Smartphone Mobile Computing

CSEP590B/F Winter 2011 (first offering) 1st Lecture, 03 January 2011

Instructor:

Gaetano Borriello

Teaching Assistant:

Temitope Oluwafemi

Who we are

- Gaetano Borriello
 PhD UC Berkeley 1988
 Industry experience at Xerox PARC ('80-'85) and Intel ('01-'06)
 Background in VLSI, CAD, embedded systems, ubicomp
 Most recently mobile applications for low-income settings
- Temitope Oluwafemi Grad student in EE

Overview for Today

- Mobile computing on smartphones
- Capabilities and trends
- Applications
- Course structure and goals
- Group projects

The Main Questions for this Quarter

- What makes mobile computing on phones different than mobile computing on laptops or tablets?
- What are some of the computer science and engineering concepts that are most relevant?
- What are the applications that best showcase the differences?
- In what contexts are these applications being used and why?
- How do we build these applications?

Technology Trends

- Size
- Wireless connectivity and bandwidth
- Computing power and storage
- Sensors
- Power

Size

Wireless connectivity and bandwidth

- 1G early 1980s voice
- 2G early 1990s GSM, SMS, digital voice
- 2.5G stepping stone to 3G, GPRS
- 3G early 2000s faster data transmission, higher capacity
- 4G early 2010s even higher-speed data, no standard

Computing power

Processors

- 50MHz to 2GHz
- multiple processors: baseband processing, networking, apps, I/O, etc.

Memory

- .5GB ROM
- .5GB RAM

Storage

32GB SD

Sensors and User Interface

- Camera + flash
- Microphone + speakers
- Accelerometer
- Barometer/altimeter
- GPS
- Proximity infrared
- Ambient light
- Compass
- Gyroscopes
- Touch screens
- Depth-ranging IR cameras
- Pico-projectors

Power

- Typical stand-by time of 10 days, talk time of 8 hrs
- Batteries and Moore's Law

Power

■ Power budget of 1400 mAh

	Average Current Consumption in Talk Mode	Average Current Consumption in Standby Mode
Subcircuit	mA	μА
Digital Base Band + Memory	19+6	300 + 40
Analog Base Band	9	150
SIM	1	60
RF	32	50
PA	200	770
PM (Housekeeping)	3	220
Misc. Other	5275	670
Total Current Consumption		2,260

Phone types

- Basic phones (voice, SMS) low-tier
- Feature phones (basic apps, data comm) mid-tier
- Smart phones (more apps, web, GPS) high-tier

Nokia C1 Nokia C5 iPhone4

Nexus One

BB Torch

Window7

Market Share

- In US, about 45% of new phones are smartphones, rest are feature phones, virtually no low-tier phones
- Smartphones currently evenly split between Apple, RIM, and Android – about 25-30% each, Microsoft and Nokia take up remainder
- In emerging economies, low-tier phones are still the largest segment but feature phones are gaining

Recent OS market share

U.S. Smartphone Operating System Share - 6 Mo. Recent Acquirers

The Nielsen Company

Cumulative OS market share

U.S. Smartphone Operating System Share

The Nielsen Company

CSEP590B/F - Winter 2011 - 03 January 2011

Convergence

Convergence

- PDAs + phones = smartphones
- Laptop data connectivity now on phones (e.g., email, web)
- Diversity of messaging modes
- What really distinguishes devices?
 - computing power?
 - apps?
 - input/output?
 - screen size?
 - usage models?

What devices do we carry around? Why?

Deep vs. shallow web

The web through the desktop is a deep web

- many steps to get to information we want
- ample time to sift and collect
- multi-purpose tools, e.g., browsers
- we need search engines and bookmarking

The web through the phone is a shallow web

- information must be ready when needed
- interactions must be short and direct.
- single-purpose tools, e.g., apps
- with hundreds of thousands of apps, how do we find what we need?

Sharing and disseminating is a need in both spaces

Classification of Applications

- In what situations is it used?
- What context information is needed?
- How automatically does the application gather its inputs?
 - what sensors does the application exploit? is the user involved?
- Is the application self-contained?
 - does the application need to connect to web or cloud?
- How much communication does it require? and in which direction?
- How much storage does it use? where?

Exercise: some examples applications

Choose two of your favorite applications and fill-in columns

Арр	Use	Context	Sensors	Self- contained	Comm requirements	Storage requirements
Shazam	Identify and purchase music	None	Recording initiated by user	No, server does song matching	Synchronous to server	Just for recording
OneBusAway	When next bus will arrive	Current location	GPS/WiFi	No, server provides bus data	Synchronous	MInimal
Twitter	Status updates	None	None	No, server propagates message	Asynchronous	Message queue
Bar code scanner	Read barcodes	None	Camera, scan positioned by user	Yes, to read; No, to get reviews/buy	Synchronous	None
Pedometer	Count steps and calories	Motion throughout the day	Accelerometr y, location	Yes, eventually upload data	Asynchronous	Sensor samples

Around the world

26

Around the world

- Phones are the personal computing device
- Most of the world's population will reach the web through phones, not desktops
- What new models will emerge?

Percentage of the world's population covered by a mobile cellular signal, 2003 compared to 2009

Mobile still rising

Broadband gap

Course Logistics

- Lectures/discussions
 - we only have 8 of these (MLK and Presidents' Day)
- Readings
 - a couple of hours per week
- Project (weekly assignments
 - email/phone interactions to converge on topics
 - individual research paper as possible alternative
- Web site has (or will have) the information you should need
 - http://www.cs.washington.edu/csep590b/11wi/

About you

Gaetano Borriello

Professor for 23 years University of Washington Hometown: Napoli, Italia

Hobby:

Walking around (smallish) islands.

Interests:

How to use mobile phones to improve the lives of people in lowincome settings.

Understanding how technology trends will lead to different usage models.

Working with a larger team to put these ideas and technologies into practice and everyday use.

Your 3 favorite mobile apps

- Find apps on Android Market and Apple's AppStore if you don't have them already
- Ideally download and experiment with them
- Describe them as we did tonight with the taxonomy
- Explain why they are truly "mobile" apps

Declare your interests and brainstorm