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Course announcements

§ HW0 due last night
§ HW1 posted today, due in three weeks (Monday 

April 25th, 11:59pm)
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About HW0

§ Q: Why was there so much math?
§ A: We want you to truly understand and become 

educated users/developers of XAI tools

What to expect
§ HW1 will have more math, including the 

application of ideas from HW0
§ Later assignments (HW2, HW3) will focus more on 

programming
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Office hours

§ Our office hours times and locations are now 
posted on Ed

§ If these times don’t work for you, please let us 
know
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Office hours
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§ Su-In Lee
§ Paul G. Allen Prof.

§ UW Allen School

§ OH: Thu 5:00-
6:00 pm @ Zoom

§ Ian Covert
§ Ph.D. candidate

§ UW Allen School

§ OH: Mon 5:00-
6:00 pm @ Zoom

§ Hugh Chen
§ Ph.D. student

§ UW Allen School

§ OH: Tue 5:30-6:30 
pm @ Gates 131

§ Chris Lin
§ Ph.D. student

§ UW Allen School

§ OH: Fri 4:30-5:30 
pm @ Zoom
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Machine learning resources

§ We added a list of ML resources to the course 
website
§ Andrew Ng’s lecture notes from Stanford CS 229

§ Kevin Jamieson’s course website for UW CSE 546
§ The Elements of Statistical Learning
§ Computer Age Statistical Inference
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https://sgfin.github.io/files/notes/CS229_Lecture_Notes.pdf
https://courses.cs.washington.edu/courses/cse546/18au/
https://hastie.su.domains/Papers/ESLII.pdf
https://hastie.su.domains/CASI_files/PDF/casi.pdf
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Thank you, discussion 
leaders!
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From last time

§ You trained a ML model
§ People will ask questions about how it works

§ Engineer: why did we get this prediction wrong?

§ Domain expert: how did the model come to this 
conclusion?

§ User: why was my loan request denied?

9



©2022 Su-In Lee

Feature importance 
explanations

§ Many ways to answer such questions
§ Feature importance perspective: how does each 

feature affect the model?
§ This is what many people associate with XAI
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Example 1: natural images
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Fong & Vedaldi, “Interpretable explanations of black boxes by meaningful perturbations” 
(2017)
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Example 2: medical images
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Sundararajan et al., “Axiomatic attribution for deep networks” (2017)
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Example 3: tabular data
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Lundberg et al., “Explainable AI for trees: from local explanations to global 
understanding” (2019)
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Example 4: time series
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Covert et al., “Temporal graph convolutional networks for automatic seizure detection” 
(2019)
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Our teaching approach

§ There are too many methods to cover (100+ 
papers)

§ We’ll prioritize well-known methods
§ E.g., SHAP, LIME, IntGrad, GradCAM

§ Focus on shared principles
§ Tools/perspectives to understand many methods
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Split into three lectures

1. Removal-based explanations
§ Analyze impact of removing information

2. Shapley values
§ Requires extra game theory background

3. Propagation-based explanations
§ Analyze model’s sensitivity to small changes
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Split into three lectures

1. Removal-based explanations (today)

§ Analyze impact of removing information

2. Shapley values (next lecture)

§ Requires extra game theory background

3. Propagation-based explanations (after that)

§ Analyze model’s sensitivity to small changes
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Today

§ Section 1
§ Notation and definitions
§ Removal-based explanations
§ Example methods

§ Section 2
§ Unified framework for removal-based methods
§ (Bonus) Meaningful perturbations
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Notation

§ Input features 𝑥 ∈ 𝒳, response variable 𝑦 ∈ 𝒴
§ Total of 𝑑 features, or 𝑥 = 𝑥!, … , 𝑥"

§ Predictive model 𝑓:𝒳 ↦ 𝒴
§ For classification, 𝑓# 𝑥 is probability for class 𝑦
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Notation (cont.)

§ For training, use loss function ℓ *𝑦, 𝑦
§ Log-loss for classification, MSE for regression

§ Subsets 𝑆 ⊆ 𝐷 = {1,… , 𝑑}, complement ̅𝑆 = 𝐷 ∖ 𝑆
§ Feature subsets 𝑥! = {𝑥": 𝑖 ∈ 𝑆}
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Definitions (1)

§ A model explanation attempts to highlight why a 
model made a prediction

§ A feature importance explanation focuses on each 
feature’s role

§ Explanations may relate to an individual prediction 
(local) or a broader model behavior (global)
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Definitions (2)

§ Feature importance explanations are typically 
either feature attribution or feature 
selection
§ Feature attribution: each feature 𝑥' receives a score 
𝑎' ∈ ℝ

§ Feature selection: a subset of important features 
𝑥( ⊆ 𝑥!, … , 𝑥"
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Definitions (3)

§ An explanation algorithm is a method that 
generates explanations given input data and an 
ML model
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Today

§ Section 1
§ Notation and definitions
§ Removal-based explanations
§ Example methods

§ Section 2
§ Unified framework for removal-based methods
§ (Bonus) Meaningful perturbations
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Removal-based explanations

§ Idea: to understand a feature’s importance, 
remove it and see how the prediction changes

§ This is the underlying idea behind many 
popular approaches

25



©2022 Su-In Lee

Doctor analogy

§ Suppose we want to 
understand a doctor’s diagnosis

§ We can probe the doctor’s 
reasoning by covering parts of 
the scan

§ The diagnosis should change 
when we cover important 
regions
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Translation to ML

§ We can analyze models by withholding features
§ Understand each feature’s influence via the impact of 

removing it

§ Removing important features creates large changes
§ The directionality of the change matters
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Today

§ Section 1
§ Notation and definitions
§ Removal-based explanations
§ Example methods

§ Section 2
§ Unified framework for removal-based methods
§ (Bonus) Meaningful perturbations
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Case study I: permutation 
tests

§ An “old” method introduced for random forests
§ Determines overall (global) importance of each 

input feature

29

Leo Breiman, “Random forests” (2001)
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Permutation test procedure

§ First, evaluate the model’s accuracy using the 
original data

§ Then, one at a time, corrupt features and record 
the drop in accuracy
§ To corrupt, randomize/permute a column of the 

dataset (corresponding to the feature)
§ Hence, permutation test

30



©2022 Su-In Lee

Mathematical definition

§ Intuitive view

𝑎" = 𝐴𝑐𝑐 original − 𝐴𝑐𝑐(𝑥" corrupted)
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Mathematical definition

§ Detailed view
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Corrupted feature
(should increase loss)

Original data

Arbitrary loss function

Mean loss
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Example (Breiman, 2001)

33

Glucose concentration BMI

Skin thickness
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Remarks

§ Permutation tests work for any model
§ Can use with continuous or categorical features
§ Fast, easy to implement
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Case study II: occlusion

§ An early approach for deep learning models
§ Explain individual predictions for image 

classifiers
§ Calculates pixel (or superpixel) importance
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Zeiler & Fergus, “Visualizing and understanding convolutional networks” (2014)
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Occlusion procedure

§ Make prediction given full image
§ Occlude various image regions, record how the 

prediction changes
§ Occlude by replacing with uninformative (zero) pixels

§ Potentially occlude 2x2, 4x4, etc. superpixels
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Mathematical definition

§ Intuitive view

𝑎" = 𝑓# 𝑥 − 𝑓# 𝑥 $"
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Mathematical definition

§ Detailed view

𝑎" = 𝑓# 𝑥%, … , 𝑥& − 𝑓# 𝑥%, … , 0, … , 𝑥&
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Replace with zero
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Example (Ancona et al. 2018)
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Remarks

§ The occlusion idea works with any model, even 
non-image data

§ Moderately fast: 𝑑 + 1 model evaluations to 
explain each prediction

§ Simple, easy to implement
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Perm. tests vs. occlusion

§ Seemingly different methods
§ Designed for random forests vs. CNNs
§ Global vs. local explanations

§ However, some notable parallels
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Today

§ Section 1
§ Notation and definitions
§ Removal-based explanations
§ Example methods
10 min break

§ Section 2
§ Unified framework for removal-based methods
§ (Bonus) Meaningful perturbations
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