ Freeze all but last layer’s parameters
§ Apply PCA to reduce dimensionality of final

representation
§ Retraining reduces to low-dimensional logistic

regression (much faster)

§ Alternatively, take a single gradient step per
training example
§ A worse approximation, and order matters (not ideal)

17

©2022 Su-In Lee

Shapley value computation

§ Problem: Shapley values require checking all
possible training sets (or all possible data
orderings)
§ Intractable even for small datasets (100 samples)

§ Data Shapley uses a permutation estimator
§ Recall Lecture 3, HW1
§ Small modifications for further acceleration (early

truncation)
§ Correct given enough sampled permutations

§ In practice, keep sampling until roughly converged

18

©2022 Su-In Lee

Results

19

Ghorbani & Zou, “Data Shapley: Equitable valuation of data for machine learning” (2019)

(Similar to insertion & deletion metrics, see Lecture 5)

• Removing high-value
data hurts performance

• Removing low-value
data helps performance

• Gradient approximation
(G-Shapley) is only
slightly worse

©2022 Su-In Lee

Results

20

Ghorbani & Zou, “Data Shapley: Equitable valuation of data for machine learning” (2019)

©2022 Su-In Lee

Remarks

§ Pros:
§ Removing groups of samples gives better

understanding of data importance
§ Data Shapley performs better than leave-one-out on

dataset refinement metrics

§ Cons:
§ Much more computationally costly

§ Challenging for large datasets (>10k examples)
§ Faster approximations exist for some special cases (not

discussed here)

21

©2022 Su-In Lee

Further reading

§ Ghorbani et al., “A distributional framework for data valuation”
(2020)

§ Jia et al., “Towards efficient data valuation based on the Shapley
value” (2019)

§ Kwon et al., “Efficient computation and analysis of distributional
Shapley values” (2021)

§ Kwon & Zou, “Beta Shapley: A unified and noise-reduced data
valuation framework for machine learning” (2022)

§ Tang et al., “Data valuation for medical imaging using Shapley
value and application to large-scale chest X-ray dataset” (2021)

22

©2022 Su-In Lee

Today

§ Section 1
§ Counterfactual explanations

§ Section 2
§ Leave-one-out
§ Data Shapley
§ Monitoring training dynamics

23

©2022 Su-In Lee

Main idea

§ Retraining a model with different training data
is slow
§ Instead, monitor a model’s performance over the

course of single training run
§ Only for models trained via SGD (DNNs, which are

challenging for other approaches)
§ Aim to understand training sample influence
§ Ideally adds minimal time to model training

§ Can be approached in many different ways
§ We’ll discuss just a couple examples

24

©2022 Su-In Lee

(Un)forgettable examples

§ While training DNN via SGD, check a sample’s
loss every time it appears in a minibatch
§ An example is said to be forgotten if it was once

correctly classified, and later becomes incorrect
§ Forgettable examples: those that are forgotten at least

once
§ Unforgettable examples: examples that are never

forgotten after being learned

25

Toneva et al., “An empirical study of example forgetting during deep neural network
learning” (2019)

©2022 Su-In Lee

Results

26

Toneva et al., “An empirical study of example forgetting during deep neural network
learning” (2019)

Unforgettable examples are simpler, more prototypical

©2022 Su-In Lee

Results (cont.)

27

Toneva et al., “An empirical study of example forgetting during deep neural network
learning” (2019)

Can remove simpler, unforgettable examples without hurting performance

©2022 Su-In Lee

Ranking classification margin

§ Idea: mislabeled samples are more likely to be
incorrectly classified
§ Rather than checking at the end of training, check

throughout training
§ At each epoch 𝑡, calculate margin for sample 𝑥, 𝑦 as

follows:

𝑀) 𝑥, 𝑦 = 𝑧*
) 𝑥 −max

(+*
𝑧(
) 𝑥

§ Then, average across 𝑇 epochs for AUM 𝑥, 𝑦

28

Pleiss et al., “Identifying mislabeled data using the area under the margin ranking”
(2020)

True logit minus
max of other logits

©2022 Su-In Lee

Results

29

Pleiss et al., “Identifying mislabeled data using the area under the margin ranking”
(2020)

Use scores for mislabeled samples to
determine which real ones to delete

Injecting mislabeled examples

©2022 Su-In Lee

Results (cont.)

30

Pleiss et al., “Identifying mislabeled data using the area under the margin ranking”
(2020)

Deleting data from weakly labeled datasets
(crowdsourced labels) improves performance

©2022 Su-In Lee

TracIn

§ Considers sample-to-sample influence when
training model 𝑓'
§ Taking gradient step on sample 𝑧 = 𝑥, 𝑦 influences

loss on another sample 𝑧′, denoted ℓ 𝜃, 𝑧(

§ Consider training steps 𝑡 where 𝑧) = 𝑧
§ Define idealized version as:

TracInIdeal 𝑧, 𝑧! = -
":$)%$

ℓ 𝜃 "&' , 𝑧! − ℓ 𝜃 " , 𝑧!

31

Garima et al., ”Estimating training data influence by tracing gradient descent” (2020)

©2022 Su-In Lee

TracIn (cont.)

§ Idealized version is impractical
§ Can’t check loss after every gradient step
§ We typically train using minibatches, not single examples

§ The authors approximate TracInIdeal 𝑧, 𝑧! using
model checkpoints
§ Model versions are saved after multiple gradient steps
§ Derivation/equation is complicated (see Garima et al.)
§ Practical version called TracInCP 𝑧, 𝑧'

32

Garima et al., ”Estimating training data influence by tracing gradient descent” (2020)

©2022 Su-In Lee

Results

33

Garima et al., ”Estimating training data influence by tracing gradient descent” (2020)

Introduced mislabeled examples, then tried to identify via self-influence
(mislabeled examples should be strong proponents for themselves)

Mislabeled examples are highly ranked

©2022 Su-In Lee

Results (cont.)

34

Garima et al., ”Estimating training data influence by tracing gradient descent” (2020)

Proponents Opponents

©2022 Su-In Lee

Remarks

§ Pros:
§ Monitoring training dynamics has low computational

cost compared to previous methods

§ Cons:
§ Many different approaches for analyzing training

dynamics, less clear which offer best performance
§ Results are stochastic, depend on training run and

hyperparameters

35

©2022 Su-In Lee

Summary

§ Diverse methods for understanding training
data influence

§ As with feature importance, instance
importance can be used in a local or global
manner
§ Focus on individual prediction, or dataset accuracy

§ Computation is often challenging, but recent
methods suggest interesting approximations

36

