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Today

§ Section 1
§ Notation and definitions
§ Removal-based explanations
§ Example methods

§ Section 2
§ Unified framework for removal-based methods
§ (Bonus) Meaningful perturbations
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Perm. tests vs. occlusion

§ Seemingly different methods
§ Designed for random forests vs. CNNs
§ Global vs. local explanations

§ However, some notable parallels
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Permutation tests Occlusion

Corrupt input Randomize features Set to zero

Observe model change Change in accuracy Change in prediction

Calculate impact Remove single feat. Remove single feat.

Perm. tests vs. occlusion 
(cont.)
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Perm. tests vs. occlusion 
(cont.)
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Permutation tests Occlusion

Corrupt input Randomize features Set to zero

Observe model change Change in accuracy Change in prediction

Calculate impact Remove single feat. Remove single feat.
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Framework

§ Idea: create new explanation methods by 
changing these implementation choices

§ Three design choices:
1. Feature removal approach
2. Model behavior
3. Summarization technique

6



©2022 Su-In Lee

Choice 1: Feature removal
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§ Models must make predictions 
given all the features

§ We want to remove information 
from certain features
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Choice 1: Feature removal

§ Models must make predictions 
given all the features

§ We want to remove information 
from certain features

§ Most models don’t support this, 
but we can simulate feature 
removal
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Feature removal (cont.)

§ Several options include:
§ Replace with default values (zero)
§ Replace with random values (more on this next time)
§ Train separate models with each feature set
§ Use a model that accepts missing features
§ Blurring (for images)
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Choice 2: Model behavior

§ We can remove features and 
observe impact on the model

§ But we must choose a  
specific quantity to focus on

§ Can use any measurable 
model behavior
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Etc.
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Choice 3: Summarization

§ We can remove observe model 
behavior with any feature subset

§ But given 𝑑 features, there are 2!
subsets to consider

§ Too much information – how to 
communicate to a human?
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Summarization (cont.)

§ Two common summary types:

§ Feature selection (subset of important features)

§ Feature attribution (assign feature scores)
§ E.g., permutation tests and occlusion
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Framework recap
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Permutation tests Occlusion

1. Feature removal Sample new values Set to zero

2. Model behavior Dataset loss Individual prediction

3. Summarization Remove single feat. Remove single feat.

1. Feature removal

2. Model behavior

3. Summarization
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A recipe for many methods

§ Framework introduced in a recent paper
§ At least 26 published papers follow this recipe
§ Example methods include SHAP, LIME, etc.
§ Suggested the term removal-based explanations
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Covert et al., “Explaining by removing: a unified framework for model explanation” (2021)
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A recipe for many methods
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Quick comparisons

§ Alternative feature removal choices
§ PredDiff
§ Meaningful Perturbations

§ Alternative summarization choices
§ RISE
§ LIME
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PredDiff

§ Removes information using a conditional in-
painting model
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Zintgraf et al., “Visualizing deep neural network decisions: Prediction difference analysis” 
(2017)

Remove small regions, in-paint 
using neighboring pixels
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Meaningful perturbations

§ Removes information via blurring
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Fong & Vedaldi, “Interpretable explanations of black boxes by meaningful perturbation” 
(2017)
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RISE

§ Samples many subsets of missing features
§ Calculates mean prediction when 𝑥! included

𝑎! = 𝔼 𝐹" 𝑥# 𝑖 ∈ 𝑆
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Petsiuk et al., ”RISE: Randomized input sampling for explanation of black-box models” 
(2018)

Prediction given features 𝑥% only
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LIME

§ Has a weighting kernel 𝜋 𝑆 on feature subsets
§ Fits linear/additive proxy model

min
"&,…,"'

&
%⊆'

𝜋 𝑆 𝑎( +&
)∈%

𝑎) − 𝐹+ 𝑥%

,

+ Ω(𝑎-, … , 𝑎!)
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Ribeiro et al., "Why should I trust you? Explaining the predictions of any classifier” (2016)

Optional regularization
(e.g., lasso)

Additive approximation
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LIME (cont.)
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Many more removal-based 
explanations

§ A framework that helps understand many 
methods

§ All based on simulating feature removal, and 
each method is specified by three choices
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Next time: SHAP

§ A popular method, and also a removal-based 
explanation

§ Requires additional background on cooperative 
game theory
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Today

§ Section 1
§ Notation and definitions
§ Removal-based explanations
§ Example methods

§ Section 2
§ Unified framework for removal-based methods
§ (Bonus) Meaningful perturbations
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Meaningful perturbations

§ Idea:
§ Take an image that’s correctly classified by the model
§ Blur the image to alter the prediction
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Fong & Vedaldi, “Interpretable explanations of black boxes by meaningful perturbation” 
(2017)
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Notation

§ Let 𝑥 ∈ ℝ$×& be the image
§ Let 𝑚 ∈ 0, 1 $×& be a mask
§ Let Φ 𝑥,𝑚 ∈ ℝ$×& be the masked image

Q: how to perform masking?
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Masking options

§ Replace with constant value 𝜇

Φ 𝑥,𝑚 $% = 𝑚$% ⋅ 𝑥$% + 1 −𝑚$% ⋅ 𝜇

§ Replace with noise 𝜖 ∼ 𝑁(0, 𝜎&)

Φ 𝑥,𝑚 $% = 𝑚$% ⋅ 𝑥$% + 1 −𝑚$% ⋅ 𝜖$%

§ Blur with Gaussian kernel

Φ 𝑥,𝑚 $% = [blur with kernel 𝑔'⋅)#$ ]
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Learn optimal blur

§ Initially, target class 𝑦 has 𝑓" Φ 𝑥, 𝟏 ≈ 1
§ Goal: learn 𝑚 such that 𝑓" Φ 𝑥,𝑚 ≈ 0

§ Minimize the following loss:

min
'

𝑓" Φ 𝑥,𝑚
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Other considerations

1. Blur should be minimal
2. Mask should be smooth
3. Optimization should be robust against 

adversarial perturbations

Actual loss function:

min
)

𝔼* 𝑓+ Φ 𝑥 ⋅ −𝜏 ,𝑚 + 𝜆, 1 −𝑚 , + 𝜆& ∇𝑚 -
-
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Spatially jittered input Minimal mask Smooth mask
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Optimization

§ Actual loss function:

ℒ 𝑚 = 𝔼. 𝑓+ Φ 𝑥 ⋅ −𝜏 ,𝑚 + 𝜆- 1 −𝑚 - + 𝜆, ∇𝑚 /
/

§ Determine optimal mask using SGD:

𝑚 0 = 𝑚 − 𝛼 ⋅
𝜕ℒ
𝜕𝑚 𝑚
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Results
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Results (cont.)
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Placing it in the framework

§ We can concisely describe MP by how it fits into 
the framework

§ Its three choices are:
§ (Removal) Blurring
§ (Model behavior) Prediction probability
§ (Summarization) Remove small feature subset to 

change prediction
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