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Course announcements
= HW1 due last night

= HW 2 released today
= |mage explanations
= XAl metrics



The course so far

= Focused on feature importance explanations

= Deep dive into the algorithms
= Local and global methods

= Removal-based methods
How to remove features
How to summarize influence

= Propagation-based methods
Different ways to work with gradients



Now, zooming out

= Diverse algorithms, but all designed for one
purpose: identifying influential features

= How can we test which methods do this best?



Questions to consider

= Do we need to know a priori what's important?

= Should explanations reflect what's important to
the model, or what's important to humans?

= Are our performance metrics aligned with any
specific explanation methods?



Setup

= Assume a model f(x)
= Classifier with probability f,,(x) for class y

= Assume an explanation algorithm
= Local explanation (e.g., RISE)
= Global explanation (e.g., permutation test)
= Returns scores a; € R for each feature x;



Today

= Section 1

= Sanity checks ¢

= Ground truth comparisons

= Section 2
= Ablation metrics

= Other criteria



Sanity checks

= Sanity check = basic test to identify obvious
Issues

= E.g., test a sorting algorithm with a small list, or a
data structure with a few addition/deletion
operations

= What are good sanity checks for an explanation
algorithm?



Sanity checks for XAl

= Does the explanation make qualitative sense?
= Does it depend on the data?
= Does it depend on the model?




Qualitative evaluation

Gradient

Vanilla Integrated

Guided BackProp | SmoothGrad

great white shark  drilling platform

hognose snake

\ High Impact

. I

| ess reasonable Seems reasonable

Smilkov et al., “SmoothGrad: Removing noise by adding noise” (2017)
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Data dependence

Clearly depends on the data

Original image Top label and score Integrated gradients Gradients at image

—
rl - IY‘ H Top label: reflex camera
’ Score: 0.993755
" |
e "y
)
|

Top label: fireboat

Score: 0.999961

Top label: school bus

Score: 0.997033

Sundararajan et al.,, “Axiomatic attribution for deep networks” (2017)
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Model dependence

Grad-CAM for Grad-CAM for
lnpUt Image Biased model Unbiased model

Ground-Truth: Nurse

\

Ground-Truth: Doctor

(i) Grad-CAM ‘Dog’ ()ResNet Grad-CAM ‘Dog’

VGG-16 ResNet-18

Selvaraju et al,, "Grad-CAM: Visual explanations from deep neural networks via gradient-
based localization” (2017)
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Randomization tests

= Scaled-up version of previous checks
= Compare explanations after applying randomization
= Either model randomization or data randomization

= Explanations should change significantly
= Surprisingly, some methods don't change very much

Adebayo et al., “Sanity checks for saliency maps” (2018)
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Model randomization

= Begin with a deep neural network
= They use Inception-v3 architecture

= ldea: randomize parameters in specific layers

= Begin with the final layer, then progressively
randomize earlier layers (“cascading randomization”)



Model randomization

Inception-v3 architecture

Input: 299x299x3, Output:8x8x2048

-HH

Convolution Input: Output:
AvgPool 299x299x3 8x8x2048
MaxPool
Concat

Dropout

Fully connected
Softmax

Final part:8x8x2048 -> 1001

Szegedy et al,, "Rethinking the Inception architecture for computer vision” (2015)
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Model randomization (cont.)
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Cascading randomization
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Figure 2: Cascading randomization on Inception v3 (ImageNet). Figure shows the original ex-
planations (first column) for the Junco bird as well as the label for each explanation type. Progression
from left to right indicates complete randomization of network weights (and other trainable variables)
up to that ‘block’ inclusive. We show images for 17 blocks of randomization. Coordinate (Gradient,
mixed_7b) shows the gradient explanation for the network in which the top layers starting from Logits
up to mixed_7b have been reinitialized. The last column corresponds to a network with completely
reinitialized weights. See Appendix for more examples.
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Model randomization (cont.)
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Data randomization

* |ldea: retrain with randomized labels
= Assign labels uniformly at random
= New model should use different signals



Data randomization (cont.)
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Figure 6: Explanation for a true model vs. model trained on random labels. Top Left: Absolute-
value visualization of masks for digit O from the MNIST test set for a CNN. Top Right: Saliency
masks for digit O from the MNIST test set for a CNN shown in diverging color. Bottom Left:
Spearman rank correlation (with absolute values) bar graph for saliency methods. We compare the
similarity of explanations derived from a model trained on random labels, and one trained on real
labels. Bottom Right: Spearman rank correlation (without absolute values) bar graph for saliency
methods for MLP. See appendix for corresponding figures for CNN, and MLP on Fashion MNIST.
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Remarks

= Pros:

= Sanity checks are simple, can rule out flawed
methods

= Afirst step before investing more time

= Cons:

= Often not quantitative
= Says little about an explanation’s correctness



Today

= Section 1

= Sanity checks
= Ground truth comparisons £

= Section 2
= Ablation metrics

= Other criteria



Ground truth importance

n

= Assume prior knowledge of “truly important
features

= Prior knowledge has various sources
= Doctor annotations of medical images
= Non-expert annotations of natural images

= Genes with known role in disease (from survey of
biology literature)

= Then, compare explanations to ground truth



Object localization

= Generate a bounding box from saliency map

= Then, compare to ground truth bounding box

= Calculate area of overlap, count as correct
localization if overlap exceeds threshold



Object localization (cont.)

' Thresholded Segmentation
Image Saliency saliency mask

Simonyan et al,, “Deep inside convolutional networks: visualising image classification
models and saliency maps” (2013)
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Object localization (cont.)

= Generating bounding boxes is non-trivial
= Can significantly affect the results

= A simple approach:
Threshold saliency (e.g., at 50% quantile)
Find smallest bounding box containing salient features

= Simonyan et al. (2013) used a better approach

= |Inferred object and background colors using >95%
and <30% salient features, did color segmentation

= Strong results, despite using vanilla gradients



Object localization (cont.)

Localization errors can be low, despite models not
being trained for localization (“weakly supervised”)

Lo |

Center Grad[12] Guid[13] LRP[1] CAM[20] Exc[18] Feed[2] Mask|[3] This Work
46.3 41.7 42.0 57.8 48.1 39.0 38.7 43.1 36.9

Table 2: Localisation errors(%) on ImageNet validation set for popular weakly supervised methods. Error
rates were taken from [3] which recalculated originally reported results using few different mask thresholding
techniques and achieved slightly lower error rates. For a fair comparison, all the methods follow the same
evaluation protocol of [2] and produce saliency maps for GoogLeNet classifier [15].

Dabkowski & Gal, “Real time image saliency for black box classifiers” (2017)
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Pointing game

= A simpler localization task, no need to generate
bounding boxes

= Check if explanation’s most important pixel is
within ground truth bounding box

(Table from Petsiuk et al.)

Table 2: Mean accuracy (%) in the pointing game. Except for RISE, the rest require white-box model.

Base model Dataset AM [3T]| Deconv [EI]| CAM [EF] | MWP [EJ] | c-MWP [E7] RISE
VGG16 VOC 76.00 | 75.50 - 76.90 80.00 87.33+0.49
MSCOCO|| 37.10 | 38.60 - 39.50 49.60 50.71+0.10
ResnotS0 VOC 65.80 | 73.00 90.60 80.90 89.20 88.94+0.61
esne MSCOCO|| 30.40 | 382 58.4 46.8 57.4 55.58+0.51

Zhang et al,, “Top-down neural attention by excitation backprop” (2016)
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ocalization in radiology

a | Annotation and evaluation workflow
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Saporta et al., “Benchmarking saliency methods for chest X-ray interpretation” (2021)
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User studies

= Generate explanations using multiple methods,
let humans decide which is best

= Typically done on Mechanical Turk

= Different studies ask different questions

= Which explanation is better, whether explanation
indicates class, etc.



ser studies

Both robots predicted: Person

What do you see? Robot A based it’s decision on Robot B based it’s decision on

—
.

—

Your options: Which robot is more reasonable?
O Horse O Robot A seems clearly more reasonable than robot B
O Person O Robot A seems slightly more reasonable than robot B

O Both robots seem equally reasonable
O Robot B seems slightly more reasonable than robot A
O Robot B seems clearly more reasonable than robot A

(a) Raw input image. Note that thisisnot a| (b) AMT interface for evaluating the class-
part of the tasks (b) and (c) discriminative property (c) AMT interface for evaluating if our visualizations instill trust in an end user

Fig. 5: AMT interfaces for evaluating different visualizations for class discrimination (b) and trustworthiness (c). Guided Grad-CAM outperforms
baseline approaches (Guided-backprop and Deconvolution) showing that our visualizations are more class-discriminative and help humans place
trust in a more accurate classifier.

Selvaraju et al,, “Grad-CAM: Visual explanations from deep networks via gradient-based
localization” (2017)
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Synthetic datasets

= Synthetically generated data lets you control

the ground truth

Spreading Credit Using Observational SHAP Value

Spreading Credit Using Model Regularization

49 | — Observational LASSO
Interventional LASSO

Cumulative True Genes Found

Cumulative True Genes Found

~— Interventional Elastic Net
Interventional LASSO

i

0 200 400 600 800
Gene List Rank

1000

0 200 400 600
Gene List Rank

800

1000

Figure 4. Left: When explaining a sparse model (Lasso regression), more true features are recovered when using the observational Shapley
value to spread credit among correlated features than using the interventional Shapley value. Right: When using the interventional Shapley
value, we recover more true features when the underlying model spreads credit among groups of correlated features (Elastic Net) than

when the underlying model is sparse (Lasso).

Chen et al,, “True to the model or true to the data?” (2020)
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Challenges with ground truth

= Prior knowledge comes from humans
= Difficult to obtain extra annotations

= Reflects current understanding of the world
Penalizes models for using new, legitimate signals

= Not always derived from experts
= Doctor annotations are probably trustworthy
= Mechanical Turk users are less reliable



Jointly testing model and
explanation

= For best results, we require two things:

1. Explanations that correctly identify a model's
dependencies

2. A model that depends on the “correct” signals

Cannot use shortcuts or confounders (e.g., image
background)

= Problem: poor results may be due to the model

= Ground truth metrics don’t directly test the
explanation



A mathematical view

= Consider a classification problem, let p(y | x)
be the true conditional probability

= Assume an input x and label y wherep(y | x) = 1
= Assume we can examine p(y | xg) forall S € {1, ...,d}

= |deally, the “truly important” features x5 should
satisfy:

p(y|xs) =~ «— Sufficient
Necessary — p(y | ) ~



A mathematical view (cont.

(a) Input Image (b) Generated saliency map (C) Image multiplied by the mask (d) Image multiplied by inverted mask

Figure 1: An example of explanations produced by our model. The top row shows the explanation for the
"Egyptian cat" while the bottom row shows the explanation for the "Beagle". Note that produced explanations
can precisely both highlight and remove the selected object from the image.

Dabkowski & Gal, “Real time image saliency for black-box classifiers” (2017)
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A mathematical view (cont.)

= Assume that f,(x) = p(y [ x)
= This is the implicit goal of model training

= Then, assume we can marginalize out features
with their conditional distribution:

Exglxg[fy(x)] =p(y |l x5)

= This suggests that we can use removal-based
methods to identify correct features xg



Remarks

= Pros:

= Ground truth metrics reflect the goal of XAl in some
use cases: identifying true relationships in the data

= Cons:
= Obtaining ground truth is difficult, imperfect

= For good results, need a correct explanation and a
correct model



Today

= Section 1
= Sanity checks
= Ground truth comparisons
= 10 min break

= Section 2

= Ablation metrics
= Other criteria



Evaluating XAl
(continued)

CSEP 5908B: Explainable Al
lan Covert & Su-In Lee
University of Washington



Today

= Section 1
= Sanity checks
= Ground truth comparisons

= Section 2

= Ablation metrics £

= Other criteria




Ablation metrics

= Assume we can evaluate models with held-out
features

= |[mportance values suggest how the prediction
should change

= Remove important features — prediction should
change significantly

= |dea: test if explanations predict behavior with
held-out features



Insertion/deletion

= Rank features x; by importance a;

= Insertion: add features, starting with the most
important

» Prediction should go up quickly

= Deletion: remove features, starting with most
important

= Prediction should drop quickly

(Petsiuk et al,, “RISE: Randomized input sampling for explanation of black-box models”
2018)

©2022 Su-In Lee
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Insertion/deletion (cont.)

Explaining: bittern Deletion Insertion
AUC=0.049 AUC=0.847
Deletion Insertion
AUC=0.127 AUC=0.929

Figure 4: RISE-generated importance maps (second column) for two representative images (first
column) with deletion (third column) and insertion (fourth column) curves.

(Petsiu)k et al, “RISE: Randomized input sampling for explanation of black-box models”
2018

©2022 Su-In Lee



Insertion/deletion (cont.)

Table 1: Comparative evaluation in terms of deletion (lower is better) and insertion (higher is better)
scores on ImageNet dataset. Except for Grad-CAM, the rest are black-box explanation models.

Method - ResNet50 . - VGG16 .
Deletion Insertion Deletion Insertion
Grad-CAM [(3] 0.1232 0.6766 0.1087 0.6149
Sliding window [E] 0.1421 0.6618 0.1158 0.5917
LIME [[(] 0.1217 0.6940 0.1014 0.6167
RISE (ours) 0.1076 =0.0005 | 0.7267 +0.0006 0.0980+0.0025 | 0.6663+0.0014

(Petsiuk et al, “RISE: Randomized input sampling for explanation of black-box models”
2018)
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Many possible variations

= Measure different model behaviors
= Prediction probability
<+— Should not make a big

= Log-probability, log-odds difference
= Accuracy

= Remove features differently
= Zeros
. +<— (an make a big difference
= Random noise

= Sampled values from dataset

©2022 Su-In Lee 45



Feature selection variation

= Can we apply the same idea to evaluate global
explanations?

= Retrain models with most (least) important
features

= Should observe high (low) accuracy



Feature selection variation
(cont.

BRCA Feature Selection (1-20 Genes)
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Figure 12: Feature selection results for BRCA subtype classification when using top genes
identified by each global explanation. Each bar represents the average loss for
models trained using 1-20 top genes (lower is better).

(Covert et al,, “Explaining by removing: a unified framework for model explanation”
2020)
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Remove and retrain (ROAR)

= Models are not made to handle missing
features

= |ldea: retrain with top features missing, test if
accuracy drops

= Mask important features
= Retrain model with masked inputs
= Measure the drop in accuracy

Hooker et al,, “A benchmark for interpretability methods in deep neural networks” (2019)
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ROAR (cont.)

Base Estimators

SmoothGrad

SmoothGrad-Squared + VarGrad
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Hooker et al,, “A benchmark for interpretability methods in deep neural networks” (2019)
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ROAR problems

= Retraining many models is costly

= Does not test explanation’s correctness for the
original model

= Training with masking encourages use of
confounders, yields inflated accuracy

= 63% ImageNet accuracy with 90% of features masked
is suspiciously high



ROAR problems (cont.)

= Information leakage problem
= Masking is not random
= Removed features can indicate class label

SG SG-5Q Var

72.48 70.76 70.86
' - . « W=
| : \\

Given background and shape/size, likely an insect

©2022 Su-In Lee
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Limitations

= So far, focused on importance rankings
= |nvariant to addition/multiplication by a constant
= |nvariant to any change that preserves ordering

= How to test the importance scores a; € R more
precisely?



Additive proxy metrics

= Many methods have scores q; that sum to the
prediction (IntGrad, LRP)

= Some are explicitly designed as additive proxies
for the model (LIME, SHAP)

» |dea: test accuracy of importance scores as
additive proxy



Sensitivity-n

= Test the proxy’s correlation for random subsets
with fixed cardinality

= Uniform distribution over S € {1, ...,d} with |S| = n

Corr| f,(xs), Z a;

LES

Ancona et al,, “Towards better understanding of gradient-based attribution methods for
deep neural networks” (2018)
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Sensitivity-n (cont.)

MNIST (MLP w/ Relu)
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Ancona et al,, “Towards better understanding of gradient-based attribution methods for

deep neural networks” (2018)
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Variable cardinality version

= Calculate the same correlation, but with subsets
of different cardinalities

= Require a distribution p(S) over all cardinalities

= Uniform over all § € {1, ...,d}, or uniform over
cardinalities

Corr (fy (xs), Z al-)

LES



Related metrics

= |[nsertion/deletion

= Samek et al,, “Evaluating the visualization of what a deep neural
network learned” (2015)

» Lundberg et al,, “From local explanations to global understanding
with explainable Al for trees” (2020)

= Sensitivity-n

= Alvarez-Melis & Jaakkola, “Towards robust interpretability with self-
explaining neural networks” (2018)

= Bhattet al,, “Evaluating and aggregating feature-based model
explanations” (2020)
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Feature removal choice

= Ablation metrics mirror removal-based
explanations
= Same question of how to remove features
= Likely no good default value
= |f we retrain, we're not analyzing the original model

= Replacing with random values is an option, but which
distribution do we use?

Marginalizing with conditional gives best-effort
predictions with partial input, but difficult to implement



Feature removal choice
(cont.)

= A metric’s feature removal choice favors similar
explanations

= E.g., when using insertion/deletion with zeros
masking, SHAP with zeros beats SHAP with marginal
distribution

= See illustrative experiment in Covert et al.

Covert et al,, “Explaining by removing: a unified framework for model explanation” (2021)
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Remarks

= Pros:

= Ablation metrics test an explanation’s correctness for
the model, rather than what's important to humans

= No extra data annotation required

= Cons:

= Difficult choice of how to remove features

= |n some cases, not focused on the original model
(ROAR)



Today

= Section 1

= Sanity checks

= Ground truth comparisons
= Section 2

= Ablation metrics

= Other criteria <_




Robustness

= Adversarial examples: imperceptible changes that affect
the prediction

= Szegedy et al, “Intriguing properties of neural networks” (2013)
= Similar ideas have been explored in XAl

= Are explanations robust to small changes in the data?
= Ghorbani et al,, “Interpretation of neural networks is fragile” (2018)

= Are explanations robust to small changes in the model?

= Anders et al,, “Fairwashing explanations with off-manifold
detergent” (2020)

= Slack et al,, “Fooling LIME and SHAP: Adversarial attacks on post-
hoc explanation methods” (2019)
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Robustness (cont.)

Input  Grad x © Grad ~ IntGrad LRP

AL ANERCEANERERA |

L

;':7*" 7 riedt | -y . Ji'
| AR q‘z' fg‘?'ﬁ-‘ o £D ! ' i r ' v ‘

o dNe

4

SRR

4

sl [

opl | e ||yl | Ao || BT ‘tZ
e T | s TG | T *jl
g g g g 9 g 9 9

A P/

Explanations for a manipulated model

Anders et al,, “Fairwashing explanations with off-manifold detergent” (2020)
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Hyperparameter sensitivity

= Many methods have hyperparameter choices
= Number of samples (LIME)
= Baseline/removal approach (IntGrad)
= Superpixel size (occlusion)

= Problematic when a parameter...
1. Has large impact on results
2. Doesn’t have a clear “right” choice

Bansal et al.,, “SAM: The sensitivity of attribution methods to hyperparameters” (2020)
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Human utility

= How useful is an explanation?

= Must specify the use-case

= Human-Al team setting
E.g., calibrating confidence in model decisions
We'll discuss this in a later lecture

= Scientific setting

E.g., identifying biological hypotheses that are later
verified

Difficult to test at scale



Conclusions



Summary

= Sanity checks
= Failing these is not okay, but many methods will pass

= Ground truth comparisons

= Extra annotations can be laborious

= Tests both model and explanation, which may or may not
reflect intended usage

E.g., identify regions to direct doctor focus

= Ablations
= Best option to test explanation’s correctness for the model
= Several good metrics: insertion/deletion, sensitivity-n
= Tricky choice: how to hold out features



When to use these metrics?

= Mainly when developing a new method
= Prove that it works
= Show benefits over prior methods

= Additionally, when deciding what to use with a
new model/dataset

= Verify implementation choices
= Bhatt et al., "Explainable machine learning in deployment” (2020)
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Perspective

= No method is wrong, but some are misaligned
with user questions

= Metrics effectively formalize user questions

= Can design metrics for other user objectives as
needed



