Counterfactual explanations

CSEP 590B: Explainable AI
Hugh Chen, Ian Covert & Su-In Lee
University of Washington
Course announcements

- For next week’s class (5/24), we’ll have two guest lectures:
 - 6:30 – 7:30 James Zou (Stanford)
 - 7:40 – 8:40 Dan Weld (UW)
 - 8:45 – 9:20 Paper discussion

- HW3 will be posted tomorrow
 - Due on 6/1 (two weeks)
Motivation

- **Previously:** feature importance, concept explanations, neuron interpretation

- **Today:** a new type of explanation for individual predictions
 - Not asking what’s important to a prediction...
 - Instead asking: “how can we change it?”
Medical image example

Can we go beyond localization?

Provided by Alex DeGrave, MD/PhD student in the AIIMS lab
Medical image example

Original image

Saliency map

Modified image

Provided by Alex DeGrave, MD/PhD student in the AIMS lab
Loan approval example

- A bank customer applies for a loan, but his request is denied

- The customer may want to understand why
 - Not just which features are important, but which can be adjusted to change the outcome
 - **Problem**: feature importance methods do not answer this question (at least not exactly)
New explanation approach

- **Idea:** find input changes that alter a model predictions in the desired direction
 - Ideally, without changing the original input *too much*

- Two main goals:
 - Understand the model via input modifications
 - Identify options for *algorithmic recourse* (to reverse unfavorable decisions)
What’s a counterfactual?

- Modifying a factual event and assessing the consequences of that change
 - Typically, “what if” or “if only I had” thoughts
- Example:
 - A person sips their tea and burns their tongue
 - “If I had waited 10 more minutes, I wouldn’t have burned myself”
- **Insight:** the burn was caused by drinking tea too soon
Counterfactual thinking

- Frequently discussed in the social sciences
 - Philosophers: Aristotle, Plato, Leibniz, Mill
 - Cognitive psychologists: Daniel Kahneman, Amos Tversky

- Key idea: counterfactual thinking is a tool for understanding causality
Downhill rule

- Study on *mental undoing*: how people reverse unwanted outcomes
 - See “Thinking, Fast and Slow” (Kahneman, 2011) or “The Undoing Project” (Lewis, 2017)
- When many changes are possible, people tend to undo/remove surprising occurrences
 - E.g., a car crash that occurred when driving home on an unusual route
 - Counterfactuals are naturally constrained by realism

Counterfactual explanations

- Can use counterfactuals to explain ML models
- For a given sample (explicand), find a similar sample with different prediction (counterfactual)
 - A form of local explanation
 - Alternative to local feature importance
 - Arguably more intuitive due to parallels in human psychology
Today

- Section 1
 - Black-box counterfactual explanations
 - Review of variations
 - Explanation by progressive exaggeration

- Section 2
 - Instance explanations
Setup

- Consider a differentiable black-box model f_θ with parameters θ, input x and label y
- Recall: such models are typically trained by optimizing their parameters:
 \[
 \min_\theta \frac{1}{n} \sum_{i=1}^{n} \ell(f_\theta(x_i), y_i)
 \]
- Models are often differentiable with respect to both parameters and inputs
Main idea

- Fix an input x^e with output $f_\theta(x^e)$
 - Choose desired outcome y'
 - Determine an input x' near x^e such that $f_\theta(x') \approx y'$
- Find this input by optimizing w.r.t. the input
 - Optimize via gradient descent
 - Like activation maximization, but with a different objective

Wachter et al., "Counterfactual explanations without opening the black box: Automated decisions and the GDPR" (2017)
Optimization problem

- Solve the following problem:

\[
\arg\min_{x'} \max_{\lambda} \lambda (f_{\theta}(x') - y')^2 + d(x^e, x')
\]

- Finds a counterfactual that...
 1. produces the desired output \(y'\)
 2. is as close to \(x^e\) as possible

- Notation:
 - \(\lambda\) controls the balance between objectives
 - \(d\) is a distance function
Optimization problem (cont.)

- The original version is equivalent to:
 \[\arg \min_{x'} d(x^e, x') \]
 s.t. \(f_\theta(x') = y' \)

- A simpler view, but still difficult to solve

- Relaxed, more practical version:
 \[\arg \min_{x'} \lambda (f_\theta(x') - y')^2 + d(x^e, x') \]

- Fix \(\lambda \) to a large value
Distance metric

- Wachter et al. use a weighted version of L_1 norm, or Manhattan distance:

$$d(x^e, x') = \sum_{k} \frac{|x^e_k - x'_k|}{w_k}$$

- Weights are inverse median absolute deviation:

$$w_k = \frac{1}{\text{median}_j(|X_{j,k} - \text{median}_l(X_{l,k})|)}$$

- $X_{j,k}$ is the jth sample of kth feature
Distance properties

- Encourages small changes
- Captures natural variability of the space
 - Median absolute deviation is like standard deviation, but more robust to outliers
- Encourages sparsity in the counterfactual due to L_1 norm (like lasso linear regression)
 - Many features should remain unchanged
Example

- Three-layer MLP on LSAT dataset (common dataset in fairness literature)
 - Predicting first-year average grade based on:
 - GPA prior to law school
 - Entrance exam scores (LSAT)
 - Race (0 for white, 1 for black)
- Generating counterfactuals such that $f(x') = 0$
 - In their dataset, this represents an average score
 - The question is: “what change would make model predict an average score?”

Wachter et al., "Counterfactual explanations without opening the black box: Automated decisions and the GDPR" (2017)
Example

<table>
<thead>
<tr>
<th>$f(x^e)$</th>
<th>x^e</th>
<th>x' (normalized L_2)</th>
<th>x' (normalized L_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score</td>
<td>GPA</td>
<td>LSAT</td>
<td>Race</td>
</tr>
<tr>
<td>0.17</td>
<td>3.1</td>
<td>39.0</td>
<td>0</td>
</tr>
<tr>
<td>-0.57</td>
<td>2.7</td>
<td>18.3</td>
<td>0</td>
</tr>
<tr>
<td>-0.77</td>
<td>3.3</td>
<td>28.0</td>
<td>1</td>
</tr>
</tbody>
</table>

- Observations:
 - L_2 results are less sparse than L_1
 - Categorical variables (e.g., race) are difficult to optimize
 - None of these variables are modifiable in real life

Wachter et al., "Counterfactual explanations without opening the black box: Automated decisions and the GDPR" (2017)
Today

- Section 1
 - Black-box counterfactual explanations
 - Review of variations
 - Explanation by progressive exaggeration

- Section 2
 - Instance explanations
Review paper

- Examines 39 recent papers on counterfactual explanations
 - Explores variations on the original approach (Wachter et al., 2017)
 - Categorizes desiderata satisfied by different implementations
 - Identifies gaps and remaining challenges

Verma et al., "Counterfactual explanations for machine learning: A review" (2020)
Many counterfactuals

- Alice is denied a loan, wants to know what to change to get approved

- Problem: many possible counterfactuals!
 - Increase income and education
 - Increase credit score and decrease age

Verma et al., "Counterfactual explanations for machine learning: A review" (2020)
Desiderata

- What desiderata help prioritize counterfactuals?
- Validity
 - Does the counterfactual correctly change the prediction?
 - Does the counterfactual Alice get a loan?
- Distance
 - Is the counterfactual close to the explicand?
 - May only need to increase income by $10K rather than $50K
- Actionability
 - Does the counterfactual change *mutable* features?
 - Certain features cannot be changed (e.g., race, country of origin are *immutable*)
Desiderata (cont.)

- Sparsity
 - How many features does the counterfactual change?
 - Easier to change few things rather than many

- Data manifold
 - Is the counterfactual realistic?
 - Highly unlikely to be 20 years old and have a PhD

- Causality
 - Does the counterfactual comply with causality?
 - Getting a new educational degree necessitates increasing age by some amount
Implementing desiderata

- **Validity + distance** (Wachter et al., 2017)
 \[
 \operatorname*{arg\ min}_{x'} d(x^e, x') \quad \text{s.t.} \quad f(x') = y'
 \]

- **Actionability**
 \[
 \operatorname*{arg\ min}_{x' \in \mathcal{A}} d(x^e, x') \quad \text{s.t.} \quad f(x') = y'
 \]
 - Only actionable features \mathcal{A} can change
 - Can be implemented softly via distance weighting
Implementing desiderata (cont.)

- **Sparsity**

\[
\arg\min_{x'} d(x^e, x') \quad \text{s.t.} \quad f(x') = y'
\]

- Can set distance \(d \) to encourage sparsity (\(L_0 \) or \(L_1 \) norm)

- **Data manifold**

\[
\arg\min_{x' \in A} d(x^e, x') + l(x'; X) \quad \text{s.t.} \quad f(x') = y'
\]

- \(l \) penalizes counterfactuals that are far from the data manifold defined by the training set \(X \)

- Not straightforward in practice: we rarely have \(l \)
Implementation properties

- Model access
 - Complete access, gradients only, predictions only
- Model class
 - Model-agnostic, differentiable models, linear models
- Amortization
 - We can train a model to generate counterfactuals (faster than optimizing for each explicand)
- Counterfactual attributes
 - Sparsity, data manifold, causality
- Optimization attributes
 - Actionable features, distance for categorical features

Verma et al., "Counterfactual explanations for machine learning: A review" (2020)
Comparing methods

<table>
<thead>
<tr>
<th>Paper</th>
<th>Model access</th>
<th>Model domain</th>
<th>Amortized Inference</th>
<th>Multiple CF</th>
<th>Sparsity</th>
<th>Data manifold</th>
<th>Causal relation</th>
<th>Feature preference</th>
<th>Categorical dist. func</th>
</tr>
</thead>
<tbody>
<tr>
<td>[72]</td>
<td>Black-box</td>
<td>Agnostic</td>
<td>No</td>
<td>No</td>
<td>Changes iteratively</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>-</td>
</tr>
<tr>
<td>[111]</td>
<td>Gradients</td>
<td>Differentiable</td>
<td>No</td>
<td>No</td>
<td>L1</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>-</td>
</tr>
<tr>
<td>[104]</td>
<td>Complete</td>
<td>Tree ensemble</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>-</td>
</tr>
<tr>
<td>[74]</td>
<td>Black-box</td>
<td>Agnostic</td>
<td>No</td>
<td>No</td>
<td>L0 and post-boc</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>-</td>
</tr>
<tr>
<td>[57]</td>
<td>Black-box</td>
<td>Agnostic</td>
<td>No</td>
<td>Yes</td>
<td>Flips min. split nodes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Indicator</td>
</tr>
<tr>
<td>[29]</td>
<td>Gradients</td>
<td>Differentiable</td>
<td>No</td>
<td>No</td>
<td>L1</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>-</td>
</tr>
<tr>
<td>[56]</td>
<td>Black-box</td>
<td>Agnostic</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No ²</td>
</tr>
<tr>
<td>[95]</td>
<td>Complete</td>
<td>Linear</td>
<td>No</td>
<td>Yes</td>
<td>L1</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>N.A. ³</td>
</tr>
<tr>
<td>[107]</td>
<td>Complete</td>
<td>Linear</td>
<td>No</td>
<td>No</td>
<td>Hard constraint</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>-</td>
</tr>
<tr>
<td>[98]</td>
<td>Black-box</td>
<td>Agnostic</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Indicator</td>
</tr>
<tr>
<td>[50]</td>
<td>Black-box or gradient</td>
<td>Differentiable</td>
<td>No</td>
<td>No</td>
<td>L1</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>-</td>
</tr>
<tr>
<td>[91]</td>
<td>Black-box</td>
<td>Agnostic</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>-</td>
</tr>
<tr>
<td>[61]</td>
<td>Gradients</td>
<td>Differentiable</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>-</td>
</tr>
<tr>
<td>[90]</td>
<td>Gradients</td>
<td>Differentiable</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>-</td>
</tr>
</tbody>
</table>

Verma et al., "Counterfactual explanations for machine learning: A review" (2020)
Comparing methods (cont.)

Reviewed a lot of methods!

Verma et al., "Counterfactual explanations for machine learning: A review" (2020)
Open questions

- **Scalability**
 - Solving per-explicand optimization problem is slow
- **Adversarial examples**
 - Counterfactuals are susceptible to adversarial examples
 - How to mitigate, or prove solutions aren’t adversarial?
- **Local preferences**
 - Actionable, mutable, and immutable features may change per explicand (user preferences)
- **Categorical features**
 - More difficult to optimize via gradient descent
- **And more**

Verma et al., "Counterfactual explanations for machine learning: A review" (2020)
Today

- Section 1
 - Black-box counterfactual explanations
 - Review of variations
 - Explanation by progressive exaggeration

- Section 2
 - Instance explanations
Motivation

- Images are more challenging than tabular data
 - Prone to adversarial examples
 - Want meaningful visual changes, realistic images

- This work creates a series of realistic, visually meaningful counterfactual images
 - Requires a deep learning classifier
 - Involves training other deep learning modules

Singla et al. “Explanation by progressive exaggeration” (2019)
Premise

Size of prediction change δ

Data manifold \mathcal{M}_x

Embedding manifold \mathcal{M}_z

Encoder E (data \rightarrow embedding)

Series of counterfactuals

Counterfactual function $I(x, \delta)$
Architecture + training

x_δ should produce the expected change in output

Counterfactual $x_\delta = G_f^\delta(E(x))$

Encoder E

Generator G_f^δ

Should have $x_\delta \approx x$ when $\delta = 0$

Counterfactual function should be invertible
Example result

Not smiling \rightarrow smiling

<table>
<thead>
<tr>
<th>Query Image</th>
<th>Generated Visual Explanations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desired $f(x)$: [0.0-0.1]</td>
<td>Not-smiling $f(x_4)$: 0.04</td>
</tr>
<tr>
<td>$f(x)$: 1.0</td>
<td>[0.2-0.3]</td>
</tr>
<tr>
<td>Smiling</td>
<td>0.39</td>
</tr>
</tbody>
</table>

CelebA: Smiling

| 0.2 | 0.0 | 0.31 | 0.25 | 0.26 | 0.46 | 0.69 | 0.97 |
Example result

Not young \rightarrow young

<table>
<thead>
<tr>
<th>Query Image</th>
<th>Generated Visual Explanations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desired $f(x)$:</td>
<td>[0.0-0.1]</td>
</tr>
<tr>
<td>Old</td>
<td>0.96</td>
</tr>
<tr>
<td>Young</td>
<td>0.16</td>
</tr>
</tbody>
</table>
Conclusions

- Several ways to find counterfactual explanations
 - Easiest for differentiable models with tabular data and continuous features
 - We can handle categorical features and non-differentiable models (did not discuss), plus other data types

- Limitation: counterfactuals change model outputs, but not necessarily reality
 - E.g., in medical risk assessment, no treatment and short stay may be correlated with positive outcomes; but these are counterproductive interventions
 - Should rely on causal inference methods instead
Counterfactuals in ML

- Counterfactual reasoning is not unique to these methods
 - Feature importance also uses counterfactuals
 - Gradients: change from small input perturbation
 - Removal-based methods: observe outcomes with held-out feature values
 - A fundamental tool in causal inference
 - See “Causality” textbook by Judea Pearl (2009)

- As a result, counterfactual explanations are sometimes known as recourse explanations
Today

- Section 1
 - Black-box counterfactual explanations
 - Review of variations
 - Explanation by progressive exaggeration
 - 10 min break

- Section 2
 - Instance explanations