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Previously

= Feature importance explanations
= Removal-based explanations
= Shapley values

= Today: propagation-based explanations



Today

= Section 1
= Backprop review <
= Gradient-based explanations
= Section 2
= Modified backprop variants

= Propagation vs. removal-based explanations



Setup

= Consider a classification model f(x)

= f,(x) is probability for class y

= |Inputis x € R (must be continuous)

= Assume f is differentiable (a neural network)

<
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Review: backpropagation

= Deep learning models are trained using
stochastic gradient descent (SGD)

= Get a minibatch of examples
= Calculate predictions and loss
= Calculate gradients using “backprop” algorithm



Backpropagation
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Backpropagation

Gradient descent

/ Orv1 =0 —nVeL(6;)
Network parameters Forward pass

6 = ([wy, b1, [wy, b2 ], [Wout, boutl) hy = o(wix + by)
h, = o(wyhy + b,)
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Backpropagation (cont.)
= Model loss is mean prediction error:
£(0) = %if(f(xi; 6), ")
= Gradient calculation: _

1w . .
VoL(0) = gz Vot(f(x46)y")
i=1



Chainrule

= Calculate gradients for all parameters 6 using
chain rule

= Get gradients for last hidden layer
= Then for the previous layer
= Then the layer before that...

= Backpropagation = propagating gradients
backward through the network

Rumelhart et al,, “Learning representations by back-propagating errors” (1986)
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Chain rule (cont.)
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Propagation-based
explanations

= Use backprop idea to quantify feature
Importance

= Rather than gradients w.r.t. parameters,
calculate gradients w.r.t. inputs



Input gradients
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Input gradients

Gradient of prediction
(instead of loss)
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Intuition

= Partial derivatives represent sensitivity to small
perturbations

Delta from small change in ith direction

|

= Mathematically:

dfy . fy(x +e - €)— fy(x)
—(x) = lim
dx; €0 €
Limit as change becomes very small Measured relative to the size of change
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Today

= Section 1

= Backprop review
= Gradient-based explanations <

= Section 2
= Modified backprop variants

= Propagation vs. removal-based explanations



Application to XAl

» |dea: find features that cause large output
changes when perturbed

= Remark: quantifies feature sensitivity, but not
necessarily related to feature removal



Vanilla gradients

= For an input x and label y, calculate gradient of
the prediction f, (x):

6fy
%= 5, — (x)
= Can optionally use absolute value:

a; = g_g(x)

Simonyan et al,, “Deep inside convolutional networks: Visualizing image classification
models and saliency maps” (2014)
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Vanilla gradients (cont.)
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Variation 1: SmoothGrad

= Average gradients across inputs near x
E.g., add Gaussian noise:

d
a; = E a—Z(x+e)] where € ~ N (0,0%)

= |n practice, use small number of e samples (50)
= Must tune o2 to an appropriate level

Smilkov et al., “SmoothGrad: Removing noise by adding noise” (2017)
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SmoothGrad (cont.)

Noise level: 0% 5% 10% 20% 30%
S A | b ; S

=
=

Standard saliency maps Varying levels of input noise
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Variation 2: Grad x Input

= Multiply gradient by input values:

. afy
L Ax;

(x)

a, = x

Shrikumar et al,, “Not just a black box: Learning important features through propagating
activation differences” (2016)
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Grad x Input (cont.)

= Interpretation: consider the model’s first-order
Taylor expansion around x

0
£,G0) ~ £y (o) + (= x0)T 22 (xo)

= Gradient gives linearized version of model (like
replacing a function with its tangent line)

= Grad x Input = approximates impact of setting
the input to zero

= Similar to occlusion (see previous lecture)



Variation 3: Integrated
gradients

= Gradients can become “saturated”
= Model is sensitive to big input changes, but not small ones

f(x) L

= 1+ exp(—x)

11— Sigmoid — < In this region, f(x) is
el insensitive to small x
changes

+«— (radient= 0

0.01

= Saturation can yield small gradients, even for important inputs

Sundararajan et al,, "Axiomatic attribution for deep networks” (2017)
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IntGrad (cont.)

= |dea: address saturation issue by calculating gradients
for rescaled images, a - x

ofy

axi(cx-x) foro<ac<i1

= Integrate (average) gradients across range of rescaled

Images:
19
J ﬂ(a-x) da
a=Oaxi

= Multiply by the input feature value:

19
al-=xij i(a-x)doz
a=Oaxi



IntGrad (cont.)

= |Implicitly relies on a zeros baseline
= Caninstead use a non-zero baseline x’

-—(xl—x)f y(x +a- (x—x'))da

= Related to a different idea from cooperative game
theory: the Aumann-Shapley value

= Different from previous Shapley value
= Has its own axiomatic derivation (see Sundararajan et al.)



IntGrad (cont.)

= Problem: the integral is hard to calculate

= Solution: use Riemann sum approximation for m
regularly spaced values a; € [0,1]:

1~ 0f
a; ~ (x; —x{)aza—x}f(x’ +a; - (x —x’))
j=1 "



IntGrad (cont.)

_—
rl IY‘ jH Top label: reflex camera
=~ Score: 0.993755
e e |
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IntGrad (cont.)

Original image Top label and score

Top label: reflex camera

Score: 0.993755

Top label: fireboat

Score: 0.999961

Top label: school bus

Score: 0.997033
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GradCAM

= |n CNNSs, hidden layers represent high-level
visual concepts

= Hidden layers retain spatial information due to
convolutional structure

* ldea: explain models via the last convolutional
layer instead of the input layer

Selvaraju et al,, “Grad-CAM: Visual explanations from deep networks via gradient-based
localization” (2017)
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CNN receptive fields

I

Receptive field grows at
each layer, but remains
localized
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GradCAM procedure

= Denote final layer’s hidden representation as A
= Size is A € RWxhxc
= Width w, height h, channels c
= Each channel k =1, ...,c denoted as A% € RW*"

= The final prediction f,(x) can be viewed as a
function of representation A

= E.g., A - global average pooling - MLP



GradCAM procedure (cont.)

fy(x)
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GradCAM procedure (cont.)

= Calculate gradients w.r.t. A

?
A—g forall (i,j, k)
= Average gradients within each channel:

k WhZ 2

= Aggregate hidden representat|ons across channel
y

dimension using «a;,
‘ Y Ak
aj = z a; Aj;
Y k=1 oy



GradCAM procedure (cont.)

= Often use thresholding function (suppress negative
attributions):
¢ Y pk
al'j = ReLU (2}(:1 akAij)

= Can optionally upsample low-resolution scores a;; to the
original input size (e.g., bilinear upsampling)



GradCAM interpretation

= The values a; represent smoothed or averaged
gradient of class y w.r.t. channel k

= At each location, activations Ai-‘j are multiplied by
averaged gradients and then aggregated

= Similar to Grad x Input, but using a hidden layer
instead of input layer

= Like a Taylor approximation of setting internal activations
to zero



GradCAM results

(d)Guided Grad-CAM ‘Cat’ (e) Occlusion map ‘Cat’

b

(j)Guided Grad-CAM ‘Dog’ (k) Occlusion map ‘Dog’

(b) Guided Backprop ‘Cat’

(a) Original Image

(h) Guided Backprop ‘Dog’

(g) Original Image (i) Grad-CAM ‘Dog’ 1)ResNet Grad-CAM ‘Dog’
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Other gradient-based
methods

» Guided backprop: Springenberg et al., “Striving for simplicity: The all-
convolutional net” (2014)

= VarGrad: Adebayo et al,, “Local explanation methods for deep neural
networks lack sensitivity to parameter values” (2018)

= Expected gradients: Erion et al,, “Learning explainable models using
attribution priors” (2020)

= BlurlG: Xu et al,, “Attribution in scale and space” (2020)
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Today

= Section 1
= Backprop review
= Gradient-based explanations
= 10 min break

= Section 2

= Modified backprop variants
= Propagation vs. removal-based explanations



Propagation-based
explanations
(continued)

CSEP 5908B: Explainable Al
lan Covert & Su-In Lee
University of Washington



Today

= Section 1

= Backprop review

= Gradient-based explanations
= Section 2

= Modified backprop variants <:
= Propagation vs. removal-based explanations




Modified backpropagation

= Previous approaches rely on gradient backprop

= Others use heuristic backprop variants

= Calculate “importance” of internal nodes, propagate
back to earlier ones

= Requires justification for different backprop
heuristics



Layer-wise relevance
propagation (LRP)

= |ntuition: iteratively calculate relevance scores
for every layer of a model

= Start with nodes in the last hidden layer

= Move backwards through the model by splitting
scores in the previous layer

Bach et al,, “On pixel-wise explanations for non-linear classifier decisions by layer-wise
relevance propagation” (2015)
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LRP (cont.)

Let Rj(l“) € R denote relevance for jth node in layer [ + 1

Initialize RiL) = f,(x) for output node of interest

Let Rl.(f_'l;’” denote relevance message sent from jth node
in layer [ + 1 to ith node in layer [

Want messages to satisfy two conservation properties

1 JA+1 : :
R](l+ ) _ E Rl((l_l]-l_ ) <«— Summation of outgoing
7 importance

Summation of incoming — Ri(l) — z R_(l»l+1)

. L)
importance 7
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LRP (cont.)

= The previous rules don't define a unique procedure, so
the authors propose multiple options

= For example, the “e-rule”

Rl(<l—l]+1) Zij R(l+1)
zj + € - sign(z;)
where z;; = w*Vh?, z; = ¥, 2;; + bV, and € > 0

= Finally, attributions are given by a; = R fori=1,...,d



LRP (cont.)
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LRP discussion

= Arguably less intuitive than other methods,
requires some heuristic choices (which “rule” to

use?)
= Can be difficult to adapt to different
architectures

= E.g., does not automatically support residual
connections (ResNet architecture), requires extension

to transformers



Other modified
backpropagation methods

= DeepLIFT: Shrikumar et al.,, “Not just a black box: Learning important
features through propagating activation differences” (2016)

= PatternAttribution: Kindermans et al., “Learning how to explain neural
networks: PatternNet and PatternAttribution” (2017)

= Aunifying perspective: Ancona et al,, “Towards better understanding of
gradient-based attribution methods” (2017)

= Excitation backprop: Zhang et al,, ” Top-down neural attention by
excitation backprop” (2018)

» | RPvariants: Montavon et al., “Layer-wise relevance propagation: an
overview” (2019)
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Today

= Section 1
= Backprop review
= Gradient-based explanations
= Section 2
= Modified backprop variants
= Propagation vs. removal-based explanations <_




Many explanation methods

= Removal-based explanations
= SHAP, LIME, RISE, Occlusion, permutation tests

= Propagation-based explanations
= SmoothGrad, IntGrad, GradCAM

What should we use in practice?

©2022 Su-In Lee
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Model flexibility

What kind of model are you explaining?

= Removal-based explanations are model-agnostic

= Can work with any model class (DNNSs, trees, etc.)

= Propagation-based explanations are mainly for neural
networks

= Usually require differentiation
= Some even have architecture constraints

©2022 Su-In Lee
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Data flexibility

What kind of data do you have?

= Removal-based explanations can handle discrete and
continuous features

= E.g., replace inputs with alternative values from the dataset

= Propagation-based methods only make sense for
continuous features

= Derivative = sensitivity to small change

= Small changes are meaningless for discrete features
E.g., x; €{0,1,2}



Local or global

What kind of explanation do you need?

= Both removal- and propagation-based methods can
produce local explanations

= Removal-based methods are better suited for global
explanations

= Can focus on a global model behavior (e.g., dataset loss)

= To use a propagation-based method, we require an aggregation
scheme (e.g., mean of local explanations)



Speed
Is speed important?

= Propagation-based methods are fast

= Backward pass through DNN
= Weak dependence on number of features

= Removal-based methods can be slow
= Often require making predictions with many feature subsets
= Shapley values are particularly challenging



Quality

Which explanation is most informative or
correct?

= Theory can serve as a guide
= E.g., Shapley value axioms, IntGrad axioms

= We can also take an empirical approach
= Metrics for explanation quality (next lecture)

= Perspective: no explanation is wrong, but some
procedures are misaligned with user questions



Popular methods

Which methods do most people use?

= A small number of methods dominate
= Depends on the data domain (tabular, image, NLP)



Tabular data

= Permutation tests are widely used for global
feature importance

= SHAP is ubiquitous for local explanations
= TreeSHAP is built into XGBoost, LGBM
= KernelSHAP used for other models



Computer vision

= Gradient-based methods are currently most
popular: GradCAM, IntGrad

= Removal-based methods are usually too slow
= Some papers try to fix this, but not popular (yet?)

= Masking model: Dabkowski & Gal, “Real time image saliency for black box
classifiers” (2017)

= CXPlain: Schwab & Karlen, “CXPlain: Causal explanations for model
interpretation under uncertainty” (2019)

= FastSHAP: Jethani et al,, “FastSHAP: Real-time Shapley value estimation”

(2021)
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NLP

= NLP models (LSTMs, transformers) can use
most methods

= Gradient-based methods are popular

= Removal-based explanations are slower, but leave-
one-out (occlusion) is sometimes used

= For transformers, some use attention as
explanation

= Perhaps an interpretable architecture?
= We'll return to this in a later lecture



Popular packages

GitHub package Description Stars
SHAP variations (KernelSHAP,
slundberg/shap TreeSHAP, DeepSHAP, etc.) 158k
marcotcr/lime LIME for images, tabular data 9.7k
utkuozbulak/pytorch-cnn-visualizations Various gradient-based methods 6.4k
jacobgil/pytorch-grad-cam GradCAM + GradCAM variations 4.5k
oytorch/captum Various gradlfr;‘lc_-lizla:sed methods 3.0k
sicara/tf-explain Various gradlent-bgsed methods 906
+ occlusion
kundajelab/deeplift DeepLIFT 616
ankurtaly/Integrated-Gradients IntGrad 453
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