Removal-based explanations

CSEP 590B: Explainable Al lan Covert & Su-In Lee University of Washington

Today

- Section 1
 - Notation and definitions
 - Removal-based explanations
 - Example methods
- Section 2
 - Unified framework for removal-based methods

• (Bonus) Meaningful perturbations

Perm. tests vs. occlusion

- Seemingly different methods
 - Designed for random forests vs. CNNs
 - Global vs. local explanations
- However, some notable parallels

Perm. tests vs. occlusion (cont.)

Perm. tests vs. occlusion (cont.)

	Permutation tests	Occlusion	
Corrupt input	Randomize features	Set to zero	
Observe model change	Change in accuracy	Change in prediction	
Calculate impact	Remove single feat.	Remove single feat.	

Framework

- Idea: create new explanation methods by changing these implementation choices
- Three design choices:
 - 1. Feature removal approach
 - 2. Model behavior
 - 3. Summarization technique

Choice 1: Feature removal

- Models must make predictions given all the features
- We want to remove information from certain features

Choice 1: Feature removal

- Models must make predictions given all the features
- We want to remove information from certain features
- Most models don't support this, but we can simulate feature removal

Feature removal (cont.)

- Several options include:
 - Replace with default values (zero)
 - Replace with random values (more on this next time)
 - Train separate models with each feature set
 - Use a model that accepts missing features
 - Blurring (for images)

Choice 2: Model behavior

- We can remove features and observe impact on the model
- But we must choose a specific quantity to focus on
- Can use any measurable model behavior

Choice 3: Summarization

- We can remove observe model behavior with any feature subset
- But given d features, there are 2^d subsets to consider
- Too much information how to communicate to a human?

Summarization (cont.)

- Two common summary types:
 - Feature selection (subset of important features)
 - Feature attribution (assign feature scores)
 - E.g., permutation tests and occlusion

Framework recap

	Permutation tests	Occlusion	
1. Feature removal	Sample new values	Set to zero	
2. Model behavior	Dataset loss	Individual prediction	
3. Summarization	Remove single feat.	Remove single feat.	

A recipe for many methods

- Framework introduced in a recent paper
 - At least 26 published papers follow this recipe
 - Example methods include SHAP, LIME, etc.
 - Suggested the term removal-based explanations

Covert et al., "Explaining by removing: a unified framework for model explanation" (2021)

A recipe for many methods

-	Method	Removal	Behavior	SUMMARY
-	IME (2009)	Separate models	Prediction	Shapley value
	IME (2010)	Marginalize (uniform)	Prediction	Shapley value
	QII	Marginalize (marginals product)	Prediction	Shapley value
	SHAP	Marginalize (conditional/marginal)	Prediction	Shapley value
	KernelSHAP	Marginalize (marginal)	Prediction	Shapley value
	TreeSHAP	Tree distribution	Prediction	Shapley value
	LossSHAP	Marginalize (conditional)	Prediction loss	Shapley value
	SAGE	Marginalize (conditional)	Dataset loss (label)	Shapley value
	Shapley Net Effects	Separate models (linear)	Dataset loss (label)	Shapley value
	SPVIM	Separate models	Dataset loss (label)	Shapley value
	Shapley Effects	Marginalize (conditional)	Dataset loss (output)	Shapley value
-	Permutation Test	Marginalize (marginal)	Dataset loss (label)	Remove individual
	Conditional Perm. Test	Marginalize (conditional)	Dataset loss (label)	Remove individual
	Feature Ablation (LOCO)	Separate models	Dataset loss (label)	Remove individual
	Univariate Predictors	Separate models	Dataset loss (label)	Include individual
	L2X	Surrogate	Prediction loss (output)	High-value subset
	REAL-X	Surrogate	Prediction loss (output)	High-value subset
	INVASE	Missingness during training	Prediction mean loss	High-value subset
→	LIME (Images)	Default values	Prediction	Linear model
	LIME (Tabular)	Marginalize (replacement dist.)	Prediction	Linear model
→	PredDiff	Marginalize (conditional)	Prediction	Remove individual
-	Occlusion	Zeros	Prediction	Remove individual
	CXPlain	Zeros	Prediction loss	Remove individual
→	RISE	Zeros	Prediction	Mean when included
	MM	Default values	Prediction	Partitioned subsets
	MIR	Extend pixel values	Prediction	High-value subset
-	MP	Blurring	Prediction	Low-value subset
	EP	Blurring	Prediction	High-value subset
	FIDO-CA	Generative model	Prediction	High-value subset

Quick comparisons

- Alternative feature removal choices
 - PredDiff
 - Meaningful Perturbations
- Alternative summarization choices
 - RISE
 - LIME

PredDiff

 Removes information using a conditional inpainting model

Remove small regions, in-paint using neighboring pixels

Zintgraf et al., "Visualizing deep neural network decisions: Prediction difference analysis" (2017)

Meaningful perturbations

Removes information via blurring

Fong & Vedaldi, "Interpretable explanations of black boxes by meaningful perturbation" (2017)

©2022 Su-In Lee

- Samples many subsets of missing features
- Calculates mean prediction when x_i included

$$a_i = \mathbb{E}\big[F_y(x_S) \mid i \in S\big]$$

Prediction given features x_S only

Petsiuk et al., "RISE: Randomized input sampling for explanation of black-box models" (2018)

- Has a weighting kernel $\pi(S)$ on feature subsets
- Fits linear/additive proxy model

$$\min_{a_0,...,a_d} \sum_{S \subseteq D} \pi(S) \left(a_0 + \sum_{i \in S} a_i - F_y(x_S) \right)^2 + \Omega(a_1, ..., a_d)$$

$$\uparrow$$
Additive approximation
$$Optional regularization$$
(e.g., lasso)

Ribeiro et al., "Why should I trust you? Explaining the predictions of any classifier" (2016)

LIME (cont.)

(a) Original Image (b) Explaining *Electric guitar* (c) Explaining *Acoustic guitar* (d) Explaining *Labrador*

Figure 4: Explaining an image classification prediction made by Google's Inception neural network. The top 3 classes predicted are "Electric Guitar" (p = 0.32), "Acoustic guitar" (p = 0.24) and "Labrador" (p = 0.21)

Many more removal-based explanations

- A framework that helps understand many methods
- All based on simulating feature removal, and each method is specified by three choices

Next time: SHAP

- A popular method, and also a removal-based explanation
- Requires additional background on cooperative game theory

Today

- Section 1
 - Notation and definitions
 - Removal-based explanations
 - Example methods
- Section 2
 - Unified framework for removal-based methods
 - (Bonus) Meaningful perturbations

Meaningful perturbations

Idea:

- Take an image that's correctly classified by the model
- Blur the image to alter the prediction

Fong & Vedaldi, "Interpretable explanations of black boxes by meaningful perturbation" (2017)

Notation

- Let $x \in \mathbb{R}^{w \times h}$ be the image
- Let $m \in [0, 1]^{w \times h}$ be a mask
- Let $\Phi(x, m) \in \mathbb{R}^{w \times h}$ be the masked image

Q: how to perform masking?

Masking options

Replace with constant value µ

$$\Phi(x,m)_{ij} = m_{ij} \cdot x_{ij} + (1 - m_{ij}) \cdot \mu$$

• Replace with noise $\epsilon \sim N(0, \sigma^2)$

$$\Phi(x,m)_{ij} = m_{ij} \cdot x_{ij} + (1 - m_{ij}) \cdot \epsilon_{ij}$$

Blur with Gaussian kernel

 $\Phi(x,m)_{ij} =$ [blur with kernel $g_{\sigma \cdot m_{ij}}$]

Learn optimal blur

- Initially, target class y has $f_y(\Phi(x, \mathbf{1})) \approx 1$
- **Goal:** learn *m* such that $f_y(\Phi(x,m)) \approx 0$
- Minimize the following loss:

$$\min_m f_y(\Phi(x,m))$$

Other considerations

- 1. Blur should be minimal
- 2. Mask should be smooth
- 3. Optimization should be robust against adversarial perturbations

Actual loss function:

Optimization

Actual loss function:

$$\mathcal{L}(m) = \mathbb{E}_{\tau} \Big[f_{y} \Big(\Phi(x(\cdot - \tau), m) \Big) \Big] + \lambda_{1} \| 1 - m \|_{1} + \lambda_{2} \| \nabla m \|_{\beta}^{\beta}$$

Determine optimal mask using SGD:

$$m^{(+)} = m - \alpha \cdot \frac{\partial \mathcal{L}}{\partial m}(m)$$

Results

Figure 4. Perturbation types. Bottom: perturbation mask; top: effect of blur, constant, and noise perturbations.

Results (cont.)

Placing it in the framework

- We can concisely describe MP by how it fits into the framework
- Its three choices are:
 - (Removal) Blurring
 - (Model behavior) Prediction probability
 - (Summarization) Remove small feature subset to change prediction