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Previously

§ Feature importance explanations
§ Removal-based explanations
§ Shapley values

§ Today: propagation-based explanations
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Today

§ Section 1
§ Backprop review
§ Gradient-based explanations

§ Section 2
§ Modified backprop variants
§ Propagation vs. removal-based explanations
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Setup

§ Consider a classification model 𝑓 𝑥
§ 𝑓! 𝑥 is probability for class 𝑦
§ Input is 𝑥 ∈ ℝ" (must be continuous)
§ Assume 𝑓 is differentiable (a neural network)
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Review: backpropagation

§ Deep learning models are trained using 
stochastic gradient descent (SGD)
§ Get a minibatch of examples
§ Calculate predictions and loss
§ Calculate gradients using “backprop” algorithm
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Backpropagation
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Input layer

𝑥 ℎ! ℎ" #𝑦

Output layer

Network weights
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Backpropagation
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𝑥 ℎ! ℎ" #𝑦

Forward pass

ℎ! = 𝜎 𝑤!𝑥 + 𝑏!
ℎ" = 𝜎 𝑤"ℎ! + 𝑏"
#𝑦 = 𝑤#$%ℎ" + 𝑏#$%

Network parameters

𝜃 = 𝑤!, 𝑏! , 𝑤", 𝑏" , 𝑤#$%, 𝑏#$%

Gradient descent

𝜃&'! = 𝜃& − 𝜂∇(ℒ(𝜃&)
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Backpropagation (cont.)

§ Model loss is mean prediction error:

ℒ 𝜃 =
1
𝑛
)
234

5

ℓ 𝑓 𝑥2; 𝜃 , 𝑦2

§ Gradient calculation:

∇6ℒ 𝜃 =
1
𝑛
)
234

5

∇6ℓ 𝑓 𝑥2; 𝜃 , 𝑦2
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Chain rule

§ Calculate gradients for all parameters 𝜃 using 
chain rule
§ Get gradients for last hidden layer
§ Then for the previous layer
§ Then the layer before that…

§ Backpropagation = propagating gradients 
backward through the network
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Rumelhart et al., “Learning representations by back-propagating errors” (1986)



©2022 Su-In Lee

Chain rule (cont.)
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𝑥 ℎ! ℎ" #𝑦

𝜕ℒ
𝜕ℎ!

𝜕ℒ
𝜕𝑤"#$

𝜕ℒ
𝜕𝑏"#$

ℒ 𝜃 =(ℓ *𝑦, 𝑦
𝜕ℒ
𝜕ℎ%

𝜕ℒ
𝜕𝑤!

𝜕ℒ
𝜕𝑏!

𝜕ℒ
𝜕𝑤%

𝜕ℒ
𝜕𝑏%
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Propagation-based 
explanations

§ Use backprop idea to quantify feature 
importance

§ Rather than gradients w.r.t. parameters, 
calculate gradients w.r.t. inputs
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Input gradients
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𝑥 ℎ! ℎ" #𝑦

𝜕ℒ
𝜕ℎ!

𝜕ℒ
𝜕𝑤"#$

𝜕ℒ
𝜕𝑏"#$

𝜕ℒ
𝜕ℎ%

𝜕ℒ
𝜕𝑤!

𝜕ℒ
𝜕𝑏!

𝜕ℒ
𝜕𝑥

ℒ 𝜃 =(ℓ *𝑦, 𝑦

𝜕ℒ
𝜕𝑤%

𝜕ℒ
𝜕𝑏%
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Input gradients
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𝑥 ℎ! ℎ" #𝑦

Gradient of prediction 
(instead of loss)

w.r.t. model input

𝜕𝑓&
𝜕ℎ!

𝜕𝑓&
𝜕𝑤"#$

𝜕𝑓&
𝜕𝑏"#$

𝜕𝑓&
𝜕ℎ%

𝜕𝑓&
𝜕𝑤!

𝜕𝑓&
𝜕𝑏!

𝑓& 𝑥; 𝜃 = *𝑦

𝜕𝑓&
𝜕𝑤%

𝜕𝑓&
𝜕𝑏%

𝜕𝑓&
𝜕𝑥
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Intuition

§ Partial derivatives represent sensitivity to small 
perturbations

§ Mathematically:

𝜕𝑓7
𝜕𝑥2

𝑥 = lim
8→:

𝑓7 𝑥 + 𝑒2 ⋅ 𝜖 − 𝑓7 𝑥
𝜖
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Delta from small change in 𝑖th direction

Measured relative to the size of changeLimit as change becomes very small
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Today

§ Section 1
§ Backprop review
§ Gradient-based explanations

§ Section 2
§ Modified backprop variants
§ Propagation vs. removal-based explanations
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Application to XAI

§ Idea: find features that cause large output 
changes when perturbed

§ Remark: quantifies feature sensitivity, but not 
necessarily related to feature removal
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Vanilla gradients

§ For an input 𝑥 and label 𝑦, calculate gradient of 
the prediction 𝑓! 𝑥 :

𝑎2 =
𝜕𝑓7
𝜕𝑥2

𝑥

§ Can optionally use absolute value:

𝑎2 =
𝜕𝑓7
𝜕𝑥2

𝑥
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Simonyan et al., “Deep inside convolutional networks: Visualizing image classification 
models and saliency maps” (2014)
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Vanilla gradients (cont.)
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Variation 1: SmoothGrad

§ Average gradients across inputs near 𝑥
§ E.g., add Gaussian noise:

𝑎2 = 𝔼 <=0
<>1

𝑥 + 𝜖 where  𝜖 ∼ 𝒩 0, 𝜎?

§ In practice, use small number of 𝜖 samples (50)
§ Must tune 𝜎? to an appropriate level

19

Smilkov et al., “SmoothGrad: Removing noise by adding noise” (2017)
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SmoothGrad (cont.)

20

Standard saliency maps Varying levels of input noise
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Variation 2: Grad x Input

§ Multiply gradient by input values:

𝑎# = 𝑥# ⋅
𝜕𝑓!
𝜕𝑥#

𝑥

21

Shrikumar et al., “Not just a black box: Learning important features through propagating 
activation differences” (2016)



©2022 Su-In Lee

Grad x Input (cont.)

§ Interpretation: consider the model’s first-order 
Taylor expansion around 𝑥$

𝑓7 𝑥 ≈ 𝑓7 𝑥: + 𝑥 − 𝑥: @ 𝜕𝑓7
𝜕𝑥

𝑥:

§ Gradient gives linearized version of model (like 
replacing a function with its tangent line)

§ Grad x Input = approximates impact of setting 
the input to zero
§ Similar to occlusion (see previous lecture)
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Variation 3: Integrated 
gradients

§ Gradients can become “saturated”
§ Model is sensitive to big input changes, but not small ones

§ Saturation can yield small gradients, even for important inputs

23

Sundararajan et al., “Axiomatic attribution for deep networks” (2017)

In this region, 𝑓 𝑥 is 
insensitive to small 𝑥
changes

Gradient ≈ 0
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IntGrad (cont.)

§ Idea: address saturation issue by calculating gradients 
for rescaled images, 𝛼 ⋅ 𝑥

!"!
!#"

𝛼 ⋅ 𝑥 for 0 ≤ 𝛼 ≤ 1

§ Integrate (average) gradients across range of rescaled 
images:

'
$%&

' 𝜕𝑓(
𝜕𝑥)

𝛼 ⋅ 𝑥 𝑑𝛼

§ Multiply by the input feature value:

𝑎) = 𝑥)'
$%&

' 𝜕𝑓(
𝜕𝑥)

𝛼 ⋅ 𝑥 𝑑𝛼
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IntGrad (cont.)

§ Implicitly relies on a zeros baseline
§ Can instead use a non-zero baseline 𝑥′

𝑎$ = 𝑥$ − 𝑥$% '
&'(

) 𝜕𝑓*
𝜕𝑥$

𝑥% + 𝛼 ⋅ 𝑥 − 𝑥% 𝑑𝛼

§ Related to a different idea from cooperative game 
theory: the Aumann-Shapley value
§ Different from previous Shapley value
§ Has its own axiomatic derivation (see Sundararajan et al.)
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IntGrad (cont.)

§ Problem: the integral is hard to calculate

§ Solution: use Riemann sum approximation for 𝑚
regularly spaced values 𝛼D ∈ 0,1 :

𝑎$ ≈ 𝑥$ − 𝑥$%
1
𝑚/

+')

,
𝜕𝑓*
𝜕𝑥$

𝑥% + 𝛼+ ⋅ 𝑥 − 𝑥%
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IntGrad (cont.)

27

Gradient with image 
rescaled by 𝛼
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IntGrad (cont.)
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GradCAM

§ In CNNs, hidden layers represent high-level 
visual concepts

§ Hidden layers retain spatial information due to 
convolutional structure

§ Idea: explain models via the last convolutional 
layer instead of the input layer

29

Selvaraju et al., “Grad-CAM: Visual explanations from deep networks via gradient-based 
localization” (2017)
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CNN receptive fields

30

Receptive field grows at 
each layer, but remains 
localized
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GradCAM procedure

§ Denote final layer’s hidden representation as 𝐴
§ Size is 𝐴 ∈ ℝ-×/×0

§ Width 𝑤, height ℎ, channels 𝑐
§ Each channel 𝑘 = 1,… , 𝑐 denoted as 𝐴1 ∈ ℝ-×/

§ The final prediction 𝑓! 𝑥 can be viewed as a 
function of representation 𝐴
§ E.g., 𝐴 → global average pooling → MLP

31



©2022 Su-In Lee

GradCAM procedure (cont.)

32

-𝑦

𝐴

𝑓( 𝑥
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GradCAM procedure (cont.)

§ Calculate gradients w.r.t. 𝐴

23)
4*+
, for all 𝑖, 𝑗, 𝑘

§ Average gradients within each channel:

𝛼*
( =

1
𝑤ℎ

2
)+

𝜕𝑓(
𝐴)+*

§ Aggregate hidden representations across channel 
dimension using 𝛼1

*

𝑎)+ =2
*%'

,
𝛼*
(𝐴)+*
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GradCAM procedure (cont.)

§ Often use thresholding function (suppress negative 
attributions):

𝑎)+ = ReLU 2
*%'

,
𝛼*
(𝐴)+*

§ Can optionally upsample low-resolution scores 𝑎)+ to the 
original input size (e.g., bilinear upsampling)

34
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GradCAM interpretation

§ The values 𝛼F
7 represent smoothed or averaged 

gradient of class 𝑦 w.r.t. channel 𝑘

§ At each location, activations 𝐴2DF are multiplied by 
averaged gradients and then aggregated

§ Similar to Grad x Input, but using a hidden layer 
instead of input layer
§ Like a Taylor approximation of setting internal activations 

to zero

35
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GradCAM results

36
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Other gradient-based 
methods

§ Guided backprop: Springenberg et al., “Striving for simplicity: The all-
convolutional net” (2014)

§ VarGrad: Adebayo et al., “Local explanation methods for deep neural 
networks lack sensitivity to parameter values” (2018)

§ Expected gradients: Erion et al., “Learning explainable models using 
attribution priors” (2020)

§ BlurIG: Xu et al., “Attribution in scale and space” (2020)
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Today

§ Section 1
§ Backprop review
§ Gradient-based explanations
§ 10 min break

§ Section 2
§ Modified backprop variants
§ Propagation vs. removal-based explanations
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Propagation-based 
explanations
(continued)

CSEP 590B: Explainable AI
Ian Covert & Su-In Lee

University of Washington

39



©2022 Su-In Lee

Today

§ Section 1
§ Backprop review
§ Gradient-based explanations

§ Section 2
§ Modified backprop variants
§ Propagation vs. removal-based explanations
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Modified backpropagation

§ Previous approaches rely on gradient backprop
§ Others use heuristic backprop variants

§ Calculate “importance” of internal nodes, propagate 
back to earlier ones

§ Requires justification for different backprop 
heuristics

41
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Layer-wise relevance 
propagation (LRP)

§ Intuition: iteratively calculate relevance scores 
for every layer of a model
§ Start with nodes in the last hidden layer
§ Move backwards through the model by splitting 

scores in the previous layer

42

Bach et al., “On pixel-wise explanations for non-linear classifier decisions by layer-wise 
relevance propagation” (2015)
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LRP (cont.)

§ Let 𝑅+
56) ∈ ℝ denote relevance for 𝑗th node in layer 𝑙 + 1

§ Initialize 𝑅)
(8) = 𝑓* 𝑥 for output node of interest

§ Let 𝑅$←+
5,56) denote relevance message sent from 𝑗th node 

in layer 𝑙 + 1 to 𝑖th node in layer 𝑙
§ Want messages to satisfy two conservation properties

𝑅+
56) =/

$

𝑅$←+
5,56)

𝑅$
(5) =/

+

𝑅$←+
5,56)

43

Summation of outgoing 
importance

Summation of incoming 
importance
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LRP (cont.)

§ The previous rules don’t define a unique procedure, so 
the authors propose multiple options

§ For example, the “𝜖-rule”

𝑅$←+
5,56) =

𝑧$+
𝑧+ + 𝜖 ⋅ sign(𝑧+)

𝑅+
56)

where 𝑧$+ = 𝑤$+
56) ℎ$

5 , 𝑧+ = ∑$ 𝑧$+ + 𝑏+
56) , and 𝜖 > 0

§ Finally, attributions are given by 𝑎$ = 𝑅$
) for 𝑖 = 1,… , 𝑑
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LRP (cont.)

45



©2022 Su-In Lee

LRP discussion

§ Arguably less intuitive than other methods, 
requires some heuristic choices (which “rule” to 
use?)

§ Can be difficult to adapt to different 
architectures
§ E.g., does not automatically support residual 

connections (ResNet architecture), requires extension 
to transformers

46
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Other modified 
backpropagation methods

§ DeepLIFT: Shrikumar et al., “Not just a black box: Learning important 
features through propagating activation differences” (2016)

§ PatternAttribution: Kindermans et al., “Learning how to explain neural 
networks: PatternNet and PatternAttribution” (2017)

§ A unifying perspective: Ancona et al., “Towards better understanding of 
gradient-based attribution methods” (2017)

§ Excitation backprop: Zhang et al., ” Top-down neural attention by 
excitation backprop” (2018)

§ LRP variants: Montavon et al., “Layer-wise relevance propagation: an 
overview” (2019)
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Today

§ Section 1
§ Backprop review
§ Gradient-based explanations

§ Section 2
§ Modified backprop variants
§ Propagation vs. removal-based explanations
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Many explanation methods

§ Removal-based explanations
§ SHAP, LIME, RISE, Occlusion, permutation tests

§ Propagation-based explanations
§ SmoothGrad, IntGrad, GradCAM

What should we use in practice?

49
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Model flexibility

What kind of model are you explaining?

§ Removal-based explanations are model-agnostic
§ Can work with any model class (DNNs, trees, etc.)

§ Propagation-based explanations are mainly for neural 
networks
§ Usually require differentiation

§ Some even have architecture constraints

50
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Data flexibility

What kind of data do you have?

§ Removal-based explanations can handle discrete and 
continuous features
§ E.g., replace inputs with alternative values from the dataset

§ Propagation-based methods only make sense for 
continuous features
§ Derivative = sensitivity to small change

§ Small changes are meaningless for discrete features
§ E.g., 𝑥# ∈ {0, 1, 2}
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Local or global

What kind of explanation do you need?

§ Both removal- and propagation-based methods can 
produce local explanations

§ Removal-based methods are better suited for global 
explanations
§ Can focus on a global model behavior (e.g., dataset loss)

§ To use a propagation-based method, we require an aggregation 
scheme (e.g., mean of local explanations)
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Speed

Is speed important?

§ Propagation-based methods are fast
§ Backward pass through DNN
§ Weak dependence on number of features

§ Removal-based methods can be slow
§ Often require making predictions with many feature subsets

§ Shapley values are particularly challenging

53
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Quality

Which explanation is most informative or 
correct?

§ Theory can serve as a guide
§ E.g., Shapley value axioms, IntGrad axioms

§ We can also take an empirical approach
§ Metrics for explanation quality (next lecture)

§ Perspective: no explanation is wrong, but some 
procedures are misaligned with user questions
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Popular methods

Which methods do most people use?

§ A small number of methods dominate
§ Depends on the data domain (tabular, image, NLP)
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Tabular data

§ Permutation tests are widely used for global 
feature importance

§ SHAP is ubiquitous for local explanations
§ TreeSHAP is built into XGBoost, LGBM
§ KernelSHAP used for other models
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Computer vision

§ Gradient-based methods are currently most 
popular: GradCAM, IntGrad
§ Removal-based methods are usually too slow
§ Some papers try to fix this, but not popular (yet?)

§ Masking model: Dabkowski & Gal, “Real time image saliency for black box 
classifiers” (2017)

§ CXPlain: Schwab & Karlen, “CXPlain: Causal explanations for model 
interpretation under uncertainty” (2019)

§ FastSHAP: Jethani et al., “FastSHAP: Real-time Shapley value estimation” 
(2021)
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NLP

§ NLP models (LSTMs, transformers) can use 
most methods
§ Gradient-based methods are popular
§ Removal-based explanations are slower, but leave-

one-out (occlusion) is sometimes used

§ For transformers, some use attention as 
explanation
§ Perhaps an interpretable architecture?
§ We’ll return to this in a later lecture
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Popular packages

GitHub package Description Stars

slundberg/shap SHAP variations (KernelSHAP, 
TreeSHAP, DeepSHAP, etc.) 15.8k

marcotcr/lime LIME for images, tabular data 9.7k

utkuozbulak/pytorch-cnn-visualizations Various gradient-based methods 6.4k

jacobgil/pytorch-grad-cam GradCAM + GradCAM variations 4.5k

pytorch/captum Various gradient-based methods 
+ SHAP 3.0k

sicara/tf-explain Various gradient-based methods 
+ occlusion 906

kundajelab/deeplift DeepLIFT 616

ankurtaly/Integrated-Gradients IntGrad 453
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