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Neuron interpretation

= Previous approaches provide a concise
summary of model dependencies

= E.g., feature/concept importance for single prediction

= Neuron interpretation is a more fine-grained
approach

= Aims to understand model’s internal features
= Understand individual neurons, filters, layers

= Often produces visualizations (most useful for image
models)



Today

= Section 1
= Concept-based explanations
= Section 2

= Visualizing convolutional features <
= Feature visualization

= Neuron Shapley



Background: ImageNet and
AlexNet

* ImageNet = database of labeled images

= |ntroduced by Fei-Fei Li's lab in 2009, turned into

ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) in 2010

= Deng et al. "ImageNet: A large-scale hierarchical image database”
(2009)

= In 2012, a CNN now called AlexNet won ILSVRC by a
large margin

= Top-5 test error rate of 15.3%, compared to 26.2% by
the second-best entry

» Krizhevsky et al,, "ImageNet classification with deep convolutional
neural networks” (2012)
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AlexNet architecture

Internal activations
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Frizhevskg et al,, "ImageNet classification with deep convolutional neural networks”
2012)
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Understanding AlexNet

= After AlexNet, the ML community wanted to
understand why/how CNNs worked so well

= To do so, Zeiler & Fergus (future ILSVRC
winners) developed a procedure to interpret
activations within CNN layers

= Generated visualizations for individual samples

= Collectively, these helped understand a model’s
convolutional filters

Zeiler & Fergus, "Visualizing and understanding convolutional networks” (2014)



Visualizing layer 1

7x7x3 filters (9/96 total filters)
Can directly examine learned filters
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Zeiler & Fergus, "Visualizing and understanding convolutional networks” (2014)
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Visualizing later layers

= The previous case is special because we can
directly visualize first-layer filters
= |dea for subsequent layers:

= Propagate an image through the network to a certain
layer

= Set all activations to zero except for one

= “Invert” each operation in the network to return to
input pixels

Problem: operations are not truly invertible

Zeiler & Fergus, "Visualizing and understanding convolutional networks” (2014)
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How to invert operations?

Inversion Forward pass
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Visualizing layer 2

Each 3x3 group is a single neuron (9 patches with largest activation value)
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Visualizing layer 3

Zeiler & Fergus, "Visualizing and understanding convolutional networks” (2014)
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Visualizing layers 4-5

Zeiler & Fergus, "Visualizing and understanding convolutional networks” (2014)
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Visualizing layer 5

Text? Dog torsos?

Zeiler & Fergus, "Visualizing and understanding convolutional networks” (2014)
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Visualizing layer 5

Spiky things?  Faces or wheels?

Zeiler & Fergus, "Visualizing and understanding convolutional networks” (2014)
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Feature evolution over
training

Epochs (1, 2, 5, 10, 20, 30, 40, 64)
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Remarks

* Pros:
= These visualizations are fast and straightforward

= Cons:
= |nversions are approximate (potentially low-quality)
= Does not generalize to arbitrary DNN operations
= Visualizations can be hard to interpret

= One of the most cited papers on this topic, but
not the first:

= See Erhan et al, "Visualizing higher-layer features of a deep network”
(2009)
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Today

= Section 1
= Concept-based explanations
= Section 2

= Visualizing convolutional features
= Feature visualization <
= Neuron Shapley




Feature visualization

= Olah et al. is an interactive article about feature
visualization techniques

= Examples on GooglLeNet, trained on the ImageNet
dataset

= This work visualizes learned features by
activation maximization

= Solves a per-neuron optimization problem

= |dentifies prototypical examples that activate each
neuron within the model

Olah et al,, "Feature visualization" (2017)



Activation maximization

= Neural networks are usually differentiable with
respect to their inputs

= If model parameters 6 are fixed and h;;(8,x) is
activation of node i from layer j, then we want:

x* = argmax, h;;(6, x)

= A difficult optimization problem, but we can find
a local optimum

Erhan et al,, "Visualizing higher-layer features of a deep network” (2009)
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Optimization objectives

= We can use arbitrary optimization objectives:

Different optimization
objectives show what
different parts of a
network are looking for.

n layer index

x,y spatial position
z channel index

k class index

Neuron Channel Layer/DeepDream Class Logits Class Probability

layer, [x,¥,2] layer, [:,:,2] layer, [2,2,212 pre_softmax([k] softmax[k]

Olah et al,, "Feature visualization" (2017)
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Optimization approach

= How to solve the optimization problem?

x* = argmax, h;;(0,x)

= TwWOo main options:
= |terate over dataset examples
Solution is guaranteed to be a real example
= Gradient descent
Update with x&*D = x® — qv_h;:(6,x®)
Not guaranteed to be a real example



Optimization vs. dataset examples

Dataset examples
On-manifold examples
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Olah et al,, "Feature visualization" (2017)
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More examples
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Olah et al,, "Feature visualization" (2017)
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Optimization challenges

= Naively optimizing neuron
activation leads to poor solutions

= Noisy, high-frequency,
checkerboard patterns
= Possibly due to strided

convolutions and pooling
operations

= Semantically meaningless (like
adversarial examples)

Olah et al,, "Feature visualization" (2017)
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Regularization approaches

= Frequency regularization:

= Penalize high-frequency patterns (e.g., via total
variation norm)

= Transformation robustness:

= Find inputs that maximize activation even under
small transformations (jitter, rotations, scaling)

= Learned priors:

= Learn a model of the real data and use it to generate
realistic samples (e.g., GAN)

Olah et al,, "Feature visualization" (2017)



Regularization approaches

Unregularized Frequency Transformation Learned Dataset

Penalization Robustness Prior Examples
Erhan, et al., 2009 (3]
Introduced core idea. Minimal .
regularization.

Szegedy, et al., 2013 (1]

Adversarial examples. Visualizes with . .
dataset examples.

Mahendran & Vedaldi, 2015 (7]
Introduces total variation regularizer. .
Reconstructs input from representation.

Nguyen, et al., 2015 [14]

Explores counterexamples. Introduces .
image blurring.

Mordvintsev, et al., 2015 [4]

Introduced jitter & multi-scale. Explored
GMM priors for classes.

@ygard, et al., 2015 [15]

b/ a‘ Introduces gradient blurring. .
S (Also uses jitter.)

Tyka, et al., 2016 [16]

Regularizes with bilateral filters. .
(Also uses jitter.)

Mordvintsev, et al., 2016 [17]

Normalizes gradient frequencies. .
(Also uses jitter.)

g " Nguyen, et al., 2016 18]

. i e
! Paramaterizes images with GAN
generator.

Nguyen, et al., 2016 [10]

Uses denoising autoencoder prior to .
make a generative model.

Olah et al,, "Feature visualization" (2017)
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Regularization strength

= Strong regularization leads to more realistic
examples, but it can introduce misleading
correlations

= Using dataset examples is very strong regularization

= However, hard to tell if model relies on a baseball’s
shape, color, strings; or a dog's ears, nose, eyes

= Weak regularization avoids misleading
correlations, but may lead to noisy images

Olah et al,, "Feature visualization" (2017)



Remarks

= Pros:

= Activation maximization is general, only requires that
the model is differentiable w.r.t. its inputs

= Cool visualizations

= Cons:

= Can be difficult to interpret optimized images

= Neurons may not correspond to simple, human-
interpretable concepts

= Hyperparameters and regularization can be heuristic
= Large number of neurons to interpret



Today

= Section 1
= Concept-based explanations
= Section 2

= Visualizing convolutional features
= Feature visualization

= Neuron Shapley <_




Motivation

= Neuron interpretation is often ad hoc, because
we don't know which ones to investigate

= Neuron Shapley quantifies neuron importance
while accounting for interactions

Ghorbani & Zou, "Neuron Shapley: Discovering the responsible neurons” (2020)
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Neuron Shapley

» |ldea: instead of finding important features, find
important neurons (here, filters)

= Remove filters to produce subsets of the
network

= Fix each removed filter’s output to its mean (based
on a set of validation images)

= Then, evaluate model behavior based on a
given metric V(-) (e.g., accuracy, loss, etc.)

* Find important ones using the Shapley value

Ghorbani & Zou, "Neuron Shapley: Discovering the responsible neurons” (2020)



Computation

= Shapley values are difficult to calculate for
games with many players

= Here, players are convolutional filters

= >10k players, creates a challenging approximation
problem

= The authors use a modified permutation
sampling algorithm (recall HW1)

Ghorbani & Zou, "Neuron Shapley: Discovering the responsible neurons” (2020)
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Quantitative evaluation

= Apply Neuron Shapley to Inception-v3 trained
on ImageNet

= Explain the 17K filters preceding the logits
= Use the overall network accuracy as V(+)

= Sparse explanations:

= A small number of filters have largest importance

= Removing top 10 filters dropped test accuracy from
74% to 38%

Removing top 20 dropped test accuracy to 8%



Distribution of important
filters by layer
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Visualizing important filters
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Class-specific experiments

= Here, V() is class-specific prediction accuracy
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Other use cases

= |dentifying filters to remove

= Filters that are responsible for biased prediction

= Removing these filters increased gender classification
accuracy for minorities

= Filters that are vulnerable to adversarial attacks

= Removing filters that contribute to adversary’s
success lowers the attack success rate significantly

Ghorbani & Zou, "Neuron Shapley: Discovering the responsible neurons” (2020)
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Remarks

* Pros:
= Neuron Shapley identifies important neurons
= Can identify neurons to visualize, remove

= Cons:
= Extremely expensive (naively, exponential in number
of neurons)
Authors improve computation using bandit algorithm

Find that 10k samples is sufficient (10k evaluations of
V, where V itself requires many model evaluations)



Summary

= Multiple techniques for understanding
individual neurons, based on...

= Operation inversion
= Visualizing highly activated examples
= Activation maximization

= Quantifying neuron importance can help
prioritize our analysis, and suggest model
adjustments



