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Post-hoc explanations

World ——— Data ———— Model —— Explain ——— Humans

Capture Learn Extract Inform

Molnar, “Interpretable machine learning” (2022)
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Inherently interpretable
models

Linear model
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Defining interpretability

= What exactly does “model interpretability”
mean?

= Three possible meanings:
1. Simulatability
2. Decomposability
3. Algorithmic transparency

Lipton, "The mythos of model interpretability: In machine learning, the concept of
interpretability is both important and slippery" (2018)

©2022 Su-In Lee



Simulatability

= Can a human reasonably simulate the model
given its parameters and input data?

= No all-purpose definition
= Reasonable is subjective, person-dependent
= Possibly domain specific

= However, some simple cases:
= No one can mentally simulate a 50-layer ResNet
= Most people can simulate a small linear model



Decomposability

= Does each model component have an intuitive
role?

= |nputs, parameters, operations

= Examples:

= Each splitin a decision tree partitions samples based
on a single feature and threshold value

= Linear model coefficients represent association
strength between a feature and the outcome



Algorithmic transparency

= Can we prove things about the learning
algorithm?

= For example, we've developed a lot of of learning
theory for linear models

= Less for deep models
What will the model converge to after training?
What types of signals is it likely to use?

How does SGD affect under-represented parts of the
data distribution, can it affect fairness?



Why post-hoc explanations?
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Kernel Based Methods

@ (Support Vector Machine)
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< @ Decision Trees sl
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Interpretability High

Low

Rane, “The balance: Accuracy vs. interpretability” (2018)
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Is this tradeoff real?

= For most structured data (images, text, audio),
neural networks are most accurate

= After decades of effort with other approaches, many
problems now “solved” by DNNs

= No simple model can match their accuracy

= However, simple models can perform quite well
for tabular data

= E.g., linear/logistic regression, decision lists
= |n this case, less to gain from complex models



Why this tradeoff?

= Interpretable models tend to be constrained,
lack flexibility

= Constrained models can't represent complex
relationships

= |nterpretable models tend to fail in challenging
domains, like CV or NLP



Examples

= Models may be constrained to satisfy linearity,
additivity, monotonicity, causality, etc.

= Common examples include:
= Linear models (linearity)
= GAMs (limited feature interactions)
= Decision trees (binary feature splits)

Rudin, "Stop explaining black box machine learning models for high stakes decisions and
use interpretable models instead" (2019)
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Caveats

= Even simple models may not be inherently
interpretable...

= |f they use engineered features (decomposability)
= |f they use too many features (simulatability)

= Other questions we may ask about the model|
are not necessarily straightforward

= What higher-level concepts does the model use?
= Which training samples influenced the model most?



Today

= Section 1
= |ntroduction

= Linear regression ¢

= Generalized additive models (GAMS)
= Decision trees

= Section 2
= Class activation maps (CAM)

= Attention as explanation



Linear regression

= Linear prediction function:
f(x) = Bo+ Pixy + -+ Baxg

= Trained by minimizing MSE:

n

L(B) = Z (v - f(xi))2

=1



Interpreting a linear model

= Can interpret via learned weights £ and their
confidence intervals

= Quantify feature importance

= Mentally simulate prediction with new inputs
= Understand the impact of small changes



Lasso regression

= Modified approach: find minimal feature set
= Minimize a regularized loss function:

n

d
L(B) = %Z (v - f(xi))z + AZV#‘
=1

1=1

= Encourage model to set some weights g; to zero

= A sparse solution, fewer features are relevant to the
prediction



Ridge regression

= Alternatively, regularize with ridge penalty:

= Useful properties, but does not encourage
weights to be exactly zero

= No sparsity, all features remain relevant



Remarks

= Pros:

= Linear models are easy to interpret, mentally
simulate

= Widely used, fast to train

= Cons:

= Highly constrained, worse predictive performance for
some tasks

= |nterpretation is potentially difficult with correlated
features



Today

= Section 1
= |ntroduction
= Linear regression
= Generalized additive models (GAMS) <_
= Decision trees
= Section 2
= Class activation maps (CAM)

= Attention as explanation



GAMs

» Generalized additive models

= Combine non-linear, single-feature models (shape
functions):

fx) = filxy) + -+ fa(xq)

= Common options for shape functions:
= Splines
= Trees
= (Linear function = linear regression)

Lou et al,, "Intelligible models for classification and regression” (2012)
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Example result

= Relating concrete strength to age and
ingredients

= Splines uncover linear relationship with cement
= Non-linear relationship with water and age

g4 T
100 300 400 500

Cement Water Age

Lou et al,, "Intelligible models for classification and regression” (2012)

©2022 Su-In Lee 21



More shape functions

= Pjecewise linear curves

= Ravina et al,, "Distilling interpretable models into human-readable
code" (2021)

= Deep models

= Agarwal et al. "Neural additive models: Interpretable machine
learning with neural nets" (2020)

©2022 Su-In Lee
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GA2Ms

= GAMSs with interaction terms
= Adding pairwise interactions:

fx) = z filx;) + z fij (%1, %)
[ Lj

= Typically, we rank interaction strength for all
pairs and decide which to include

Lou et al,, "Accurate intelligible models with pairwise interactions” (2013)
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Interactions boost accuracy

Model Delta | CompAct | Pole | CalHousing | MSLR10k || Mean |
[ Linear Regression | 0.58+0.01 [ 7.92+0.47 [ 30.41+£0.24 | 7.28+0.80 [ 0.76+0.00 [[ 1.52+0.79 |
GAM 0.57+0.02 [ 2.744+0.04 | 21.62+0.38 | 5.76+0.55 | 0.75+0.00 || 1.00=0.00
GA2M Rand - - 11.374+0.38 - 0.73+0.00 -
GA2M Coef - - 11.614+0.43 - 0.73+0.00 -
GA2M Order - - 10.81+0.29 - 0.7440.00 -
GA?M FAST 0.554+0.02 | 2.534+0.02 | 10.59+0.35 | 5.00+0.91 | 0.73+0.00 || 0.84+0.20

| Random Forests | 0.53+0.19 | 2.454+0.08 | 11.38+£1.03 | 4.90+0.81 [ 0.71£0.00 [[ 0.83£0.17 |

Table 2: RMSE for regression datasets. Each cell contains the mean RMSE + one standard deviation.
Average normalized score is shown in the last column, calculated as relative improvement over GAM.

| Model | Spambase I Gisette I Magic I Letter l Physics ” Mean |
| Logistic Regression | 6.22+0.93 | 15.7843.28 | 17.11+0.08 | 27.54+0.27 | 30.02+0.37 || 1.79+1.25 |
GAM 5.0940.64 | 3.954+0.65 | 14.8540.28 | 17.844+0.20 | 28.83+0.24 || 1.00+0.00
GA?M Rand 5.0440.52 | 3.534-0.61 - - 28.82+0.25 -
GA*M Coef 4.8940.54 | 3.4340.55 - - 28.74+0.37 -
GA*M Order 4.93+0.65 | 3.0840.55 - - 28.76+0.34 -
s GA*M FAST 4.78+0.70 | 2.91+0.38 | 13.88+0.32 | 8.62+0.31 | 28.20+0.18 || 0.8140.21

| Random Forests I 4.761+0.70 I 3.2510.47 I 12.4540.64 I 6.1610.22 I 28.48+0.40 ” 0.7940.26 |

Table 3: Error rate for classification datasets. Each cell contains the error rate + one standard deviation.
Average normalized score is shown in the last column, calculated as relative improvement over GAM.

Lou et al,, "Accurate intelligible models with pairwise interactions” (2013)
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Example result

= Learning-to-rank dataset, predicting website
relevance

= Interaction effects captured by tree-based GA°M

6.6934e-4 6.6726e-4 5.5579e-4
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Lou et al,, "Accurate intelligible models with pairwise interactions” (2013)
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Remarks

= GAMs are more flexible than linear models

= Covers wide class of models with limited feature
interactions

= However, ignores higher-order interactions

= Easier to edit than complex models

= |n some cases, can directly edit model parameters

E.g., cap a feature’s contribution in recidivism
prediction (e.g., number of priors) for policy reasons

Manually edit search ranking algorithm
Ravina et al,, "Distilling interpretable models into human-readable code" (2021)
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Today

= Section 1
= |ntroduction
= Linear regression
= Generalized additive models (GAMS)
= Decision trees <:
= Section 2
= Class activation maps (CAM)

= Attention as explanation



Decision trees

= Sj mple, binary SplItS Survival of passengers on the Titanic
= [nternal node: partition on .
single feature, threshold sl
= Leaf node: predicted - ;w_
outcome for those samples i e
9.5 <age age <= g\é
' . 047" 61% Ssp
= Relatively easy to simulate st s
= However, can become o suwed

difficult with more splits
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Decision/rule lists

= Decision trees with simplified branching
structure

= For each internal node, one child must be a leaf
= |Like an extended if - elseif - else rule

= Decision lists are constrained decision trees
= Even easier to interpret

Rivest, “Learning decision lists” (1987)



Example

Goal: predict "likes professional sports”

Age
PN
<= 25 595 +<—— |Internal nodes have at
- AN least 1 leaf child
Lives in Likes sports
eastern US false
N
folse e Subtlety: by convention,
Wears Likes sports decision lists allow
glasses false conjunction (AND) of
PN multiple conditions
false true
, - , ~ Simpler structure, but
Likes sports Likes sports

true false more complex splits than
decision trees



CORELS

= Certifiably optimal rule lists

= Optimal for a specific class of models on regularized
empirical risk

= Branch and bound algorithm to produce an
optimal decision list

= Complex algorithm and data structures to make
optimality achievable (vs. standard greedy learning
algorithms)

= Assumptions about the data representation
= Helps bridge accuracy gap with more flexible models

Angelino et al. "Learning certifiably optimal rule lists for categarical data” (2017)



Recidivism prediction

Conjunction of conditions

v
IF age between 18-20 and sex is male THEN predict arrest (within 2 years)
ELSE IF age between 21-23 and 2-3 prior offenses THEN predict arrest
ELSE IF more than three priors THEN predict arrest
ELSE predict no arrest.

Rudin, "Stop explaining black box machine learning models for high stakes decisions and
use interpretable models instead” (2019)
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Remarks

= CORELS can be slow for very large datasets
= Greedy learning algorithms are much more efficient

= Less constrained models (decision trees) offer at
least similar performance, possibly better

= Both decision trees and lists are often
outperformed by ensemble models

= Random forests, gradient boosting trees
= However, these are less interpretable



Additional desiderata?

= Other potential criteria for inherently interpretable
models include:

= |s it easy to identify feature adjustments to achieve a
different outcome?

= |s it easy to determine impact of withholding a feature’s
information?

= |s it easy to change your model to fix undesirable
behavior?

= Can you determine which data points influenced the
model’'s prediction?

= Some of these are %ossible with previously
discussed models, but others are not



Today

= Section 1
= |ntroduction
= Linear regression
= Generalized additive models (GAMS)
= Decision trees
= 10 min break

= Section 2
= Class activation maps (CAM)
= Attention as explanation



Interpretable
complex models

CSEP 5908B: Explainable Al
Hugh Chen, lan Covert & Su-In Lee
University of Washington



Inherently interpretable
models (previously)

Linear model

-» yER

P E _
@ G ] xeR? B R

World ——— Data > Model » Humans

A

Capture Learn Inform
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Interpretable complex
models

Make the model more interpretable

|

A

% B

World ——— Data > Model » Humans

Capture Learn Inform
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Interpretable complex
models (cont.)

= For inherently complex models (e.g., DNNSs), we
can make them more interpretable

= Today: two deep learning architectures that
enable interpretability

1. CNNs with global average pooling
Class activation maps (CAM)

2. Transformers based on self-attention
Attention-based explanations



Today

= Section 1
= |ntroduction
= Linear regression
= Generalized additive models (GAMS)
= Decision trees
= Section 2

= Class activation maps (CAM) < ::
= Attention as explanation




Class activation maps

= Built-in feature attribution for CNNs with
specific output layers

= Global average pooling followed by linear layer

Brushin_g teeth

Cutting trees

Zhou et al,, "Learning deep features for discriminative localization” (2016)
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CNN architecture refresher

= Some common CNN architectures include
AlexNet, VGG, ResNet, DenseNet

= Networks typically consist of:
= Convolutional layers
= Max pooling layers
= Fully-connected layers



Layer types

Convolutional layers Max-pooling layers

= Apply learned kernel to each = Calculate max value within
position sliding window

= Shared + localized feature = Downsample to lower
extraction resolution

< | max

Amidi & Amidi, “Convolutional neural networks cheat sheet”

©2022 Su-In Lee
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VGG architecture

224 x 224 x3 224 x 224 x 64

How do we get prediction
probabilities?

112 x 112 x 128

A
56|x 56 x 256 r A
/ Y b 7x7x512
A ; X 28 X
(1 Ve 114X 1Ax212  1x1x4096 1x1x1000
- —
(=7 convolution+RelU
) max pooling
fully nected+RelU
softmax
AN J

Y

Convolutions and max pooling
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CNN output layers

= Conv + max pool output has extra dimensions
= Tensor with shape hxwxc (height, width, channels)
= We need probability vector of length M (# classes)

= Options:
1. Flatten into vector of length hwc
2. Pool along spatial dimensions: vector of length ¢

= Then, apply fully-connected and softmax
layer(s)



VGG architecture

224 x 224 x3 224 x 224 x 64

VGG does flattening here

112 x 112 x 128

422223556X256 7x7x512
A / 28 x 28 x 512

14 x 14 x 512
- —

1x1x4096 1x1x 1000

(=7 convolution+RelU

Vector of length 25,088 - fmuﬁ;rfggt':dngReLU
softmax
Next FC layer has 100M
parameters!
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Global average pooling

= Calculate spatial average of last layer features
= Let A € RVWX¢ pe |ast tensor

o Aﬁfj is value at position (i,j), channel k

= Calculate 4, = ﬁZU A

= Fewer learnable parameters, less overfitting

= GAP used in many popular architectures
= E.g., ResNet, DenseNet

Lin et al,, “Network in network” (2013)



Putting it together

= Conv + max pool to get 4 € R*wxc
= GAPto get 4 € R¢
= Fully-connected layer to get logits z € RM:

Cc
_E Y. I
Zy = wy, - Ag
k=1

= Finally, softmax turns each z,, into a probability



Putting it together (cont.)

Q00000
000000
99999%% 0
O Q)O @
0 ®o
°d Q)O O//%
QOQ)Q)Q)Q)Q)O 0N £w=1
000000
Q00000 C
w =206
N J
N\ N J Y
AeIRhXWXC AeIRC

Cook, “Global average pooling layers for object localization” (2017)
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Applied to final tensor 4

224 x 224 x3 224 x 224 x 64

112 x 112 x 128

%L( 56 x 256
1 ' 28 x 28 x 512

14x14x

X512
512

1 x1x4096 1x1x1000

() convolution+ReLU
) max pooling

Flatten: vector of length 25,088 7 fully nected+ReLU

softmax

GAP: vector of length 512

©2022 Su-In Lee
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Class activation maps (CAM)

= |dea: view GAP + FC layer as averaging separate
predictions from each spatial position

¢ y 1 " _
Zy = wp E A — A
Y Zk=1 k hw - Y f
vJ

Cc

1 Y ak
—— Wy, Aij +«—— 5Swap order of
hw == summation

= Define importance for class y as:

C
a;; = 2 W;i/ Ail{cj Like applying FC lag.e'r
£ separately at each position
=1
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Alternative view

O |
: < Australian
C C G 8 G7F> O W, /’. terrier
(@] (0] ot . 4
8 N N 5 4 :
Vv \Y \' O Wn
~— e
Y

Class Activation Mapping

Class
+ Wy« T e ol Wk = Activation
Mapv '
‘ ‘ ‘ (Australian terrier)
Use final layer weights to combine CAM results

convolutional features
Zhou et al,, "Learning deep features for discriminative localization” (2016)
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Qualitative evaluation

briard
0.983

Zhou et al,, "Learning deep features for discriminative localization” (2016)
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Localization with CAM

Table 3. Localization error on the ILSVRC test set for various
weakly- and fully- supervised methods.

Method supervision | top-5 test error
GoogleNet-GAP (heuristics) weakly 37.1
GooglLeNet-GAP weakly 429
Backprop [22] weakly 46.4
GoogleNet [24] full 26.7
OverFeat [21] full 299
AlexNet [24] full 342

Simonyan et al,, 2013
(last time)

Zhou et al,, "Learning deep features for discriminative localization” (2016)
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Relationship with GradCAM

= Recall that GradCAM defines feature importance as

— Y 1k
aij = z akAij
“ 1

where we have: wy, in CAM

@ th g

= Result: GradCAM = CAM when we use GAP + FC

» GradCAM allows nonlinearities after GAP, or no GAP



Spatial locality assumption

= CAM/GradCAM assume internal feature maps
correspond to original input space

= Roughly true due to convolutional structure

= However, may not hold for later layers in very deep
networks

= GradCAM can operate in intermediate layers, where
spatial locality is better preserved



CAM remarks

= Strong results, particularly in object localization

= Can only be computed for specific architectures
(when using GAP + FC)

= Assumes spatial locality in final layer, which
may not hold for very deep models



Today

= Section 1
= |Introduction
= Linear regression
= Generalized additive models (GAMS)
= Decision trees

= Section 2
= Class activation maps (CAM)
= Attention as explanation <:




Attention

= A key component in some recent deep learning
architectures

= Human attention: focusing on certain stimuli
around us (visual, auditory, etc.)

= Attention in DL: using small portion of features
to generate a prediction

= Typically used at hidden layers with internal features
= Features that get no attention are set to zero



Attentionin DL

= A core component of modern NLP models
= |ncreasingly popular for vision as well

= Hard vs. soft attention
= Multiply by exactly zero, or approximately zero?
= The latter is easier to learn via gradient descent

= How does it work?
= How are attention values computed?
= How are they used?



Self-attention example

Feature map Element-wise multiplication

hXxwXc

(@)
¥

‘!

—— Attention mask, shape = [0, 1]"*W

Attention calculated
based on self

©2022 Su-In Lee
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Self-attention

= Some usage in CNNs
= Jetley et al, “Learn to pay attention” (2018)

= Mostly used in transformers

= Popularized in machine translation, now SOTA in
basically all NLP tasks

Language modeling (GPT-3), masked language
modeling (BERT)

= Protein modeling (e.g., AlphaFold)
= Vision transformers (ViTs)

Vaswani et al,, "Attention is all you need” (2017)
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Case study: ViTs

= An alternative to CNNSs, and currently a hot
research area

= Built on self-attention operation

[ Transformer Encoder <«—— Passed to transformer encoder
Pag,{;,:eggf;:;u @5 @5 <+— |mage patches become “tokens”
[Fil ]l emb dd [ Lmear PrOJectlon of Flattened Patches
.'. | [ 1 | (in NLP, tokens are words or words

5 po |
*‘*\ L e parts)
EWE

Dosovitskiy et al., "An image is worth 16x16 words: Transformers for image recognition at
scale” (2020)
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Self-attention operations

= Sequence of operations at each layer

= Every token gets a query, key, and value vector

= Use query and key to determine relevance for each
token pair (i, j)

= Normalize relevance to get values
= Use to average value vectors for each
token

Each token in the next layer becomes weighted sum of
all previous token values

Attention controls weight for each token



Attention matrix

One query, key vector per token

l l Attention matrix, rows sum to 1
A
2283 s r 2
Anthony G £5e55, B3 900 )
] |t ~88558558¢-
ichae C ]
ey | B | X [WUKMU] melele) | Jojols] B
softmax [ 2. |E — [Coe0eed00e
gt L \ COO000000CT
COO00000Q
Eoleojelelole] 0B
NN h CO00080008 )
‘ Dot product for all pairs

Normalization constant (not that important)

Tamura, "Multi-head attention mechanism: queries keys and values, over and over

again” (2021)
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Mathematical notation

Let embeddings for d tokens be z € R4*"e
= Let parameters be W,, Wy, W, € R"eX"a
Calculate queries, keys, values € R%*"a gs:

Per-token query, key,
value veclors, size h,

[Q,K,V] = |z2W,, zW, zW,, | «—

= Calculate attention values 4 € R4%4 3s:

Dot product between “(QKT\ ~—— Softmax applied along
( ) second dimension

vh

= Calculate self-attention output SA(z) € R%*"a as:

SA(2) = AV «— Each token becomes weighted
sum of value vectors

query, key for all pairs A = softmax
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Complete architecture

= ViTs are composed of many self-attention layers

= |n reality, they use multi-head self-attention

= The same operations, but performed in parallel

= |n addition...
= Layer norm
= Fully-connected layers in between
= Possible residual connections between layers
= Qutput calculated using class token

= We'll just focus on self-attention

\

/

>

Okay to ignore
for now



Complete architecture (cont.)

Transformer Encoder

A

Several of these layers (L) — [ Lx @. |~

MLP
i
)

[ Norm

G; > Other operations

Multi-Head
Attention

J
s 2
\

Norm

Self-attention operation =—

—

Denote attention at layer b as A®)

[ Embedded
Patches
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Raw attention

* |dea: define important features as those that
receive most attention

= Sounds reasonable, but attention is calculated
at every layer and for every pair of tokens
= Simple approach:

= Examine a single layer (e.g., last layer)

= Examine attention directed to the class token
Special token that's ultimately used to make predictions

Extract a single row of



|

1”

< . P «
o7 [N RN RN N
7 7 o 1)
S L S LS /R (44 J &
the @ L - [ L /)
(X LA s 1/ QA
» L S I X
key @ «———0 +———F—0 i "‘ WY f{\‘ — $
;< TN/ WK/ R '? D
Ly R R
™~ AN AN).VAVALN
VX VXN
J J
LN, 0

e
inets @ «———@
V. Al

s =, \}‘.
<<<<<< o —» “

= Problem: information mixes between tokens at
each layer

= |dea: treat attention as a graph, examine flow
= Add identity to each attention matrix, A®?) = +1
= Calculate the product, rollout = AW - A2 . A1)

= Extract a single row of the rollout matrix, again for
class token

Abnar & Zuidema, "Quantifying attention flow in transformers” (2020)
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Exa m I e S Unconvincing results Not class-specific
p (qualitatively) l

Input rollout [1] raw-attention Input

-""( "
: \

Zebra —

Chefer et al,, “Transformer interpretability beyond attention visualization” (2021)
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Other examples

= More papers interpreting transformers via
attention

» (Clark et al, “What does BERT look at? An analysis of BERT's
attention” (2019)

= Rogers et al, “A primer in BERTology: What we know about how
BERT works” (2020)

= Vigetal, "BERTology meets biology: interpreting attention in protein
language models” (2020)
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Attention skepticism

= |s attention a valid approach to understand
feature importance?

= No guarantee that attention functions how we
envision (like human attention)

= Overlooks other operations in transformers

= Several papers on this topic
= Serrano & Smith, “Is attention interpretable?” (2019)
= Jain & Wallace, “Attention is not explanation” (2019)
= Wiegreffe & Pinter, “Attention is not not explanation” (2019)

©2022 Su-In Lee
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Remarks

= Pros:

= Attention is calculated automatically for the
prediction, minimal overhead

= Clear meaning: weight for each token in self-
attention operation

= Cons:

= Not obvious how to aggregate across attention
heads, layers, and pair-wise interactions

= Reductive, ignores other important operations
= Weak results in XAl metrics (see Chefer et al., 2021)



Summary

= Global average pooling and self-attention were
ooth introduced to improve predictive
performance

= Later used to make models more interpretable

= Other approaches explicitly aim to make deep
learning models more interpretable

= Chenetal, "This looks like that: deep learning for interpretable
image recognition” (2019)

= \Wang et al., "Shapley explanation networks” (2021)
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