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Post-hoc explanations
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Inherently interpretable 
models
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Defining interpretability

§ What exactly does “model interpretability” 
mean?

§ Three possible meanings:
1. Simulatability
2. Decomposability
3. Algorithmic transparency

4

Lipton, "The mythos of model interpretability: In machine learning, the concept of 
interpretability is both important and slippery" (2018)
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Simulatability

§ Can a human reasonably simulate the model 
given its parameters and input data?

§ No all-purpose definition
§ Reasonable is subjective, person-dependent
§ Possibly domain specific

§ However, some simple cases:
§ No one can mentally simulate a 50-layer ResNet
§ Most people can simulate a small linear model

5
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Decomposability

§ Does each model component have an intuitive 
role?
§ Inputs, parameters, operations

§ Examples:
§ Each split in a decision tree partitions samples based 

on a single feature and threshold value
§ Linear model coefficients represent association 

strength between a feature and the outcome

6
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Algorithmic transparency

§ Can we prove things about the learning 
algorithm?
§ For example, we’ve developed a lot of of learning 

theory for linear models
§ Less for deep models

§ What will the model converge to after training?
§ What types of signals is it likely to use?
§ How does SGD affect under-represented parts of the 

data distribution, can it affect fairness?

7
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Why post-hoc explanations?

8

Rane, “The balance: Accuracy vs. interpretability“ (2018)
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Is this tradeoff real?

§ For most structured data (images, text, audio), 
neural networks are most accurate
§ After decades of effort with other approaches, many 

problems now “solved” by DNNs
§ No simple model can match their accuracy

§ However, simple models can perform quite well 
for tabular data
§ E.g., linear/logistic regression, decision lists
§ In this case, less to gain from complex models

9
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Why this tradeoff?

§ Interpretable models tend to be constrained, 
lack flexibility

§ Constrained models can’t represent complex 
relationships
§ Interpretable models tend to fail in challenging 

domains, like CV or NLP

10
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Examples

§ Models may be constrained to satisfy linearity, 
additivity, monotonicity, causality, etc.

§ Common examples include:
§ Linear models (linearity)
§ GAMs (limited feature interactions)
§ Decision trees (binary feature splits)

11

Rudin, "Stop explaining black box machine learning models for high stakes decisions and 
use interpretable models instead" (2019)
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Caveats

§ Even simple models may not be inherently 
interpretable…
§ If they use engineered features (decomposability)
§ If they use too many features (simulatability)

§ Other questions we may ask about the model 
are not necessarily straightforward
§ What higher-level concepts does the model use?
§ Which training samples influenced the model most?

12
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Today

§ Section 1
§ Introduction
§ Linear regression
§ Generalized additive models (GAMs)
§ Decision trees

§ Section 2
§ Class activation maps (CAM)
§ Attention as explanation

13
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Linear regression

§ Linear prediction function:

𝑓 𝑥 = 𝛽! + 𝛽"𝑥" +⋯+ 𝛽#𝑥#

§ Trained by minimizing MSE:

ℒ 𝛽 =(
$%"

&

𝑦$ − 𝑓 𝑥$
'
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Interpreting a linear model

§ Can interpret via learned weights +𝛽 and their 
confidence intervals
§ Quantify feature importance
§ Mentally simulate prediction with new inputs
§ Understand the impact of small changes

15
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Lasso regression

§ Modified approach: find minimal feature set
§ Minimize a regularized loss function:

ℒ 𝛽 =
1
𝑛
(
$%"

&

𝑦$ − 𝑓 𝑥$
'
+ 𝜆(

(%"

#

𝛽(

§ Encourage model to set some weights 𝛽( to zero
§ A sparse solution, fewer features are relevant to the 

prediction
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Ridge regression

§ Alternatively, regularize with ridge penalty:

ℒ 𝛽 =
1
𝑛(
$%"

&

𝑦$ − 𝑓 𝑥$
'
+ 𝜆(

(%"

#

𝛽('

§ Useful properties, but does not encourage 
weights to be exactly zero
§ No sparsity, all features remain relevant
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Remarks

§ Pros:
§ Linear models are easy to interpret, mentally 

simulate
§ Widely used, fast to train

§ Cons:
§ Highly constrained, worse predictive performance for 

some tasks
§ Interpretation is potentially difficult with correlated 

features

18
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Today

§ Section 1
§ Introduction
§ Linear regression
§ Generalized additive models (GAMs)
§ Decision trees

§ Section 2
§ Class activation maps (CAM)
§ Attention as explanation
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GAMs

§ Generalized additive models
§ Combine non-linear, single-feature models (shape 

functions):

𝑓 𝑥 = 𝑓! 𝑥! +⋯+ 𝑓" 𝑥"

§ Common options for shape functions:
§ Splines
§ Trees
§ (Linear function = linear regression)

20

Lou et al., "Intelligible models for classification and regression" (2012)
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§ Relating concrete strength to age and 
ingredients
§ Splines uncover linear relationship with cement
§ Non-linear relationship with water and age

Example result

21

Lou et al., "Intelligible models for classification and regression” (2012)
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More shape functions

§ Piecewise linear curves
§ Ravina et al., "Distilling interpretable models into human-readable 

code" (2021)

§ Deep models
§ Agarwal et al. "Neural additive models: Interpretable machine 

learning with neural nets" (2020)
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GA2Ms

§ GAMs with interaction terms
§ Adding pairwise interactions:

𝑓 𝑥 =(
$

𝑓$ 𝑥$ +(
$(

𝑓$( 𝑥$ , 𝑥(

§ Typically, we rank interaction strength for all 
pairs and decide which to include

23

Lou et al., "Accurate intelligible models with pairwise interactions” (2013)
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Interactions boost accuracy

24

Lou et al., "Accurate intelligible models with pairwise interactions” (2013)
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Example result

25

Lou et al., "Accurate intelligible models with pairwise interactions” (2013)

§ Learning-to-rank dataset, predicting website 
relevance
§ Interaction effects captured by tree-based GA2M
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Remarks

§ GAMs are more flexible than linear models
§ Covers wide class of models with limited feature 

interactions
§ However, ignores higher-order interactions

§ Easier to edit than complex models
§ In some cases, can directly edit model parameters

§ E.g., cap a feature’s contribution in recidivism 
prediction (e.g., number of priors) for policy reasons

§ Manually edit search ranking algorithm

26

Ravina et al., "Distilling interpretable models into human-readable code" (2021)
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Today

§ Section 1
§ Introduction
§ Linear regression
§ Generalized additive models (GAMs)
§ Decision trees

§ Section 2
§ Class activation maps (CAM)
§ Attention as explanation

27
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Decision trees

§ Simple, binary splits
§ Internal node: partition on 

single feature, threshold
§ Leaf node: predicted 

outcome for those samples

§ Relatively easy to simulate
§ However, can become 

difficult with more splits

28
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Decision/rule lists

§ Decision trees with simplified branching 
structure
§ For each internal node, one child must be a leaf
§ Like an extended if – elseif – else rule

§ Decision lists are constrained decision trees
§ Even easier to interpret

29

Rivest, “Learning decision lists” (1987)
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Example

30

Age

Lives in 
eastern US

Likes sports
false

Wears 
glasses

Likes sports
false

Likes sports
true

Likes sports
false

> 25<= 25

truefalse

truefalse

Subtlety: by convention, 
decision lists allow 
conjunction (AND) of 
multiple conditions

Simpler structure, but 
more complex splits than 
decision trees

Internal nodes have at 
least 1 leaf child

Goal: predict ”likes professional sports” 
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CORELS

§ Certifiably optimal rule lists
§ Optimal for a specific class of models on regularized 

empirical risk

§ Branch and bound algorithm to produce an 
optimal decision list
§ Complex algorithm and data structures to make 

optimality achievable (vs. standard greedy learning 
algorithms)

§ Assumptions about the data representation
§ Helps bridge accuracy gap with more flexible models

31

Angelino et al. "Learning certifiably optimal rule lists for categorical data” (2017)
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Rudin, "Stop explaining black box machine learning models for high stakes decisions and 
use interpretable models instead” (2019)

Recidivism prediction

Conjunction of conditions
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Remarks

§ CORELS can be slow for very large datasets
§ Greedy learning algorithms are much more efficient
§ Less constrained models (decision trees) offer at 

least similar performance, possibly better

§ Both decision trees and lists are often 
outperformed by ensemble models
§ Random forests, gradient boosting trees
§ However, these are less interpretable

33
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Additional desiderata?

§ Other potential criteria for inherently interpretable 
models include:
§ Is it easy to identify feature adjustments to achieve a 

different outcome?
§ Is it easy to determine impact of withholding a feature’s 

information?
§ Is it easy to change your model to fix undesirable 

behavior?
§ Can you determine which data points influenced the 

model’s prediction?

§ Some of these are possible with previously 
discussed models, but others are not

34
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Today

§ Section 1
§ Introduction
§ Linear regression
§ Generalized additive models (GAMs)
§ Decision trees
§ 10 min break

§ Section 2
§ Class activation maps (CAM)
§ Attention as explanation

35
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Interpretable 
complex models

CSEP 590B: Explainable AI
Hugh Chen, Ian Covert & Su-In Lee

University of Washington
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Inherently interpretable 
models (previously)
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Interpretable complex 
models

38
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𝑓

Make the model more interpretable
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Interpretable complex 
models (cont.)

§ For inherently complex models (e.g., DNNs), we 
can make them more interpretable

§ Today: two deep learning architectures that 
enable interpretability

1. CNNs with global average pooling
§ Class activation maps (CAM)

2. Transformers based on self-attention
§ Attention-based explanations

39
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Today

§ Section 1
§ Introduction
§ Linear regression
§ Generalized additive models (GAMs)
§ Decision trees

§ Section 2
§ Class activation maps (CAM)
§ Attention as explanation

40
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Class activation maps

§ Built-in feature attribution for CNNs with 
specific output layers
§ Global average pooling followed by linear layer

41

Zhou et al., "Learning deep features for discriminative localization” (2016)
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CNN architecture refresher

§ Some common CNN architectures include 
AlexNet, VGG, ResNet, DenseNet

§ Networks typically consist of:
§ Convolutional layers
§ Max pooling layers
§ Fully-connected layers

42



©2022 Su-In Lee

Layer types

Convolutional layers
§ Apply learned kernel to each 

position
§ Shared + localized feature 

extraction

Max-pooling layers
§ Calculate max value within 

sliding window
§ Downsample to lower 

resolution

43

Amidi & Amidi, ”Convolutional neural networks cheat sheet”
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VGG architecture

44

Convolutions and max pooling

How do we get prediction 
probabilities?
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CNN output layers

§ Conv + max pool output has extra dimensions
§ Tensor with shape ℎ×𝑤×𝑐 (height, width, channels)
§ We need probability vector of length 𝑀 (# classes)

§ Options:
1. Flatten into vector of length ℎ𝑤𝑐
2. Pool along spatial dimensions: vector of length 𝑐

§ Then, apply fully-connected and softmax
layer(s)

45
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VGG architecture

46

VGG does flattening here

Vector of length 25,088

Next FC layer has 100M
parameters!
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Global average pooling

§ Calculate spatial average of last layer features
§ Let 𝐴 ∈ ℝ&×(×) be last tensor
§ 𝐴*+, is value at position 𝑖, 𝑗 , channel 𝑘

§ Calculate �̅�, =
-
&(
∑*+ 𝐴*+,

§ Fewer learnable parameters, less overfitting
§ GAP used in many popular architectures

§ E.g., ResNet, DenseNet

47

Lin et al., “Network in network” (2013)
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Putting it together

§ Conv + max pool to get 𝐴 ∈ ℝ)×+×,

§ GAP to get �̅� ∈ ℝ,

§ Fully-connected layer to get logits 𝑧 ∈ ℝ-:

𝑧. =(
/%"

,
𝑤/
. ⋅ �̅�/

§ Finally, softmax turns each 𝑧. into a probability

48
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Putting it together (cont.)

49

Cook, “Global average pooling layers for object localization” (2017)

𝑐 =
3

𝑐 =
3

𝐴 ∈ ℝ!×#×$ �̅� ∈ ℝ$
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Applied to final tensor 𝑨

50

Flatten: vector of length 25,088

GAP: vector of length 512
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Class activation maps (CAM)

§ Idea: view GAP + FC layer as averaging separate 
predictions from each spatial position

𝑧1 =1
,2-

)
𝑤,
1 ⋅

1
ℎ𝑤1

*+

𝐴*+,

=
1
ℎ𝑤1

*+

1
,2-

)

𝑤,
1 𝐴*+,

§ Define importance for class 𝑦 as:

𝑎*+ = 1
,2-

)

𝑤,
1 𝐴*+,

51

Like applying FC layer 
separately at each position

�̅�,

Swap order of 
summation
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Alternative view

52

Zhou et al., "Learning deep features for discriminative localization” (2016)

Use final layer weights to combine 
convolutional features

CAM results
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Qualitative evaluation

53

Zhou et al., "Learning deep features for discriminative localization” (2016)
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Localization with CAM

54

Zhou et al., "Learning deep features for discriminative localization” (2016)

Simonyan et al., 2013
(last time)
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Relationship with GradCAM

§ Recall that GradCAM defines feature importance as

𝑎*+ =1
,

𝛼,
1𝐴*+,

where we have:

𝛼,
1 =

1
𝑤ℎ1

*+

𝜕𝑓1
𝐴*+,

§ Result: GradCAM = CAM when we use GAP + FC

§ GradCAM allows nonlinearities after GAP, or no GAP

55

𝑤% in CAM
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Spatial locality assumption

§ CAM/GradCAM assume internal feature maps 
correspond to original input space
§ Roughly true due to convolutional structure
§ However, may not hold for later layers in very deep 

networks
§ GradCAM can operate in intermediate layers, where 

spatial locality is better preserved

56
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CAM remarks

§ Strong results, particularly in object localization
§ Can only be computed for specific architectures 

(when using GAP + FC)
§ Assumes spatial locality in final layer, which 

may not hold for very deep models

57
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Today

§ Section 1
§ Introduction
§ Linear regression
§ Generalized additive models (GAMs)
§ Decision trees

§ Section 2
§ Class activation maps (CAM)
§ Attention as explanation

58
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Attention

§ A key component in some recent deep learning 
architectures

§ Human attention: focusing on certain stimuli 
around us (visual, auditory, etc.)

§ Attention in DL: using small portion of features 
to generate a prediction
§ Typically used at hidden layers with internal features
§ Features that get no attention are set to zero

59
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Attention in DL

§ A core component of modern NLP models
§ Increasingly popular for vision as well

§ Hard vs. soft attention
§ Multiply by exactly zero, or approximately zero?
§ The latter is easier to learn via gradient descent

§ How does it work?
§ How are attention values computed?
§ How are they used?

60
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Self-attention example

61

ℎ×𝑤×𝑐

Attention mask, shape = 0, 1 !×#

⊗

Feature map Element-wise multiplication

Attention calculated 
based on self
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Self-attention

§ Some usage in CNNs
§ Jetley et al., “Learn to pay attention” (2018)

§ Mostly used in transformers
§ Popularized in machine translation, now SOTA in 

basically all NLP tasks
§ Language modeling (GPT-3), masked language 

modeling (BERT)
§ Protein modeling (e.g., AlphaFold)
§ Vision transformers (ViTs)

62

Vaswani et al., “Attention is all you need” (2017)
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Case study: ViTs

§ An alternative to CNNs, and currently a hot 
research area

§ Built on self-attention operation

63

Dosovitskiy et al., "An image is worth 16x16 words: Transformers for image recognition at 
scale” (2020)

Passed to transformer encoder

Image patches become “tokens”

(in NLP, tokens are words or words 
parts)
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Self-attention operations

§ Sequence of operations at each layer
§ Every token gets a query, key, and value vector
§ Use query and key to determine relevance for each 

token pair 𝑖, 𝑗
§ Normalize relevance to get attention values
§ Use attention to average value vectors for each 

token
§ Each token in the next layer becomes weighted sum of 

all previous token values
§ Attention controls weight for each token

64
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Attention matrix

65

Tamura, “Multi-head attention mechanism: queries keys and values, over and over 
again” (2021)

One query, key vector per token

Normalization constant (not that important)

Dot product for all pairs

ℎ

Attention matrix, rows sum to 1
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Mathematical notation

§ Let embeddings for 𝑑 tokens be 𝑧 ∈ ℝ3×&&

§ Let parameters be 𝑊4 ,𝑊, ,𝑊5 ∈ ℝ&&×&'

§ Calculate queries, keys, values ∈ ℝ3×&' as:

𝑄,𝐾, 𝑉 = 𝑧𝑊4 , 𝑧𝑊, , 𝑧𝑊5

§ Calculate attention values 𝐴 ∈ ℝ3×3 as:

𝐴 = softmax
𝑄𝐾6

ℎ

§ Calculate self-attention output SA 𝑧 ∈ ℝ3×&' as:

SA 𝑧 = 𝐴𝑉

66

Per-token query, key, 
value vectors, size ℎ(

Each token becomes weighted 
sum of value vectors

Softmax applied along 
second dimension

Dot product between 
query, key for all pairs
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Complete architecture

§ ViTs are composed of many self-attention layers
§ In reality, they use multi-head self-attention
§ The same operations, but performed in parallel

§ In addition…
§ Layer norm
§ Fully-connected layers in between
§ Possible residual connections between layers
§ Output calculated using class token

§ We’ll just focus on self-attention

67

Okay to ignore 
for now
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Complete architecture (cont.)

68

Self-attention operation

Several of these layers (L)

Other operations

Denote attention at layer 𝑏 as 𝐴 )
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Raw attention

§ Idea: define important features as those that 
receive most attention

§ Sounds reasonable, but attention is calculated 
at every layer and for every pair of tokens

§ Simple approach:
§ Examine a single layer (e.g., last layer)
§ Examine attention directed to the class token

§ Special token that’s ultimately used to make predictions
§ Extract a single row of 𝐴 !

69
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Attention rollout

§ Problem: information mixes between tokens at 
each layer

§ Idea: treat attention as a graph, examine flow
§ Add identity to each attention matrix, F𝐴 7 = 𝐴 7 + 𝐼
§ Calculate the product,  rollout = F𝐴 - ⋅ F𝐴 8 … ⋅ F𝐴 9

§ Extract a single row of the rollout matrix, again for 
class token

70

Abnar & Zuidema, "Quantifying attention flow in transformers” (2020)



©2022 Su-In Lee

Examples

71

Chefer et al., “Transformer interpretability beyond attention visualization” (2021)

Not class-specificUnconvincing results 
(qualitatively)
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Other examples

§ More papers interpreting transformers via 
attention
§ Clark et al., “What does BERT look at? An analysis of BERT’s 

attention” (2019)

§ Rogers et al., “A primer in BERTology: What we know about how 
BERT works” (2020)

§ Vig et al., “BERTology meets biology: interpreting attention in protein 
language models” (2020)

72



©2022 Su-In Lee

Attention skepticism

§ Is attention a valid approach to understand 
feature importance?
§ No guarantee that attention functions how we 

envision (like human attention)
§ Overlooks other operations in transformers

§ Several papers on this topic
§ Serrano & Smith, “Is attention interpretable?” (2019)

§ Jain & Wallace, “Attention is not explanation” (2019)

§ Wiegreffe & Pinter, “Attention is not not explanation” (2019)

73
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Remarks

§ Pros:
§ Attention is calculated automatically for the 

prediction, minimal overhead
§ Clear meaning: weight for each token in self-

attention operation

§ Cons:
§ Not obvious how to aggregate across attention 

heads, layers, and pair-wise interactions
§ Reductive, ignores other important operations
§ Weak results in XAI metrics (see Chefer et al., 2021)

74
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Summary

§ Global average pooling and self-attention were 
both introduced to improve predictive 
performance

§ Later used to make models more interpretable
§ Other approaches explicitly aim to make deep 

learning models more interpretable
§ Chen et al., "This looks like that: deep learning for interpretable 

image recognition” (2019)

§ Wang et al., "Shapley explanation networks” (2021)

75


