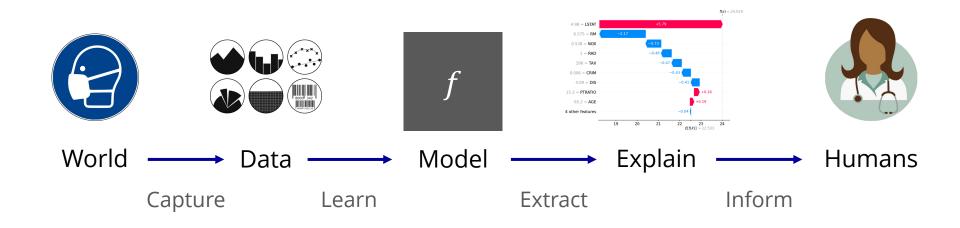
Inherently interpretable models

CSEP 590B: Explainable AI Hugh Chen, Ian Covert & Su-In Lee University of Washington

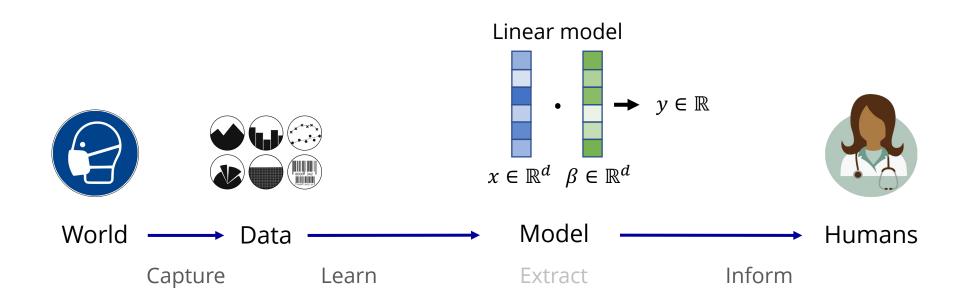
Post-hoc explanations



Molnar, "Interpretable machine learning" (2022)

©2022 Su-In Lee

Inherently interpretable models



Defining interpretability

- What exactly does "model interpretability" mean?
- Three possible meanings:
 - 1. Simulatability
 - 2. Decomposability
 - 3. Algorithmic transparency

Lipton, "The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery" (2018)

Simulatability

- Can a human reasonably simulate the model given its parameters and input data?
- No all-purpose definition
 - *Reasonable* is subjective, person-dependent
 - Possibly domain specific
- However, some simple cases:
 - No one can mentally simulate a 50-layer ResNet
 - Most people can simulate a small linear model

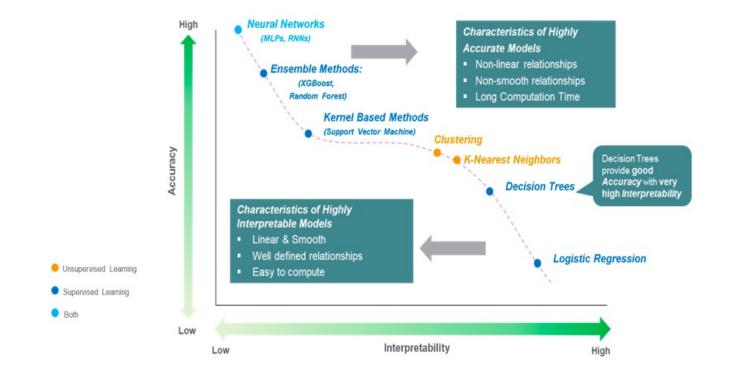
Decomposability

- Does each model component have an intuitive role?
 - Inputs, parameters, operations
- Examples:
 - Each split in a decision tree partitions samples based on a single feature and threshold value
 - Linear model coefficients represent association strength between a feature and the outcome

Algorithmic transparency

- Can we prove things about the learning algorithm?
 - For example, we've developed a lot of of learning theory for linear models
 - Less for deep models
 - What will the model converge to after training?
 - What types of signals is it likely to use?
 - How does SGD affect under-represented parts of the data distribution, can it affect fairness?

Why post-hoc explanations?



Rane, "The balance: Accuracy vs. interpretability" (2018)

Is this tradeoff real?

- For most structured data (images, text, audio), neural networks are most accurate
 - After decades of effort with other approaches, many problems now "solved" by DNNs
 - No simple model can match their accuracy
- However, simple models can perform quite well for tabular data
 - E.g., linear/logistic regression, decision lists
 - In this case, less to gain from complex models

Why this tradeoff?

- Interpretable models tend to be constrained, lack flexibility
- Constrained models can't represent complex relationships
 - Interpretable models tend to fail in challenging domains, like CV or NLP

Examples

- Models may be constrained to satisfy linearity, additivity, monotonicity, causality, etc.
- Common examples include:
 - Linear models (linearity)
 - GAMs (limited feature interactions)
 - Decision trees (binary feature splits)

Rudin, "Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead" (2019)

Caveats

- Even simple models may not be inherently interpretable...
 - If they use engineered features (decomposability)
 - If they use too many features (simulatability)
- Other questions we may ask about the model are not necessarily straightforward
 - What higher-level concepts does the model use?
 - Which training samples influenced the model most?

Today

- Section 1
 - Introduction
 - Linear regression
 - Generalized additive models (GAMs)
 - Decision trees
- Section 2
 - Class activation maps (CAM)
 - Attention as explanation

Linear regression

Linear prediction function:

$$f(x) = \beta_0 + \beta_1 x_1 + \dots + \beta_d x_d$$

Trained by minimizing MSE:

$$\mathcal{L}(\beta) = \sum_{i=1}^{n} \left(y^{i} - f(x^{i}) \right)^{2}$$

Interpreting a linear model

- Can interpret via learned weights $\hat{\beta}$ and their confidence intervals
 - Quantify feature importance
 - Mentally simulate prediction with new inputs
 - Understand the impact of small changes

Lasso regression

- Modified approach: find minimal feature set
- Minimize a *regularized* loss function:

$$\mathcal{L}(\beta) = \frac{1}{n} \sum_{i=1}^{n} \left(y^i - f(x^i) \right)^2 + \lambda \sum_{j=1}^{d} |\beta_j|$$

- Encourage model to set some weights β_i to zero
 - A sparse solution, fewer features are relevant to the prediction

Ridge regression

Alternatively, regularize with ridge penalty:

$$\mathcal{L}(\beta) = \frac{1}{n} \sum_{i=1}^{n} \left(y^i - f(x^i) \right)^2 + \lambda \sum_{j=1}^{d} \beta_j^2$$

- Useful properties, but does not encourage weights to be exactly zero
 - No sparsity, all features remain relevant

Remarks

Pros:

- Linear models are easy to interpret, mentally simulate
- Widely used, fast to train

Cons:

- Highly constrained, worse predictive performance for some tasks
- Interpretation is potentially difficult with correlated features

Today

- Section 1
 - Introduction
 - Linear regression
 - Generalized additive models (GAMs)
 - Decision trees
- Section 2
 - Class activation maps (CAM)
 - Attention as explanation

- Generalized additive models
- Combine non-linear, single-feature models (shape functions):

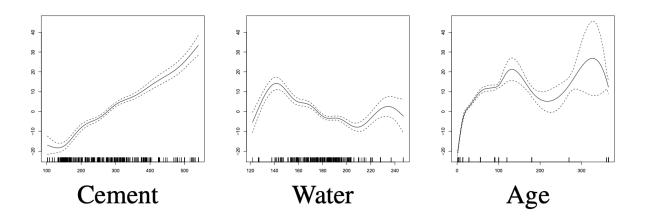
$$f(x) = f_1(x_1) + \dots + f_d(x_d)$$

- Common options for shape functions:
 - Splines
 - Trees
 - (Linear function = linear regression)

Lou et al., "Intelligible models for classification and regression" (2012)

Example result

- Relating concrete strength to age and ingredients
 - Splines uncover linear relationship with cement
 - Non-linear relationship with water and age



Lou et al., "Intelligible models for classification and regression" (2012)

More shape functions

Piecewise linear curves

 Ravina et al., "Distilling interpretable models into human-readable code" (2021)

Deep models

• Agarwal et al. "Neural additive models: Interpretable machine learning with neural nets" (2020)

- GAMs with interaction terms
- Adding pairwise interactions:

$$f(x) = \sum_{i} f_i(x_i) + \sum_{ij} f_{ij}(x_i, x_j)$$

 Typically, we rank interaction strength for all pairs and decide which to include

Lou et al., "Accurate intelligible models with pairwise interactions" (2013)

Interactions boost accuracy

	Model	Delta	CompAct	Pole	CalHousing	MSLR10k	Mean
	Linear Regression	$0.58{\pm}0.01$	$7.92{\pm}0.47$	$30.41 {\pm} 0.24$	$7.28 {\pm} 0.80$	$0.76{\pm}0.00$	$1.52{\pm}0.79$
1	GAM	$0.57{\pm}0.02$	$2.74{\pm}0.04$	$21.62{\pm}0.38$	$5.76 {\pm} 0.55$	$0.75 {\pm} 0.00$	$1.00{\pm}0.00$
	GA ² M Rand	-	-	$11.37{\pm}0.38$	-	$0.73 {\pm} 0.00$	-
	$GA^{2}M$ Coef	-	-	$11.61{\pm}0.43$	-	$0.73 {\pm} 0.00$	-
	GA ² M Order	-	-	$10.81{\pm}0.29$	-	$0.74{\pm}0.00$	-
→	GA^2M FAST	$0.55{\pm}0.02$	$2.53{\pm}0.02$	$10.59{\pm}0.35$	$5.00{\pm}0.91$	$0.73{\pm}0.00$	$0.84{\pm}0.20$
	Random Forests	$0.53{\pm}0.19$	$2.45{\pm}0.08$	$11.38{\pm}1.03$	$4.90{\pm}0.81$	$0.71{\pm}0.00$	$0.83{\pm}0.17$

Table 2: RMSE for regression datasets. Each cell contains the mean RMSE \pm one standard deviation. Average normalized score is shown in the last column, calculated as relative improvement over GAM.

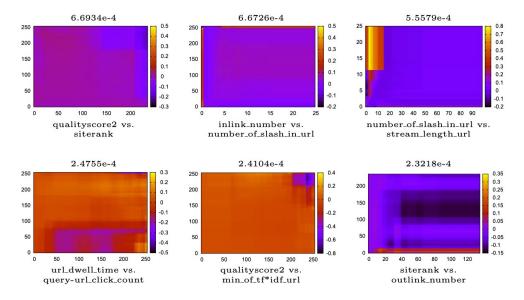
	Model	Spambase	Gisette	Magic	Letter	Physics	Mean
	Logistic Regression	$6.22{\pm}0.93$	$15.78 {\pm} 3.28$	$17.11 {\pm} 0.08$	$27.54{\pm}0.27$	$30.02{\pm}0.37$	1.79 ± 1.25
	GAM	$5.09{\pm}0.64$	$3.95{\pm}0.65$	$14.85 {\pm} 0.28$	$17.84{\pm}0.20$	$28.83 {\pm} 0.24$	1.00 ± 0.00
	GA ² M Rand	$5.04{\pm}0.52$	$3.53{\pm}0.61$	-	-	$28.82{\pm}0.25$	-
	$GA^{2}M$ Coef	$4.89{\pm}0.54$	$3.43{\pm}0.55$	-	-	$28.74 {\pm} 0.37$	-
	GA ² M Order	$4.93{\pm}0.65$	$3.08{\pm}0.55$	-	-	$28.76 {\pm} 0.34$	-
	GA^2M FAST	$4.78{\pm}0.70$	$\textbf{2.91}{\pm}\textbf{0.38}$	$13.88{\pm}0.32$	$8.62{\pm}0.31$	$\textbf{28.20}{\pm}\textbf{0.18}$	0.81±0.21
	Random Forests	$4.76 {\pm} 0.70$	$3.25{\pm}0.47$	$12.45{\pm}0.64$	$6.16{\pm}0.22$	$28.48 {\pm} 0.40$	0.79 ± 0.26

Table 3: Error rate for classification datasets. Each cell contains the error rate \pm one standard deviation. Average normalized score is shown in the last column, calculated as relative improvement over GAM.

Lou et al., "Accurate intelligible models with pairwise interactions" (2013)

Example result

- Learning-to-rank dataset, predicting website relevance
 - Interaction effects captured by tree-based GA²M



Lou et al., "Accurate intelligible models with pairwise interactions" (2013)

Remarks

- GAMs are more flexible than linear models
 - Covers wide class of models with limited feature interactions
 - However, ignores higher-order interactions
- Easier to edit than complex models
 - In some cases, can directly edit model parameters
 - E.g., cap a feature's contribution in recidivism prediction (e.g., number of priors) for policy reasons
 - Manually edit search ranking algorithm

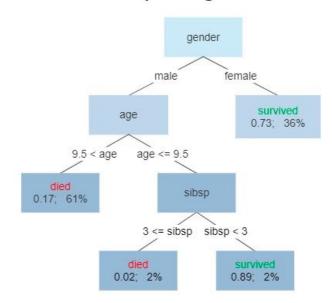
Ravina et al., "Distilling interpretable models into human-readable code" (2021)

Today

- Section 1
 - Introduction
 - Linear regression
 - Generalized additive models (GAMs)
 - Decision trees
- Section 2
 - Class activation maps (CAM)
 - Attention as explanation

Decision trees

- Simple, binary splits
 - Internal node: partition on single feature, threshold
 - Leaf node: predicted outcome for those samples
- Relatively easy to simulate
 - However, can become difficult with more splits



Survival of passengers on the Titanic

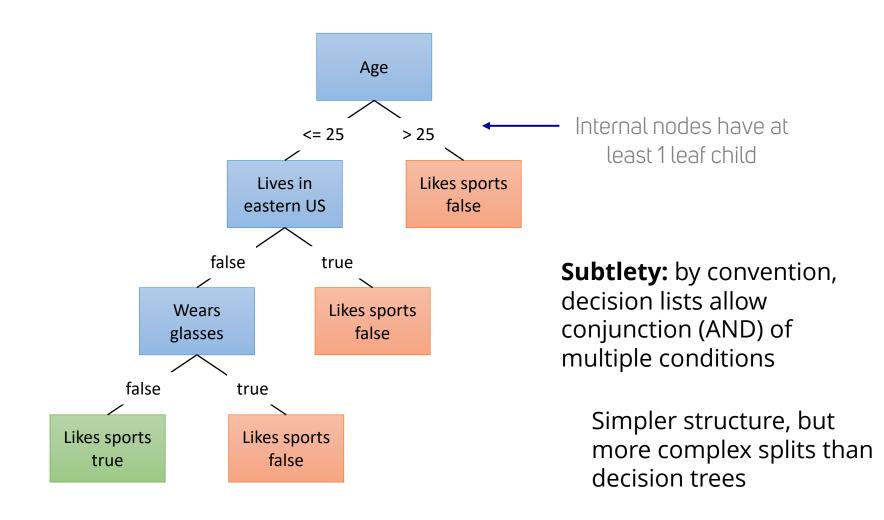
Decision/rule lists

- Decision trees with simplified branching structure
 - For each internal node, one child must be a leaf
 - Like an extended if elseif else rule
- Decision lists are constrained decision trees
 - Even easier to interpret

Rivest, "Learning decision lists" (1987)

Example

Goal: predict "likes professional sports"

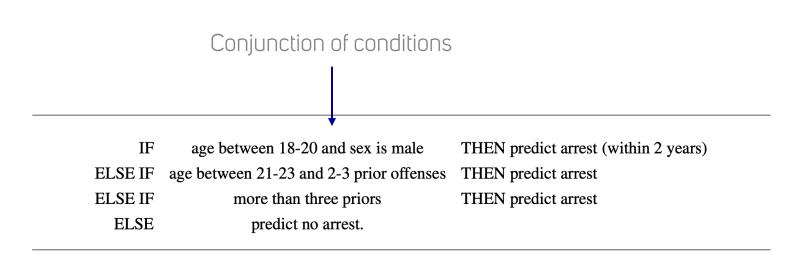


CORELS

- Certifiably optimal rule lists
 - Optimal for a specific class of models on regularized empirical risk
- Branch and bound algorithm to produce an optimal decision list
 - Complex algorithm and data structures to make optimality achievable (vs. standard greedy learning algorithms)
 - Assumptions about the data representation
 - Helps bridge accuracy gap with more flexible models

Angelino et al. "Learning certifiably optimal rule lists for categorical data" (2017)

Recidivism prediction



Rudin, "Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead" (2019)

Remarks

- CORELS can be slow for very large datasets
 - Greedy learning algorithms are much more efficient
 - Less constrained models (decision trees) offer at least similar performance, possibly better
- Both decision trees and lists are often outperformed by ensemble models
 - Random forests, gradient boosting trees
 - However, these are less interpretable

Additional desiderata?

- Other potential criteria for inherently interpretable models include:
 - Is it easy to identify **feature adjustments** to achieve a different outcome?
 - Is it easy to determine impact of withholding a feature's information?
 - Is it easy to change your model to fix undesirable behavior?
 - Can you determine which data points influenced the model's prediction?
- Some of these are possible with previously discussed models, but others are not

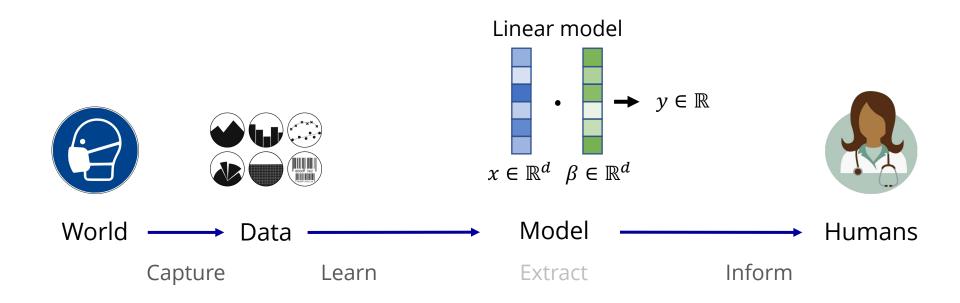
Today

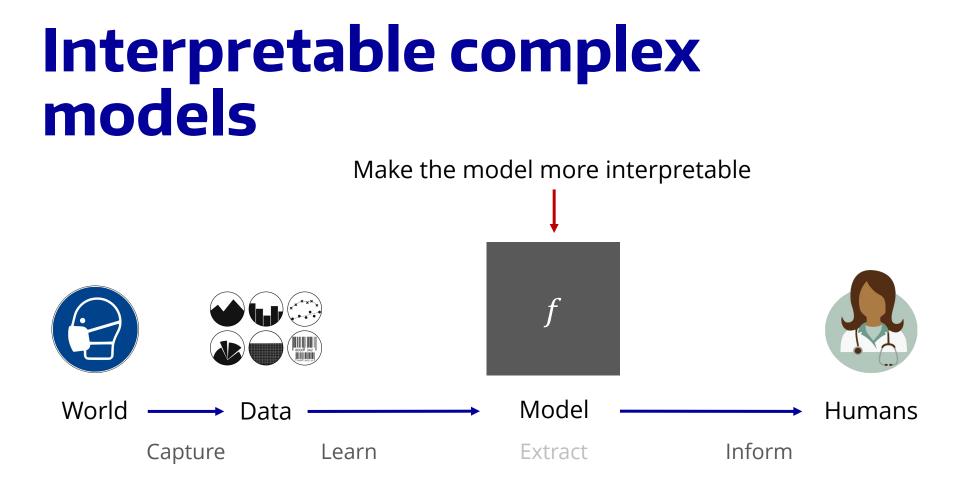
- Section 1
 - Introduction
 - Linear regression
 - Generalized additive models (GAMs)
 - Decision trees
 - 10 min break
- Section 2
 - Class activation maps (CAM)
 - Attention as explanation

Interpretable complex models

CSEP 590B: Explainable AI Hugh Chen, Ian Covert & Su-In Lee University of Washington

Inherently interpretable models (previously)





Interpretable complex models (cont.)

- For inherently complex models (e.g., DNNs), we can make them *more* interpretable
- Today: two deep learning architectures that enable interpretability
 - 1. CNNs with global average pooling
 - Class activation maps (CAM)
 - 2. Transformers based on self-attention
 - Attention-based explanations

Today

- Section 1
 - Introduction
 - Linear regression
 - Generalized additive models (GAMs)
 - **Decision trees**
- Section 2
 - Class activation maps (CAM)

Attention as explanation

Class activation maps

- Built-in feature attribution for CNNs with specific output layers
 - Global average pooling followed by linear layer

Zhou et al., "Learning deep features for discriminative localization" (2016)

©2022 Su-In Lee

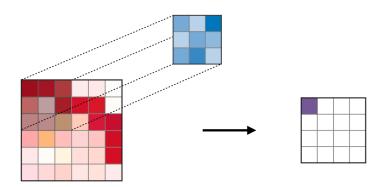
CNN architecture refresher

- Some common CNN architectures include AlexNet, VGG, ResNet, DenseNet
- Networks typically consist of:
 - Convolutional layers
 - Max pooling layers
 - Fully-connected layers

Layer types

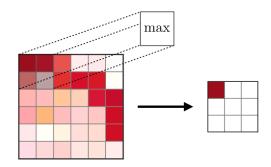
Convolutional layers

- Apply learned kernel to each position
- Shared + localized feature extraction



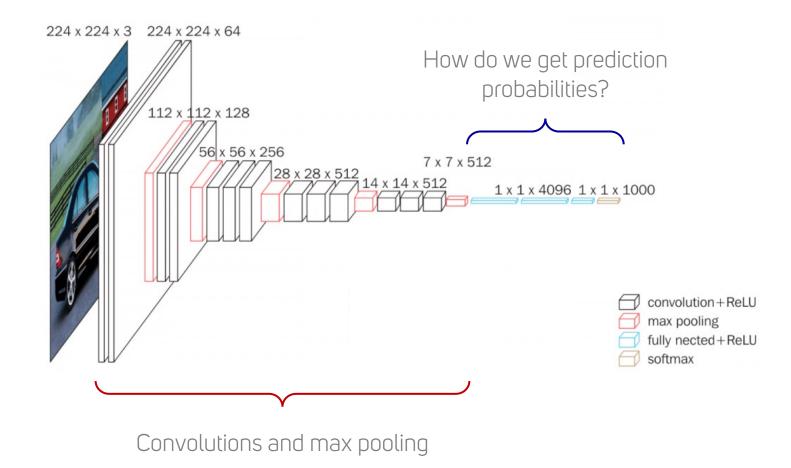
Max-pooling layers

- Calculate max value within sliding window
- Downsample to lower resolution



Amidi & Amidi, "Convolutional neural networks cheat sheet"

VGG architecture



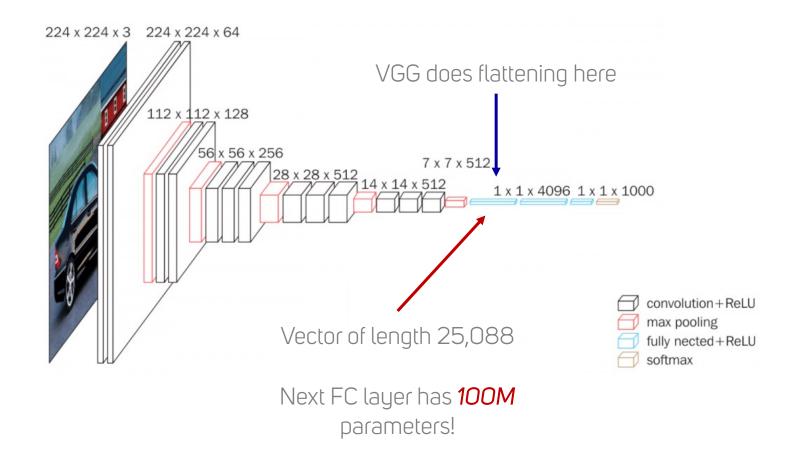
CNN output layers

Conv + max pool output has extra dimensions

- Tensor with shape $h \times w \times c$ (height, width, channels)
- We need probability vector of length *M* (# classes)
- Options:
 - 1. Flatten into vector of length *hwc*
 - 2. Pool along spatial dimensions: vector of length *c*

Then, apply fully-connected and softmax layer(s)

VGG architecture



Global average pooling

- Calculate spatial average of last layer features
 - Let $A \in \mathbb{R}^{h \times w \times c}$ be last tensor
 - A_{ij}^k is value at position (i, j), channel k

• Calculate
$$\bar{A}_k = \frac{1}{hw} \sum_{ij} A_{ij}^k$$

- Fewer learnable parameters, less overfitting
- GAP used in many popular architectures
 - E.g., ResNet, DenseNet

Lin et al., "Network in network" (2013)

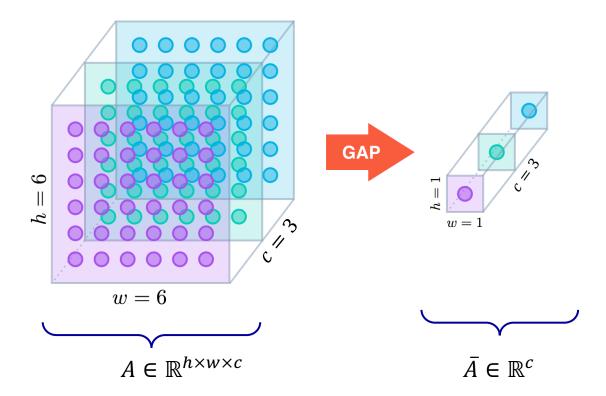
Putting it together

- Conv + max pool to get $A \in \mathbb{R}^{h \times w \times c}$
- GAP to get $\overline{A} \in \mathbb{R}^c$
- Fully-connected layer to get logits $z \in \mathbb{R}^M$:

$$z_{y} = \sum_{k=1}^{c} w_{k}^{y} \cdot \bar{A}_{k}$$

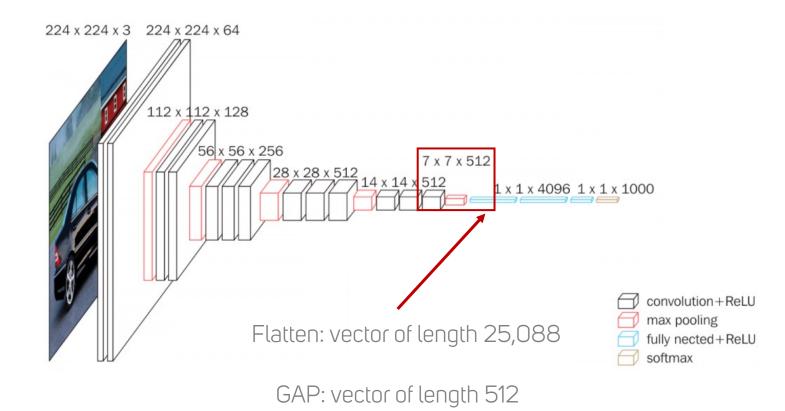
• Finally, softmax turns each z_y into a probability

Putting it together (cont.)



Cook, "Global average pooling layers for object localization" (2017)

Applied to final tensor *A*



©2022 Su-In Lee

Class activation maps (CAM)

 Idea: view GAP + FC layer as averaging separate predictions from each spatial position

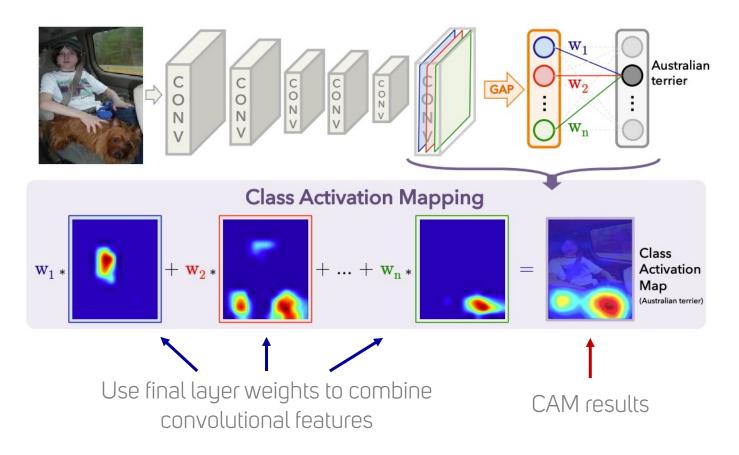
$$z_{y} = \sum_{k=1}^{c} w_{k}^{y} \cdot \frac{1}{hw} \sum_{ij}^{ij} A_{ij}^{k} \qquad \longleftarrow \bar{A}_{k}$$
$$= \frac{1}{hw} \sum_{ij}^{c} \sum_{k=1}^{c} w_{k}^{y} A_{ij}^{k} \qquad \longleftarrow \text{Swap order of summation}}$$

Define importance for class y as:

$$a_{ij} = \sum_{k=1}^{c} w_k^{\mathcal{Y}} A_{ij}^k \longleftarrow$$

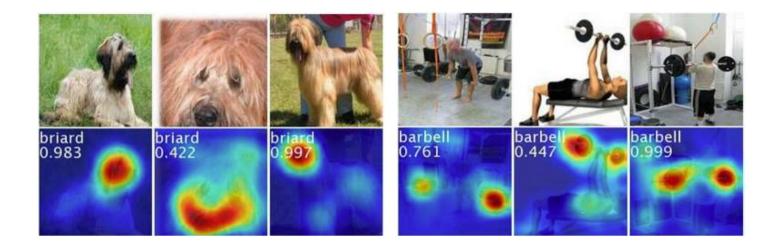
Like applying FC layer separately at each position

Alternative view



Zhou et al., "Learning deep features for discriminative localization" (2016)

Qualitative evaluation



Zhou et al., "Learning deep features for discriminative localization" (2016)

©2022 Su-In Lee

Localization with CAM

 Table 3. Localization error on the ILSVRC test set for various weakly- and fully- supervised methods.

-	Method	supervision	top-5 test error
	GoogLeNet-GAP (heuristics)	weakly	37.1
	GoogLeNet-GAP	weakly	42.9
	Backprop [22]	weakly	46.4
	GoogLeNet [24]	full	26.7
	OverFeat [21]	full	29.9
	AlexNet [24]	full	34.2

Simonyan et al., 2013 (last time)

Zhou et al., "Learning deep features for discriminative localization" (2016)

©2022 Su-In Lee

Relationship with GradCAM

Recall that GradCAM defines feature importance as

$$a_{ij} = \sum_{k} \alpha_{k}^{y} A_{ij}^{k}$$

$$\uparrow$$

$$w_{k} \text{ in CAM}$$

$$\alpha_{k}^{y} = \frac{1}{wh} \sum_{ij} \frac{\partial f_{y}}{A_{ij}^{k}}$$

where we have:

GradCAM allows nonlinearities after GAP, or no GAP

Spatial locality assumption

- CAM/GradCAM assume internal feature maps correspond to original input space
 - Roughly true due to convolutional structure
 - However, may not hold for later layers in very deep networks
 - GradCAM can operate in intermediate layers, where spatial locality is better preserved

CAM remarks

- Strong results, particularly in object localization
- Can only be computed for specific architectures (when using GAP + FC)
- Assumes spatial locality in final layer, which may not hold for very deep models

Today

- Section 1
 - Introduction
 - Linear regression
 - Generalized additive models (GAMs)
 - Decision trees
- Section 2
 - Class activation maps (CAM)
 - Attention as explanation

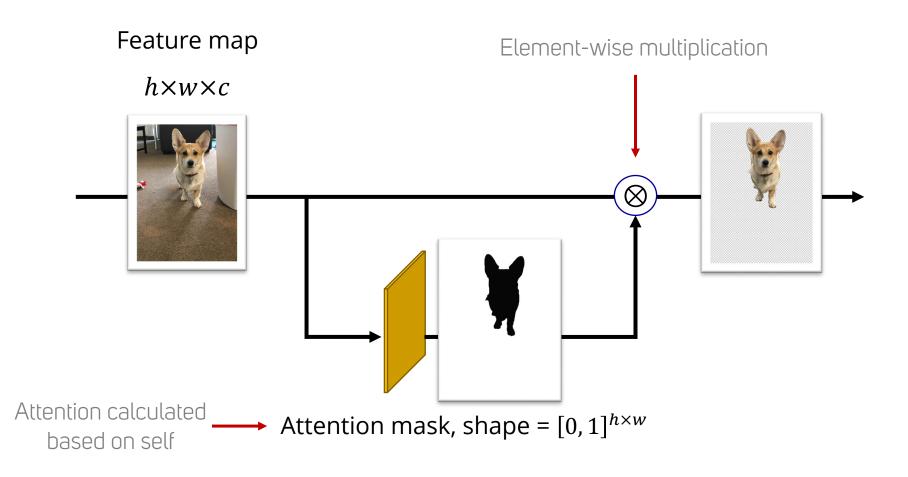
Attention

- A key component in some recent deep learning architectures
- Human attention: focusing on certain stimuli around us (visual, auditory, etc.)
- Attention in DL: using small portion of features to generate a prediction
 - Typically used at hidden layers with internal features
 - Features that get no attention are set to zero

Attention in DL

- A core component of modern NLP models
 - Increasingly popular for vision as well
- Hard vs. soft attention
 - Multiply by exactly zero, or approximately zero?
 - The latter is easier to learn via gradient descent
- How does it work?
 - How are attention values computed?
 - How are they used?

Self-attention example



Self-attention

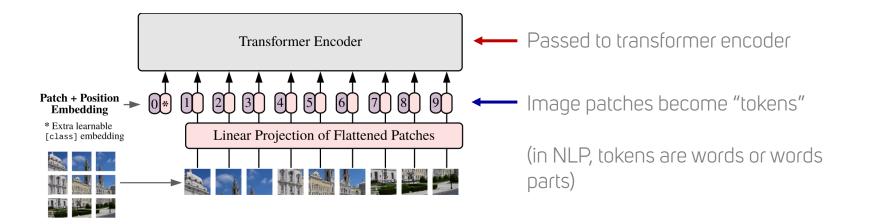
Some usage in CNNs

- Jetley et al., "Learn to pay attention" (2018)
- Mostly used in transformers
 - Popularized in machine translation, now SOTA in basically all NLP tasks
 - Language modeling (GPT-3), masked language modeling (BERT)
 - Protein modeling (e.g., AlphaFold)
 - Vision transformers (ViTs)

Vaswani et al., "Attention is all you need" (2017)

Case study: ViTs

- An alternative to CNNs, and currently a hot research area
- Built on self-attention operation

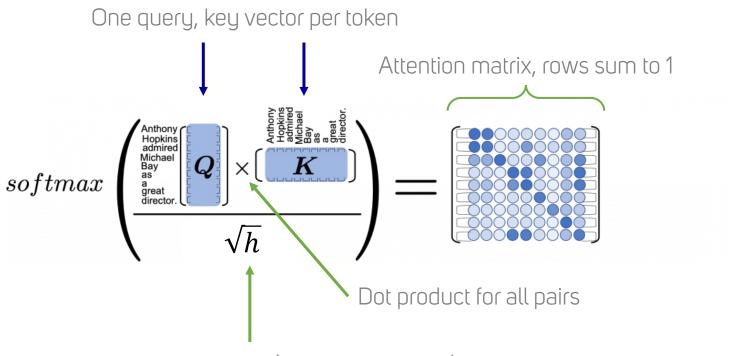


Dosovitskiy et al., "An image is worth 16x16 words: Transformers for image recognition at scale" (2020)

Self-attention operations

- Sequence of operations at each layer
 - Every token gets a query, key, and value vector
 - Use **query** and **key** to determine relevance for each token pair (*i*, *j*)
 - Normalize relevance to get attention values
 - Use attention to average value vectors for each token
 - Each token in the next layer becomes weighted sum of all previous token values
 - Attention controls weight for each token

Attention matrix



Normalization constant (not that important)

Tamura, "Multi-head attention mechanism: queries keys and values, over and over again" (2021)

Mathematical notation

- Let embeddings for d tokens be $z \in \mathbb{R}^{d \times h_e}$
- Let parameters be W_q , W_k , $W_v \in \mathbb{R}^{h_e \times h_a}$
- Calculate **queries**, keys, values $\in \mathbb{R}^{d \times h_a}$ as:

$$[Q, K, V] = [zW_q, zW_k, zW_v] \longleftarrow$$
 Per-token query, key,
value vectors, size h_q

• Calculate **attention** values $A \in \mathbb{R}^{d \times d}$ as:

Dot product between $A = \operatorname{softmax}\left(\frac{QK^{\mathsf{T}}}{\sqrt{h}}\right)$ Softmax applied along second dimension

• Calculate self-attention output $SA(z) \in \mathbb{R}^{d \times h_a}$ as:

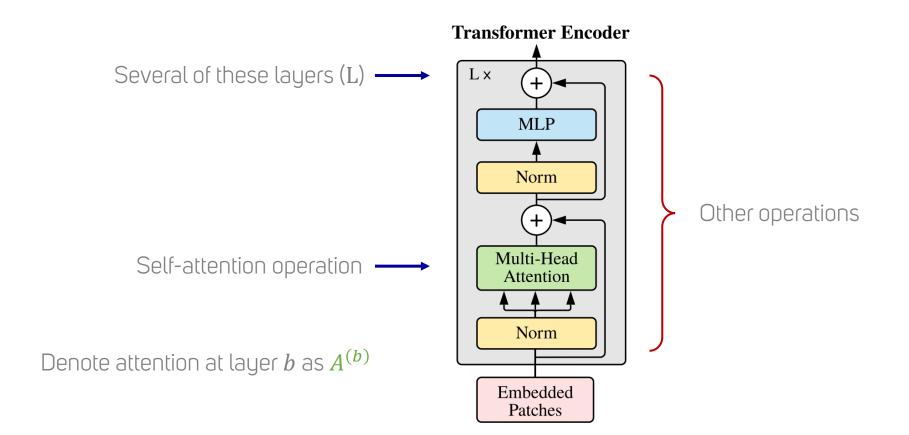
 $SA(z) = AV \leftarrow$ Each token becomes weighted sum of value vectors

Complete architecture

- ViTs are composed of many self-attention layers
 - In reality, they use multi-head self-attention
 - The same operations, but performed in parallel
- In addition...
 - Layer norm
 - Fully-connected layers in between
 - Possible residual connections between layers
 - Output calculated using class token
- We'll just focus on self-attention

Okay to ignore for now

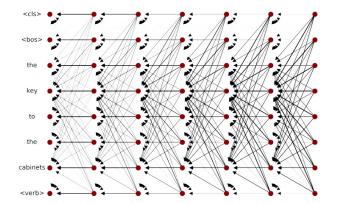
Complete architecture (cont.)



Raw attention

- Idea: define important features as those that receive most attention
- Sounds reasonable, but attention is calculated at every layer and for every pair of tokens
- Simple approach:
 - Examine a single layer (e.g., last layer)
 - Examine attention directed to the *class token*
 - Special token that's ultimately used to make predictions
 - Extract a single row of $A^{(L)}$

Attention rollout

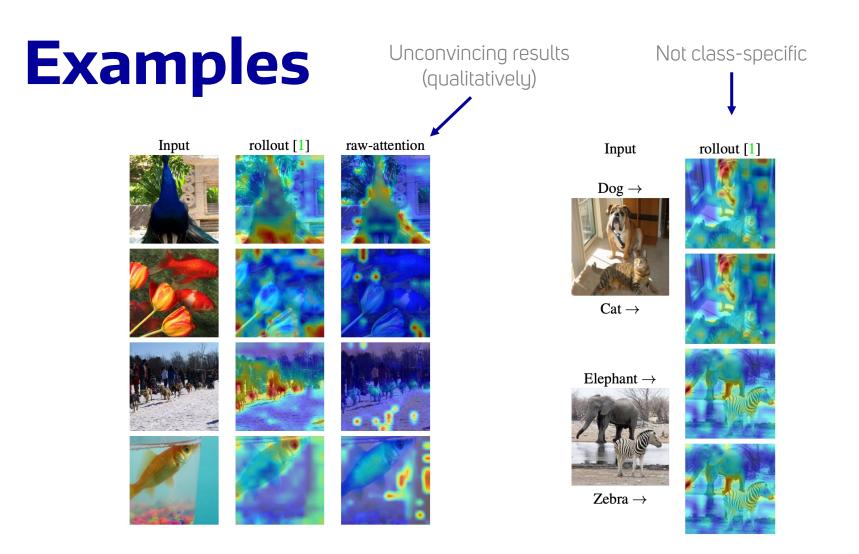


Problem: information mixes between tokens at each layer

Idea: treat attention as a graph, examine flow

- Add identity to each attention matrix, $\hat{A}^{(b)} = A^{(b)} + I$
- Calculate the product, rollout = $\hat{A}^{(1)} \cdot \hat{A}^{(2)} \dots \cdot \hat{A}^{(L)}$
- Extract a single row of the rollout matrix, again for class token

Abnar & Zuidema, "Quantifying attention flow in transformers" (2020)



Chefer et al., "Transformer interpretability beyond attention visualization" (2021)

Other examples

 More papers interpreting transformers via attention

- Clark et al., "What does BERT look at? An analysis of BERT's attention" (2019)
- Rogers et al., "A primer in BERTology: What we know about how BERT works" (2020)
- Vig et al., "BERTology meets biology: interpreting attention in protein language models" (2020)

Attention skepticism

- Is attention a valid approach to understand feature importance?
 - No guarantee that attention functions how we envision (like human attention)
 - Overlooks other operations in transformers

Several papers on this topic

- Serrano & Smith, "Is attention interpretable?" (2019)
- Jain & Wallace, "Attention is not explanation" (2019)
- Wiegreffe & Pinter, "Attention is not not explanation" (2019)

Remarks

Pros:

- Attention is calculated automatically for the prediction, minimal overhead
- Clear meaning: weight for each token in selfattention operation

Cons:

- Not obvious how to aggregate across attention heads, layers, and pair-wise interactions
- Reductive, ignores other important operations
- Weak results in XAI metrics (see Chefer et al., 2021)

Summary

- Global average pooling and self-attention were both introduced to improve predictive performance
- Later used to make models more interpretable
- Other approaches explicitly aim to make deep learning models more interpretable
 - Chen et al., "This looks like that: deep learning for interpretable image recognition" (2019)
 - Wang et al., "Shapley explanation networks" (2021)