Lecture I: Background & review

CSEP 590B: Explainable Al lan Covert & Su-In Lee University of Washington

Today

- Section 1
 - Motivation & aims
 - Course logistics
 - Examples in the healthcare space
- Section 2
 - Discussion: "Statistical Modeling: The Two Cultures"
- Section 3
 - Example scenario and ML review

Example scenario

 You work at a bank, and your boss asks you to automate credit risk evaluation

• **Step 1:** obtain historical data

- Input features x = [age, income, job, savings, ...]
- Label $y \in \{0, 1\}$ (repaid loan or not)
- Step 2: train model
 - What model type? Let's review some options

Linear regression

Model continuous response as linear function:

$$f(x) = \beta_0 + \sum_{i=1}^d \beta_i \cdot x_i$$

- Parameters: one coefficient per feature, plus bias term
- **Training:** least squares loss, closed-form solution

Logistic regression

Model discrete response log-probability as linear function:

$$f(x) = \sigma\left(\beta_0 + \sum_{i=1}^d \beta_i \cdot x_i\right)$$

- Parameters: one coefficient per feature, plus bias term
- Training: log-loss; no closed-form solution, optimize with gradient descent

Decision tree

Model discrete or continuous outcomes using tree structure

- Parameters: one feature/threshold per internal node, one prediction per leaf node
- Training: greedily minimize entropy or variance

Tree ensembles

Sum predictions across multiple decision trees

- Random forests: bootstrap training data and aggregate trees (bagging), ensemble independent strong learners
- Gradient boosting machines: combine weak learners, let new trees improve on previous ones (gradient boosting)

Neural networks

 Model continuous or discrete outcomes using hierarchical, nonlinear, differentiable functions

- **Parameters:** many parameters per layer
- Training: use stochastic gradient descent (SGD) to find local minimum of loss function

Multilayer perceptron (MLP)

- For vector input ("tabular" data)
- Each layer applies linear operation and nonlinear activation:

$$a^{(l+1)} = \sigma \big(W^{(l)} a^{(l)} + b^{(l)} \big)$$

where $\sigma(z) = \max(z, 0)$ (for ReLU activation)

Convolutional neural network (CNN)

- For grid-shaped data (images)
- Alternate convolutional layers, nonlinear activations, pooling:

$$a^{(l+1)} = \sigma \left(W^{(l+1)} * a^{(l)} + b^{(l+1)} \right)$$

 Variations involve residual connections, normalization layers, dropout, etc.

LSTMs, Transformers

- Deep learning architectures designed for sequential data
- **LSTMs:** a version of recurrent neural networks (RNNs), maintains internal state for each time point in a sequence

 Transformers: use self-attention mechanism to generate predictions that depend on all previous time points

Deep learning hyperparameters

- Activation function
 - Sigmoid, ReLU, ELU, GELU, etc.
- Depth
 - How many layers?
- Width
 - How many hidden units/channels per layer?
- Optimizer
 - SGD, Adam, RMSProp, etc.
- Regularization
 - Dropout, batch norm, etc.

Math background

- ML is built on tools from calculus, optimization, linear algebra, and probability
- If your memory of these topics isn't 100% fresh, it's probably okay
 - Can recall important concepts as needed
 - See HW0 for a refresher. If you find it easy, you'll be fine

How to choose your model?

- What models have you used before?
- What factors influence your choice?

Back to the bank example...

- You examine the various model options
- Select a complex model because it gets the best performance: a gradient boosted tree
 - XGBoost, LightGBM
- Boss: Nice job, can I ask some questions about how the model works?
- You: Sure!

Q: What did the model learn, and how does it make decisions?

- We can't easily summarize the patterns, rules, concepts learned by a complex model
- Gradient boosted trees have too many parameters to examine
- Coarse summary: count number of splits on each feature

Q: Which features are most important overall?

- Can be answered by permutation tests (Breiman, 2001)
- There are in fact many methods for analyzing global feature importance

Q: For the customers whose loans are denied, can we tell which features led to the decision?

- In this case, must analyze individual predictions (not overall behavior)
- Many methods designed to assess local feature importance
 - E.g., shap, LIME

Course overview

Course introduction (1 lecture)

- Feature importance explanations (3 lectures)
 - Removal-based explanations
 - Shapley values
 - Propagation-based explanations
- Evaluating explanations (1 lecture)
- Inherently interpretable models (1 lecture)
- Other approaches (2 lectures)
 - Concept-based explanations, neuron interpretation
 - Counterfactual explanations, instance explanations
- Enhancing human-Al collaboration (1 lecture)
- XAI in industry, model improvement (1 lecture)

Q: How can we be sure the model explanations are correct?

- Our goal is to evaluate model explanations generated by XAI methods
- Feature importance can be evaluated based on qualitative or quantitative criteria

Course overview

- Course introduction (1 lecture)
- Feature importance explanations (3 lectures)
 - Removal-based explanations
 - Shapley values
 - Propagation-based explanations
- Evaluating explanations (1 lecture)
- Inherently interpretable models (1 lecture)
- Other approaches (2 lectures)
 - Concept-based explanations, neuron interpretation
 - Counterfactual explanations, instance explanations
- Enhancing human-Al collaboration (1 lecture)
- XAI in industry, model improvement (1 lecture)

Q: Can we tell customers what to change to get approved next time?

- Here, our goal is to identify small changes that can alter the model output
- These are called counterfactual explanations

Course overview

- Course introduction (1 lecture)
- Feature importance explanations (3 lectures)
 - Removal-based explanations
 - Shapley values
 - Propagation-based explanations
- Evaluating explanations (1 lecture)
- Inherently interpretable models (1 lecture)
- Other approaches (2 lectures)
 - Concept-based explanations, neuron interpretation
 - Counterfactual explanations, instance explanations
- Enhancing human-Al collaboration (1 lecture)
- XAI in industry, model improvement (1 lecture)

Concept

Q: Are there potentially misleading examples in our historical data, and can you get rid of them?

- No longer asking about role of features, now asking about data examples
- We can analyze the influence of dataset examples using instance explanations

Course overview

- Course introduction (1 lecture)
- Feature importance explanations (3 lectures)
 - Removal-based explanations
 - Shapley values
 - Propagation-based explanations
- Evaluating explanations (1 lecture)
- Inherently interpretable models (1 lecture)
- Other approaches (2 lectures)
 - Concept-based explanations, neuron interpretation
 - Counterfactual explanations instance explanations
- Enhancing human-Al collaboration (1 lecture)
- XAI in industry, model improvement (1 lecture)

Concept

Q: No human can internalize your model, can you use something simpler instead?

- Instead of using a black-box model, maybe an inherently interpretable model gets sufficiently high accuracy
- These can make a mental model manageable

Declined

offer

Accepted

offe

Course overview

- Course introduction (1 lecture)
- Feature importance explanations (3 lectures)
 - Removal-based explanations
 - Shapley values
 - Propagation-based explanations
- Evaluating explanations (1 lecture)
- Inherently interpretable models (1 lecture)
- Other approaches (2 lectures)
 - Concept-based explanations, neuron interpretation
 - Counterfactual explanations, instance explanations
- Enhancing human-Al collaboration (1 lecture)
- XAI in industry, model improvement (1 lecture)

ML model

Concept

We'll cover these topics, and more!

Reminder: for next time

- Office hours poll (see your email)
- Discussion leader volunteers (see your email)
- First discussion post
 - Petsiuk et al., "RISE: Randomized Input Sampling for Explanation of Black-box Models" (2018)
- HW0 due