Mobile Location Technologies

Jeff Hightower Intel Labs

A smartphone without location sensing is like a laptop without WiFi.

Why?

Maps and Way Finding

- Where am I?
 - Map View, Nearby stuff
- How do I get to X?
 - Directions & Navigation

A. Edmond Menay Hotel

References: universitytowerhotel.com - 978 more »

References: watertownseattle.com - 650 more »

References: universityplazahotel.com - 105 more »

(206) 634-2000

B. Whatertown Hotel

(206) 826-4242

C. University Plaza Hotel

D. Four Seasons Homes Inc

References: thecityofseattle.com Emma Hospitality Group

(206) 634-0100

(206) 568-7136

(206) 675-1424

F

- What is around here?
 - Nearest Starbucks
 - Local search

Seattle, WA 98105

0.1 mi E - Directions

Seattle, WA 98105

0.1 mi S - Directions

400 NE 45th St

Seattle, WA 98105

0.3 mi W - Directions

3302 Fuhrman Ave E Seattle, WA 98102

0.7 mi S - Directions

Seattle, WA 98103

Social-Mobile Services

- Who is around here?
- Where do my friends go?
- What is a good exercise route?
- How far did I walk today?

IT Management & Asset Tracking

- Inventory Tracking
 - Finding lost and stolen devices
- Virus breakout tracking

- Location as tool in computer virus epidemiology
- Controlling wireless network access
 - e.g. Access denied beyond 20m of building
- Monitoring device usage
 - Measure mobility, usage by device class

How?

Location Sensing Technologies

Technology	Application Domain
Satellite Positioning Systems	Outdoor navigation
Manual User-entry	Location-based web services
Cell-tower Triangulation	Web and Fee-based location transactions
802.11 Fingerprinting	Process management e.g. Hospitals
Beacon-based Location	Indoor and fast TTFF mobile computing

Long Range Navigation (LORAN)

Coverage Accuracy Infrastructure cost Per-client cost Privacy Application Domain Outdoors, high seas 200-400 meters High Low High Aircraft & Vessels

Global Navigation Satellite Systems (GNSS) (e.g. GPS, GLONASS, Galileo, Compass)

Coverage Accuracy Infrastructure cost Per-client cost Privacy Application Domain Outdoors (line of sight) 10m High Medium High Outdoor navigation

GPS Variants

- WAAS (LAAS)
 - Improve accuracy to 3 meters (LAAS to 10cm)
- Assisted GPS (A-GPS)
 - Uses data network, faster lock times, comparable coverage
- "Relaxed" GPS
 - Loosen the GPS algorithm requirements improve coverage at the cost of some accuracy
 - Can work indoors, but with >50m error
- Soft-GPS
 - GPS antenna + A/D + CPU
 - Slight improvement in coverage, time to lock

Manual Entry

Coverage Accuracy Infrastructure cost Per-client cost Privacy Application Domain Populated Areas 10m-50km Low Low High Location-based web services

Google

pizza Seattle, WA

About 685,000 results (0.20 seconds)

Cell-Tower Triangulation

Coverage Accuracy Infrastructure cost Per-client cost Privacy Application Domain Populated Areas
50-150m
Low
Medium
Low
Web services and Fee-based location transactions

802.11 Fingerprinting

Coverage		Indoc	or, Campus	3
Accuracy		2-10r	n	
Infrastructure cost		High	High	
Per-client c	ost	Low		
Privacy		Low/	High	
Application Domain		Proce (<i>e.g.</i>	Process Management (<i>e.g.</i> hospitals)	
MSR RADAR	Access Po	oint	RSSI	
	00:0f:f7:00	00:0f:f7:0c:e9:c0		<u></u> }
🛀 💼 ekahau	12:0f:f5:82:22:19		-96 dB	(B)

00:0f:34:ab:0c:e0 -65 dB

Exploit radio's temporal stability and spatial variability

16 47th St

Radio Beacon Location

Coverage Accuracy Infrastructure cost Per-client cost Privacy Application Domain Populated Areas + Outdoors 5-150M Low Low Low-High Mobile computing, fast TTFF

Locate with Beacons in the Wild

802.11a Access Point MAC: 00:0f:34:ab:0c:e0 SSID: Joe's WiFi Café Encrypted: No Signal Strength -54 dB

802.11bg Access Point MAC: 00:0f:f7:0c:e9:c0 SSID: Bank of Zurich Encrypted: Yes Signal Strength -66 dB

<u>GSM Cell Tower</u> Network: ABC Cellular MCC: 310 MNC: 380 cellId: 1323 areald: 52020

<u>Bluetooth Printer</u> MAC: 00:0e:6d:83:68:ff Name: Color Duplex

Basic Operation

- 1) Store and updates radio database
- 2) Scan for radio sources
- 3) Combine observations sensibly

Database of known radio sources

Beacon ID	Latitude	Longitude
00:0f:f7:0c:e9:c0	47.6411	-122.3079
00:0f:34:ab:0c:e0	47.6409	-122.3075
00:0e:6d:83:68:ff	47.6461	-122.3081
310:380:1323:52020	47.6456	-122.3078

Signal Strength is a Mediocre Indicator of Distance

802.11 signal strength by distance

GSM signal strength by distance

Response Rate Another Indicator of Distance Response rate = 1 - loss rate of beacon frames

802.11 Response Rate By Distance

Self-Mapping Radio Beacons

- Grows beacon database using everyday radio traces
- Accuracy and coverage improve over time

One User's Experience with Self-Mapping

Self-mapping with sporadic GPS for one volunteer

Location in Today's Smartphones

Hot Topics in Mobile Location

- Computer vision and Indoor Location
- Mobile Augmented Reality
- Discovering the Places people go
- Mobile [Push] Advertising

Computer Vision Location

3D localization

- Accuracy of 30cm and 10°, 80% of the time
- 4 fps with GPU
- Google starting major 3D indoor mapping effort, startup out of Cambridge

Mobile Augmented Reality

Discovering the Places People Go

Knowing types and sequences of places we go is valuable

- Predict likely destinations
- Build personal quick-lists
- Develop behavior models and detect changes

Manual "Check-ins" to places is the commercial state-of-the-art approach

Research underway to augment check-ins with automatic methods for place *detection* and *recognition*

Place Learning – Two Approaches

	Geometry-based	Fingerprint-based
Input	Location coordinates (e.g., GPS, WiFi/Cell tower triangulation)	Radio environment (e.g., currently visible cell towers, WiFi access points)
Pros	Tightly coupled with the geographical location of the place	Does not depend on the underlying positioning system's accuracy (especially indoors)
Cons	Depends on the underlying positioning system's accuracy and availability	Radio environment may change over time (affecting recognition, not necessarily detection)

Sample Trace of WiFi APs encountered

Sample Trace of WiFi APs encountered

Results from a 4 week place learning experiment

Fingerprint-based techniques outperform geographic techniques due to the challenge of accurately clustering coordinates