Shapley values

CSEP 590B: Explainable AI Ian Covert & Su-In Lee University of Washington

Course announcements

- HW0 grades posted today
	- § Solutions are on Canvas
- **HW1 covers content from last week and this** week
	- **From last week:** permutation tests, removal-based explanations
	- **From this week:** Shapley values (properties, estimation)

Shapley values

- An old idea from game theory (1953), unrelated to AI/ML
- Now the basis of a popular XAI tool, SHAP
- Will also come up later in the course

Today

- Section 1
	- **Cooperative game theory background** $\sqrt{}$
	- The Shapley value
	- **Shapley values in XAI**
- Section 2
	- Challenge #1: feature removal
	- Challenge #2: estimation
	- § SHAP examples

Cooperative game theory

- § Probably not the part of game theory you've heard of
	- § For example, Nash equilibrium is from noncooperative game theory
- Here, we focus on games where coalitions of players form to achieve different profits

Cooperative game notation

- **Set of** *players* $D = \{1, ..., d\}$
- A *game* is given by specifying a value for every coalition $S \subseteq D$
- § Mathematically represented by a *characteristic function*:

 $v: 2^D \mapsto \mathbb{R}$

Grand coalition value $v(D)$, null coalition $v(\emptyset)$, arbitrary coalition $v(S)$

Employees

Company

Employees

Company

Employees

Employees

Company

Employees

Company

Key game theory questions

- Which players will participate vs. break off on their own?
- How to allocate credit among players?

Shapley value

- A technique for allocating credit to players in a cooperative game
- § Famously derived from a set of *fairness axioms*

Today

- Section 1
	- Cooperative game theory background
	- The Shapley value
	- **Shapley values in XAI**
- Section 2
	- Challenge #1: feature removal
	- Challenge #2: estimation
	- § SHAP examples

Lloyd Shapley

§ Won 2012 Nobel Memorial Prize in economics

Shapley value setup

- **Let G** denote the set of games on d players
- The Shapley value assigns a vector of credits to each game (in \mathbb{R}^d , one credit per player)
- Mathematically, a function of the form

$$
\phi\colon G\,\mapsto\,\mathbb{R}^d
$$

• For a game v, Shapley values are $\phi_1(v)$ **, ...,** $\phi_d(v)$

Fairness axioms

Consider a game v and credit allocations $\phi(v) = [\phi_1(v), ..., \phi_d(v)]$. We want to satisfy the following properties:

- § *(Efficiency)* The credits sum to the grand coalition's value, or $\sum_{i \in D} \phi_i(v) = v(D) - v(\emptyset)$
- **Symmetry)** If two players (i, j) are interchangeable, or $v(S \cup \{i\}) =$ $v(S \cup \{j\})$ for all $S \subseteq D$, then $\phi_i(v) = \phi_i(v)$
- **•** *(Null player)* If a player contributes no value, or $v(S \cup \{i\}) = v(S)$ for all $S \subseteq D$, then $\phi_i(v) = 0$
- § *(Linearity)* The credits for linear combinations of games behave linearly, or $\phi(c_1v_1 + c_2v_2) = c_1\phi(v_1) + c_2\phi(v_2)$, where $c_1, c_2 \in \mathbb{R}$

Lloyd Shapley, "A value for n-person games" (1953)

©2022 Su-In Lee

Axiomatic uniqueness

- The Shapley value (SV) is the only function $\phi: G \mapsto \mathbb{R}^d$ to satisfy these properties
- **Given by the following equation:**

$$
\phi_i(\nu) = \sum_{S \subseteq D \setminus i} \frac{|S|!(d-1-|S|)!}{d!} [\nu(S \cup \{i\}) - \nu(S)]
$$
\nWeighted average across

\n
$$
S \subseteq D \setminus i
$$
\nOntribution from adding player *i*

Interpretation

• Intuitive meaning in terms of player orderings

- Given an ordering π , each player contributes when added to the preceding ones
- § SV is the average contribution across all orderings

= 1 ! 7 (∈) *! ≤ *! − *! < *! Players up to and including Players preceding Average across all orderings

Today

- Section 1
	- Cooperative game theory background
	- The Shapley value
	- Shapley values in XAI
- Section 2
	- Challenge #1: feature removal
	- Challenge #2: estimation
	- § SHAP examples

Application to ML

- § Consider **features** as **players**
- § Consider **model behavior** as **profit**
	- E.g., the prediction, the loss, etc.
- **Then, use Shapley values to quantify each** feature's impact

- § SHAP = *SHapley Additive exPlanations*
- Popularized use of Shapley values in ML
	- **Also used in earlier work by Lipovetsky & Conklin** (2001), Strumbelj et al. (2009), Datta et al. (2016)
- SHAP uses Shapley values to explain individual predictions

Lundberg & Lee, "A unified approach to interpreting model predictions" (2017)

SHAP as a removal-based explanation

Recall the three choices for removal-based explanations:

- **1. Feature removal:** $F(x_S) = \mathbb{E}_{x_{\overline{S}}|x_S}[f(x_S, x_{\overline{S}})]$
- **2.** Model behavior: $v(S) = F_y(x_S)$
- **3. Summary:** $a_i = \phi_i(v)$

Consider this more closely in the next slide

Notation clarification

- What is $\mathbb{E}_{x_{\overline{S}}|x_{\overline{S}}}[f(x_{\overline{S}}, x_{\overline{S}})]$?
- **The expected value of the model output when** conditioned on the feature values x_S

$$
F(x_S) = \mathbb{E}_{x_{\overline{S}}|x_S}[f(x_S, x_{\overline{S}})]
$$

\n
$$
= \mathbb{E}[f(x_S, x_{\overline{S}}) | x_S]
$$

\n
$$
= \sum_{x_{\overline{S}}} f(x_S, x_{\overline{S}}) \cdot p(x_{\overline{S}} | x_S)
$$

\n
$$
\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow
$$

\nSummation over all Model output Probability of $x_{\overline{S}}$
\npossible $x_{\overline{S}}$ values given $x_{\overline{S}}$ conditioned on x_S

Notation clarification (cont.)

• Recall Bayes rule for conditional probability:

$$
p(x_{\overline{S}} | x_{S}) = \frac{p(x_{S}, x_{\overline{S}})}{p(x_{S})}
$$

Probability of $x_{\overline{S}}$ and
Probability of x_{S}
Probability of x_{S}
occurring on its own

Notation clarification (cont.)

- **Intuition:** in SHAP, we want to evaluate the model given a subset of features as follows
	- Fix the example to be explained x and the set of available features x_S
	- Withhold the remaining feature values $x_{\bar{S}}$
	- \blacksquare To do so, consider *all possible values* for $x_{\bar{S}}$, and make the corresponding predictions $f(x_S, x_{\overline{S}})$
	- Then average these predictions, weighting them according to the conditional probability $p(x_{\bar{S}} | x_{\bar{S}})$

SHAP summary

■ SHAP analyzes individual predictions by setting up the following cooperative game:

$$
v(S) = F_y(x_S) = \mathbb{E}_{x_{\overline{S}}|x_S}[f(x_S, x_{\overline{S}})]
$$

■ Then determines feature attributions using the Shapley value:

$$
a_i = \phi_i(v)
$$

Other Shapley value-based methods

- § Shapley Net Effects: Owen, "Sobol' indices and Shapley value" (2014)
- § QII: Datta et al., "Algorithmic transparency via quantitative input influence: Theory and experiments with learning systems" (2016)
- § IME: Strumbelj & Kononenko, "Explaining instance classifications with interactions of subsets of feature values" (2009)
- § SAGE: Covert et al., "Understanding global feature contributions with additive importance measures" (2020)
- Causal Shapley values: Heskes et al., "Causal Shapley values: Exploiting causal knowledge to explain individual predictions of complex models" (2020)
- ASV: Frye et al., "Asymmetric Shapley values: incorporating causal knowledge into modelagnostic explainability" (2020)
- SP-VIM: Williamson & Feng, "Efficient nonparametric statistical inference on population feature importance using Shapley values" (2020)

Today

- Section 1
	- Cooperative game theory background
	- The Shapley value
	- § Shapley values in XAI
	- § **10 min break**
- Section 2
	- Challenge #1: feature removal
	- Challenge #2: estimation
	- § SHAP examples

Shapley values (continued)

CSEP 590B: Explainable AI Ian Covert & Su-In Lee University of Washington

SHAP challenges

I. Removing features properly

§ Previewed last time (the first choice for removalbased explanations)

II. Calculating Shapley values

§ A problem unique to Shapley values: exponential computational complexity

Today

- Section 1
	- Cooperative game theory background
	- The Shapley value
	- **Shapley values in XAI**
- Section 2
	- Challenge #1: feature removal
	- Challenge #2: estimation
	- § SHAP examples

Original formulation

■ Marginalize out features using their **conditional distribution**

Practical alternative

- **The conditional distribution is hard to estimate**
- Instead, we can marginalize out features using their **marginal distribution**

$$
\mathbb{E}_{x_{\overline{S}}|x_{\mathcal{S}}}[f(x_{\mathcal{S}}, x_{\overline{S}})] \approx \mathbb{E}_{x_{\overline{S}}}[f(x_{\mathcal{S}}, x_{\overline{S}})]
$$
\nDrop conditioning

Remark

• In general, the conditional and marginal distributions are not equal

 $p(x_{\overline{S}} | x_{\overline{S}}) \neq p(x_{\overline{S}})$

- **Assuming they're identical = assuming feature** independence
- Can result in unlikely, *off-manifold* feature combinations

Off-manifold examples

- § **Tabular data:** male + housewife
- § **Images:** implausible inpainting

• Problem: undefined model behavior

Remark

- Marginalizing out with conditional distribution may better represent human reasoning
- **Intuition:** given available information, what are plausible values for missing features?

Should recognize missing info and make best-effort prediction given available information

Subsequent debate

- Recent work has debated the "right" approach
- Some in favor of marginal distribution
	- Janzing et al., "Feature relevance quantification in explainable AI: A causality problem" (2019)

■ Others in favor of conditional distribution

- Aas et al., "Explaining individual predictions when features are dependent: More accurate approximations to Shapley values" (2019)
- Frye et al., "Shapley-based explainability on the data manifold" (2020)
- § Covert et al., "Explaining by removing: a unified framework for model explanation" (2020)

■ Subtle topic, depends on use-case and aims

Practical concern

■ Can we implement these approaches for removing features?

Marginal distribution

- Easy to implement with Monte Carlo estimation
- Choose m datapoints $x^1, ..., x^m$ from dataset
- Approximate as follows:

$$
\mathbb{E}_{x_{\overline{S}}}[f(x_S, x_{\overline{S}})] = \sum_{x_{\overline{S}}} p(x_{\overline{S}}) f(x_S, x_{\overline{S}}) \approx \frac{1}{m} \sum_{i=1}^m f(x_S, x_{\overline{S}}^i)
$$

Remark: permutation tests do this, but using a single sample

Conditional distribution

- **•** Assume we can sample from $p(x_{\bar{S}} | x_{\bar{S}})$
- Fix x_S , take *m* samples $x_{\overline{S}}^i \sim p(x_{\overline{S}} | x_S)$, then approximate as follows:

$$
\mathbb{E}_{x_{\overline{S}}|x_S}[f(x_S, x_{\overline{S}})] = \sum_{x_{\overline{S}}} p(x_{\overline{S}} | x_S) f(x_S, x_{\overline{S}}) \approx \frac{1}{m} \sum_{i=1}^m f(x_S, x_{\overline{S}}^i)
$$

Problem: we rarely have access to the conditional distribution $p(x_{\bar{S}} | x_{\bar{S}})$

Conditional distribution approximations

- Several options available
	- Make parametric assumptions about joint distribution $p(x)$ (e.g., multivariate Gaussian)
	- **•** Train a conditional generative model $\hat{p}(x_{\bar{S}} | x_{\bar{S}})$
	- **Train "supervised surrogate" model (Frye et al.)**
	- Use a model that accommodates missing features

■ Non-trivial to implement, can't guarantee perfect approximation

Frye et al., "Shapley explainability on the data manifold" (2020)

Implications for other methods

- **This challenge is not unique to Shapley value**based methods
- Recall: all removal-based explanations require a feature removal approach
	- Because of its popularity, SHAP has received the most attention
	- § Other methods face the same choice, and none have a perfect approach (see Covert et al.)

Covert et al., "Explaining by removing: a unified framework for model explanation" (2021)

Today

- Section 1
	- Cooperative game theory background
	- The Shapley value
	- **Shapley values in XAI**
- Section 2
	- Challenge #1: feature removal
	- Challenge #2: estimation
	- § SHAP examples

Setup

- Assume we have a game $v: 2^D \mapsto \mathbb{R}$
- We want to calculate Shapley values
- How straightforward is this?

Computational complexity

• The equation for Shapley values is:

$$
\phi_i(v) = \sum_{S \subseteq D \setminus i} \frac{|S|!(d-1-|S|)!}{d!} [v(S \cup i) - v(S)]
$$

Summation across 2^{d-1} subsets

- Exponential running time $O(2^d)$
- lntractable for even moderate d (e.g., $d > 20$)

What can we do?

- We cannot calculate Shapley values exactly when d is large
- **Instead, we can approximate them**
- We'll discuss the following approaches:
	- **Permutation-based estimation**
	- § Regression-based estimation
	- Others (briefly)

Permutation view

- Recall the Shapley value's ordering interpretation
- **The value** $\phi_i(v)$ **is player i's average** contribution across all player orderings

- 1. Enumerate all orderings
- 2. Find player contribution
- 3. Average

$$
\begin{array}{c}\n\leftarrow A & B & C \\
\leftarrow A & C & B \\
\hline\n\leftarrow B & A & C \\
\hline\n\leftarrow B & A & D \\
\leftarrow C & A & B \\
\leftarrow C & B & A\n\end{array}
$$
\nMean = $\phi_A(v)$

Permutation-based estimation

- **Problem:** d! orderings is too many for large values of d
- **Idea:** sample a moderate number of orderings
	- Calculate average contributions across those orderings

Permutation-based estimation (cont.)

Algorithm 1: Permutation estimation Input: Game v, iterations $m > 0$ **Output:** Shapley value estimates $\hat{\phi}_1(v), \ldots, \hat{\phi}_d(v)$ initialize $\hat{\phi}_i(v) = 0$ for $i = 1, \ldots, d$ for $j = 1$ to m do sample permutation $\pi \in \Pi$ uniformly at random $S = \varnothing$ $prev = v(\varnothing)$ for $k = 1$ to d do $i = \pi(k)$ // Get next player in ordering $S = S \cup \{i\}$ $\mathtt{curr} = v(S)$ $\hat{\phi}_i(v) = \hat{\phi}_i(v) + \left(\texttt{curr}-\texttt{prev}\right)$ // Update estimate $prev = curr$ end end set $\hat{\phi}_i(v) = \frac{\hat{\phi}_i(v)}{m}$ for $i = 1, ..., d$ // Normalize $\textbf{return}\ \hat{\phi}_1(v),\ldots,\hat{\phi}_d(v)$

Regression view

- **An alternative Shapley value characterization**
- **Perhaps surprisingly, SVs are the solution to a** weighted least squares problem

Regression view (cont.)

■ Consider a game $v: 2^D \mapsto \mathbb{R}$

©2022 Su-In Lee

Consider a weighting function $\mu(S)$ **:**

$$
\mu(S) = \frac{d-1}{\binom{d}{|S|} |S|(d-|S|)}
$$

• Shapley values minimize the following objective:

$$
\min_{\beta_0, \dots, \beta_d} \sum_{S \subseteq D} \mu(S) \left(\beta_0 + \sum_{i \in S} \beta_i - \nu(S) \right)^2 \leftarrow \text{Squared error}
$$
\nWeighted summation

\nAdding approximation

Regression-based estimation

- **Problem:** WLS problems are easy to solve, but 2^d terms is too many
- **Idea:** approximate WLS problem by sampling subsets according to $\mu(S)$
	- Incorporate weights $\mu(\emptyset) = \mu(D) = \infty$ as constraints, $\beta_0 = v(\emptyset)$ and $\sum_{i \in D} \beta_i = v(D) - v(\emptyset)$
	- Solve the constrained least squares problem

Regression-based estimation (cont.)

- Omitting a detailed algorithm here
	- § Constraints make things a bit complicated
	- § Method known as **KernelSHAP**, introduced by Lundberg & Lee (2017)
	- See paper below for relatively simple exposition

Covert & Lee, "Improving KernelSHAP: Practical Shapley value estimation via linear regression" (2021)

Connection with LIME

■ Surprising link between SHAP and LIME

- **Recall: LIME calculates attributions by fitting an** additive proxy model
- Requires weighting function $\pi(S)$ and regularizer Ω (see lecture 2 slides)
- Shapley values are equivalent to LIME with $\pi(S) = \mu(S)$ and $\Omega = 0$
	- SHAP is a special case of LIME, suggests a principled way to choose π and Ω

Lundberg & Lee, "A unified approach to interpreting model predictions" (2017)

Alternative approaches

- Permutation- and regression-based estimators are solid
	- **Consistent, asymptotically unbiased, agnostic to** game/model
	- **Considerably faster than brute-force calculation**
- However, still somewhat slow: they require many model evaluations

Deep learning estimation

- FastSHAP: estimate Shapley values with a learned explainer model
	- Train a separate deep learning model to generate explanations
	- Single forward pass = very fast
	- **Must invest time in training for fast explanations**

Jethani et al., "FastSHAP: Real-time Shapley value estimation" (2021)

Model-specific estimation

■ Decision trees

- § TreeSHAP: Lundberg et al., "Explainable AI for trees: from local explanations to global understanding" (2019)
	- SHAFF: Bénard et al., "SHAFF: Fast and consistent Shapley effects estimates via random forests" (2021)

§ Neural networks

- § DeepSHAP: Lundberg & Lee, "A unfied approach to interpreting model predictions" (2017)
- § DASP: Ancona et al., "Explaining deep neural networks with a polynomial time algorithm for Shapley value estimation" (2019)

■ Custom models

■ SHAPNets: Wang et al., "Shapley explanation networks" (2021)

More papers on Shapley value estimation

- § Castro et al., "Improving polynomial estimation of the Shapley value by stratified random sampling with optimum allocation" (2017)
- Chen et al., "L-Shapley and C-Shapley: Efficient model interpretation for structured data" (2018)
- Simon & Thouvenot, "A projected stochastic gradient algorithm for estimating Shapley value applied in attribute importance" (2020)
- Covert & Lee, "Improving KernelSHAP: Practical Shapley value estimation via linear regression" (2021)
- § Van den Broeck et al., "On the tractability of SHAP explanations" (2021)
- § Mitchell et al., "Sampling permutations for Shapley value estimation" (2021)
- § Chen et al., "Algorithms to estimate Shapley value feature attributions" (2022)

Today

- Section 1
	- Cooperative game theory background
	- The Shapley value
	- **Shapley values in XAI**
- Section 2
	- Challenge #1: feature removal
	- Challenge #2: estimation
	- § SHAP examples

Setup

- First, focus on Boston housing dataset
- Predict median house price in a neighborhood using 14 features
	- E.g., mean number of rooms, crime rate, distance to employment centers
	- Trained an XGBoost model (gradient boosted decision tree)

Global explanations

Image explanations

Pen strokes indicate true digit

Lack of arc means it's not a zero Lack of top line means not a nine

Conclusion

- Shapley values are an elegant idea from game theory
- Now used by multiple XAI methods, most famously by SHAP for individual predictions
- Leads to computational challenges, so we use approximations in practice
	- **•** Simulate feature removal
	- § Approximate Shapley values