Propagation-based explanations

CSEP 590B: Explainable Al lan Covert & Su-In Lee University of Washington

Previously

- Feature importance explanations
 - Removal-based explanations
 - Shapley values
- Today: propagation-based explanations

Today

- Section 1
 - Backprop review

- Gradient-based explanations
- Section 2
 - Modified backprop variants
 - Propagation vs. removal-based explanations

Setup

- Consider a classification model f(x)
- $f_y(x)$ is probability for class y
- Input is $x \in \mathbb{R}^d$ (must be continuous)
- Assume f is differentiable (a neural network)

Review: backpropagation

- Deep learning models are trained using stochastic gradient descent (SGD)
 - Get a minibatch of examples
 - Calculate predictions and loss
 - Calculate gradients using "backprop" algorithm

Backpropagation

Backpropagation

Backpropagation (cont.)

Model loss is mean prediction error:

$$\mathcal{L}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(f(x^{i}; \theta), y^{i})$$

Gradient calculation:

$$\nabla_{\theta} \mathcal{L}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \nabla_{\theta} \ell(f(x^{i}; \theta), y^{i})$$

Chain rule

- Calculate gradients for all parameters θ using chain rule
 - Get gradients for last hidden layer
 - Then for the previous layer
 - Then the layer before that...
- Backpropagation = propagating gradients backward through the network

Rumelhart et al., "Learning representations by back-propagating errors" (1986)

Chain rule (cont.)

Propagation-based explanations

- Use backprop idea to quantify feature importance
- Rather than gradients w.r.t. parameters, calculate gradients w.r.t. inputs

Input gradients

Input gradients

Intuition

 Partial derivatives represent sensitivity to small perturbations

Today

- Section 1
 - Backprop review
 - Gradient-based explanations

- Section 2
 - Modified backprop variants
 - Propagation vs. removal-based explanations

Application to XAI

- Idea: find features that cause large output changes when perturbed
- Remark: quantifies feature sensitivity, but not necessarily related to feature removal

Vanilla gradients

• For an input x and label y, calculate gradient of the prediction $f_y(x)$:

$$a_i = \frac{\partial f_y}{\partial x_i}(x)$$

Can optionally use absolute value:

$$a_i = \left| \frac{\partial f_y}{\partial x_i}(x) \right|$$

Simonyan et al., "Deep inside convolutional networks: Visualizing image classification models and saliency maps" (2014)

©2022 Su-In Lee

Vanilla gradients (cont.)

Variation 1: SmoothGrad

- Average gradients across inputs near x
- E.g., add Gaussian noise:

$$a_i = \mathbb{E}\left[\frac{\partial f_y}{\partial x_i}(x+\epsilon)\right]$$
 where $\epsilon \sim \mathcal{N}(0,\sigma^2)$

- In practice, use small number of ϵ samples (50)
- Must tune σ^2 to an appropriate level

Smilkov et al., "SmoothGrad: Removing noise by adding noise" (2017)

SmoothGrad (cont.)

Variation 2: Grad x Input

Multiply gradient by input values:

$$a_i = x_i \cdot \frac{\partial f_y}{\partial x_i}(x)$$

Shrikumar et al., "Not just a black box: Learning important features through propagating activation differences" (2016)

Grad x Input (cont.)

• Interpretation: consider the model's first-order Taylor expansion around x_0

$$f_y(x) \approx f_y(x_0) + (x - x_0)^{\mathsf{T}} \frac{\partial f_y}{\partial x}(x_0)$$

- Gradient gives linearized version of model (like replacing a function with its tangent line)
- Grad x Input = approximates impact of setting the input to zero
 - Similar to occlusion (see previous lecture)

Variation 3: Integrated gradients

- Gradients can become "saturated"
- Model is sensitive to big input changes, but not small ones

Saturation can yield small gradients, even for important inputs

Sundararajan et al., "Axiomatic attribution for deep networks" (2017)

• **Idea:** address saturation issue by calculating gradients for rescaled images, $\alpha \cdot x$

$$\frac{\partial f_y}{\partial x_i}(\alpha \cdot x) \text{ for } 0 \le \alpha \le 1$$

Integrate (average) gradients across range of rescaled images:

$$\int_{\alpha=0}^{1} \frac{\partial f_y}{\partial x_i} (\alpha \cdot x) \, d\alpha$$

Multiply by the input feature value:

$$a_i = x_i \int_{\alpha=0}^1 \frac{\partial f_y}{\partial x_i} (\alpha \cdot x) \, d\alpha$$

- Implicitly relies on a zeros baseline
- Can instead use a non-zero baseline x'

$$a_{i} = (x_{i} - x_{i}') \int_{\alpha=0}^{1} \frac{\partial f_{y}}{\partial x_{i}} (x' + \alpha \cdot (x - x')) d\alpha$$

- Related to a different idea from cooperative game theory: the Aumann-Shapley value
 - Different from previous Shapley value
 - Has its own axiomatic derivation (see Sundararajan et al.)

IntGrad (cont.)

- **Problem:** the integral is hard to calculate
- **Solution:** use Riemann sum approximation for *m* regularly spaced values $\alpha_i \in [0,1]$:

$$a_i \approx (x_i - x'_i) \frac{1}{m} \sum_{j=1}^m \frac{\partial f_y}{\partial x_i} (x' + \alpha_j \cdot (x - x'))$$

Original image

Top label and score

Top label: reflex camera Score: 0.993755

Top label: fireboat Score: 0.999961

SCHOOL BUS

Top label: school bus Score: 0.997033

Integrated gradients

Gradients at image

GradCAM

- In CNNs, hidden layers represent high-level visual concepts
- Hidden layers retain spatial information due to convolutional structure
- Idea: explain models via the last convolutional layer instead of the input layer

Selvaraju et al., "Grad-CAM: Visual explanations from deep networks via gradient-based localization" (2017)

CNN receptive fields

Receptive field grows at each layer, but remains localized

GradCAM procedure

Denote final layer's hidden representation as A

- Size is $A \in \mathbb{R}^{w \times h \times c}$
- Width *w*, height *h*, channels *c*
- Each channel k = 1, ..., c denoted as $A^k \in \mathbb{R}^{w \times h}$
- The final prediction $f_y(x)$ can be viewed as a function of representation A
 - E.g., $A \rightarrow$ global average pooling \rightarrow MLP

GradCAM procedure (cont.)

 $f_y(x)$

GradCAM procedure (cont.)

• Calculate gradients w.r.t. A

$$\frac{\partial f_y}{A_{ij}^k}$$
 for all (i, j, k)

Average gradients within each channel:

$$\alpha_k^{\mathcal{Y}} = \frac{1}{wh} \sum_{ij} \frac{\partial f_{\mathcal{Y}}}{A_{ij}^k}$$

Aggregate hidden representations across channel dimension using α_k^y

$$a_{ij} = \sum_{k=1}^{c} \alpha_k^{\mathcal{Y}} A_{ij}^k$$

GradCAM procedure (cont.)

Often use thresholding function (suppress negative attributions):

$$a_{ij} = \operatorname{ReLU}\left(\sum_{k=1}^{c} \alpha_k^{\mathcal{Y}} A_{ij}^k\right)$$

Can optionally upsample low-resolution scores a_{ij} to the original input size (e.g., bilinear upsampling)

GradCAM interpretation

• The values α_k^y represent smoothed or averaged gradient of class y w.r.t. channel k

- At each location, activations A^k_{ij} are multiplied by averaged gradients and then aggregated
- Similar to Grad x Input, but using a hidden layer instead of input layer
 - Like a Taylor approximation of setting internal activations to zero

GradCAM results

Other gradient-based methods

- **Guided backprop:** Springenberg et al., "Striving for simplicity: The all-convolutional net" (2014)
- VarGrad: Adebayo et al., "Local explanation methods for deep neural networks lack sensitivity to parameter values" (2018)
- Expected gradients: Erion et al., "Learning explainable models using attribution priors" (2020)
- BlurIG: Xu et al., "Attribution in scale and space" (2020)

Today

Section 1

- Backprop review
- Gradient-based explanations
- 10 min break
- Section 2
 - Modified backprop variants
 - Propagation vs. removal-based explanations

Propagation-based explanations (continued)

CSEP 590B: Explainable Al lan Covert & Su-In Lee University of Washington

Today

- Section 1
 - Backprop review
 - Gradient-based explanations
- Section 2
 - Modified backprop variants

Propagation vs. removal-based explanations

Modified backpropagation

- Previous approaches rely on gradient backprop
- Others use heuristic backprop variants
 - Calculate "importance" of internal nodes, propagate back to earlier ones
 - Requires justification for different backprop heuristics

Layer-wise relevance propagation (LRP)

- Intuition: iteratively calculate relevance scores for every layer of a model
 - Start with nodes in the last hidden layer
 - Move backwards through the model by splitting scores in the previous layer

Bach et al., "On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation" (2015)

LRP (cont.)

- Let $R_j^{(l+1)} \in \mathbb{R}$ denote relevance for *j*th node in layer l + 1
- Initialize $R_1^{(L)} = f_y(x)$ for output node of interest
- Let $R_{i \leftarrow j}^{(l,l+1)}$ denote *relevance message* sent from *j*th node in layer l + 1 to *i*th node in layer l
- Want messages to satisfy two conservation properties

LRP (cont.)

- The previous rules don't define a unique procedure, so the authors propose multiple options
- For example, the "ε-rule"

$$R_{i\leftarrow j}^{(l,l+1)} = \frac{Z_{ij}}{Z_j + \epsilon \cdot \operatorname{sign}(Z_j)} R_j^{(l+1)}$$

where
$$z_{ij} = w_{ij}^{(l+1)} h_i^{(l)}$$
, $z_j = \sum_i z_{ij} + b_j^{(l+1)}$, and $\epsilon > 0$

• Finally, attributions are given by $a_i = R_i^{(1)}$ for i = 1, ..., d

LRP (cont.)

LRP discussion

- Arguably less intuitive than other methods, requires some heuristic choices (which "rule" to use?)
- Can be difficult to adapt to different architectures
 - E.g., does not automatically support residual connections (ResNet architecture), requires extension to transformers

Other modified backpropagation methods

- **DeepLIFT:** Shrikumar et al., "Not just a black box: Learning important features through propagating activation differences" (2016)
- PatternAttribution: Kindermans et al., "Learning how to explain neural networks: PatternNet and PatternAttribution" (2017)
- A unifying perspective: Ancona et al., "Towards better understanding of gradient-based attribution methods" (2017)
- Excitation backprop: Zhang et al., "Top-down neural attention by excitation backprop" (2018)
- LRP variants: Montavon et al., "Layer-wise relevance propagation: an overview" (2019)

Today

- Section 1
 - Backprop review
 - Gradient-based explanations
- Section 2
 - Modified backprop variants
 - Propagation vs. removal-based explanations

Many explanation methods

- Removal-based explanations
 - SHAP, LIME, RISE, Occlusion, permutation tests
- Propagation-based explanations
 - SmoothGrad, IntGrad, GradCAM

What should we use in practice?

Model flexibility

What kind of model are you explaining?

- Removal-based explanations are model-agnostic
 - Can work with any model class (DNNs, trees, etc.)
- Propagation-based explanations are mainly for neural networks
 - Usually require differentiation
 - Some even have architecture constraints

Data flexibility

What kind of data do you have?

- Removal-based explanations can handle discrete and continuous features
 - E.g., replace inputs with alternative values from the dataset
- Propagation-based methods only make sense for continuous features
 - Derivative = sensitivity to small change
 - Small changes are meaningless for discrete features
 - E.g., $x_i \in \{0, 1, 2\}$

Local or global

What kind of explanation do you need?

- Both removal- and propagation-based methods can produce local explanations
- Removal-based methods are better suited for global explanations
 - Can focus on a global model behavior (e.g., dataset loss)
 - To use a propagation-based method, we require an aggregation scheme (e.g., mean of local explanations)

Is speed important?

- Propagation-based methods are fast
 - Backward pass through DNN
 - Weak dependence on number of features
- Removal-based methods can be slow
 - Often require making predictions with many feature subsets
 - Shapley values are particularly challenging

Which explanation is most informative or correct?

- Theory can serve as a guide
 - E.g., Shapley value axioms, IntGrad axioms
- We can also take an empirical approach
 - Metrics for explanation quality (next lecture)
- Perspective: no explanation is *wrong*, but some procedures are misaligned with user questions

Popular methods

Which methods do most people use?

- A small number of methods dominate
- Depends on the data domain (tabular, image, NLP)

Tabular data

- Permutation tests are widely used for global feature importance
- SHAP is ubiquitous for local explanations
 - TreeSHAP is built into XGBoost, LGBM
 - KernelSHAP used for other models

Computer vision

- Gradient-based methods are currently most popular: GradCAM, IntGrad
 - Removal-based methods are usually too slow
 - Some papers try to fix this, but not popular (yet?)
 - Masking model: Dabkowski & Gal, "Real time image saliency for black box classifiers" (2017)
 - CXPlain: Schwab & Karlen, "CXPlain: Causal explanations for model interpretation under uncertainty" (2019)
 - FastSHAP: Jethani et al., "FastSHAP: Real-time Shapley value estimation" (2021)

- NLP models (LSTMs, transformers) can use most methods
 - Gradient-based methods are popular
 - Removal-based explanations are slower, but leaveone-out (occlusion) is sometimes used
- For transformers, some use attention as explanation
 - Perhaps an *interpretable architecture*?
 - We'll return to this in a later lecture

Popular packages

GitHub package	Description	Stars
slundberg/shap	SHAP variations (KernelSHAP, TreeSHAP, DeepSHAP, etc.)	15.8k
marcotcr/lime	LIME for images, tabular data	9.7k
utkuozbulak/pytorch-cnn-visualizations	Various gradient-based methods	6.4k
jacobgil/pytorch-grad-cam	GradCAM + GradCAM variations	4.5k
pytorch/captum	Various gradient-based methods + SHAP	3.0k
sicara/tf-explain	Various gradient-based methods + occlusion	906
kundajelab/deeplift	DeepLIFT	616
ankurtaly/Integrated-Gradients	IntGrad	453