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Outline

HW#2 Discussion

MLE: Maximum Likelihood Estimators

EM: the Expectation Maximization Algorithm

Next: Motif description & discovery



      Species Name Description Access
-ion

score 
to #1

1

2

3

4

5

6

7

8

9

10

Homo sapiens (Human) MYOD1_HUMAN Myoblast determination protein 1 P15172 ~1700
?

Homo sapiens (Human) TAL1_HUMAN T-cell acute lymphocytic leukemia protein 1 (TAL-1) P17542 143

Mus musculus (Mouse) MYOD1_MOUSE Myoblast determination protein 1 P10085 1494

Gallus gallus (Chicken) MYOD1_CHICK Myoblast determination protein 1 homolog (MYOD1 homolog) P16075 1020

Xenopus laevis (African clawed frog) MYODA_XENLA Myoblast determination protein 1 homolog A (Myogenic factor 1) P13904 978

Danio rerio (Zebrafish) MYOD1_DANRE Myoblast determination protein 1 homolog (Myogenic factor 1) Q90477 893

Branchiostoma belcheri (Amphioxus) Q8IU24_BRABE MyoD-related Q8IU24 426

Drosophila melanogaster (Fruit fly) MYOD_DROME Myogenic-determination protein (Protein nautilus) (dMyd) P22816 368

Caenorhabditis elegans LIN32_CAEEL Protein lin-32 (Abnormal cell lineage protein 32) Q10574 118

Homo sapiens (Human) SYFM_HUMAN Phenylalanyl-tRNA synthetase, mitochondrial O95363 ~55?

HW # 2 Discussion







MyoD

http://www.rcsb.org/pdb/explore/jmol.do?structureId=1MDY&bionumber=1
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Probability Basics, I

pdf, not 
probability

Ex. Ex.

Sample Space

{1, 2, . . . , 6} R

Distribution

p1, . . . , p6 ≥ 0;
�

1≤i≤6

pi = 1 f(x) >= 0;
�

R
f(x)dx = 1

e.g.

p1 = · · · = p6 = 1/6 f(x) =
1√

2πσ2
e−(x−µ)2/(2σ2)
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Probability Basics, II
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Maximum Likelihood Estimators

Learning From Data: 
MLE
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Parameter Estimation

Assuming sample x1, x2, ..., xn is from a 
parametric distribution f(x|θ), estimate θ.

E.g.:  Given sample HHTTTTTHTHTTTHH 
of (possibly biased) coin flips, estimate 

            θ = probability of Heads

f(x|θ) is the Bernoulli probability mass function with parameter θ



Likelihood
P(x | θ):  Probability of event x given model θ
Viewed as a function of x (fixed θ), it’s a probability

E.g., Σx P(x | θ) = 1

Viewed as a function of θ (fixed x), it’s a likelihood
E.g., Σθ P(x | θ) can be anything; relative values of interest.  
E.g., if θ = prob of heads in a sequence of coin flips then
    P(HHTHH | .6) > P(HHTHH | .5), 
I.e., event HHTHH is more likely when θ = .6 than θ = .5

And what θ make HHTHH most likely?
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Likelihood Function
P( HHTHH | θ ): 

Probability of HHTHH, 
given P(H) = θ:

θ θ4(1-θ)
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One (of many) approaches to param. est.
Likelihood of (indp) observations x1, x2, ..., xn

As a function of θ, what θ maximizes the 
likelihood of the data actually observed
Typical approach:                   or

Maximum Likelihood 
Parameter Estimation

L(x1, x2, . . . , xn | θ) =
n�

i=1

f(xi | θ)

∂

∂θ
L(#x | θ) = 0 ∂

∂θ
log L(�x | θ) = 0



14

(Also verify it’s max, not min, & not better on boundary)

Example 1
n coin flips, x1, x2, ..., xn;   n0 tails, n1 heads,  n0 + n1 = n;  

θ = probability of heads

 

Observed fraction of 
successes in sample is 
MLE of success 
probability in population

dL/dθ = 0



Bias
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A desirable property:  An estimator Y of a 
parameter θ is an unbiased estimator if 
       E[Y]  = θ
For coin ex. above, MLE is unbiased:
  Y = fraction of heads = (Σ1≤i≤nXi)/n, 
(Xi = indicator for heads in ith trial) so
  E[Y] = (Σ1≤i≤n E[Xi])/n = n θ/n = θ

by linearity of expectation
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Parameter Estimation
Assuming sample x1, x2, ..., xn is from a 
parametric distribution f(x|θ), estimate θ.

E.g.:  Given n normal samples, 
estimate mean & variance

f(x) = 1√
2πσ2 e−(x−µ)2/(2σ2)

θ = (µ,σ2)

-3 -2 -1 0 1 2 3

µ ± !

μ



Ex2: I got data; a little birdie tells me 
it’s normal, and promises σ2 = 1

17

X          X  XX    X  XXX               X
Observed Data

x →



-3 -2 -1 0 1 2 3

µ ± !

μ

1

Which is more likely: (a) this?
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X          X  XX    X  XXX               X
Observed Data



-3 -2 -1 0 1 2 3

µ ± !

μ

1

Which is more likely:  (b) or this?

19

X          X  XX    X  XXX               X
Observed Data



-3 -2 -1 0 1 2 3

µ ± !

μ

1

Which is more likely:  (c) or this?
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X          X  XX    X  XXX               X
Observed Data



-3 -2 -1 0 1 2 3

µ ± !

μ

1

Which is more likely:  (c) or this?
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X          X  XX    X  XXX               X
Observed Data

Looks good by eye, but how do I optimize my estimate of μ  ?
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Ex. 2: xi ∼ N(µ,σ2), σ2 = 1, µ unknown

And verify it’s max, 
not min & not better 
on boundary

 

Sample mean is MLE of 
population mean

dL/dθ = 0



Ex3: I got data; a little birdie tells me 
it’s normal (but does not tell me σ2)
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X          X  XX    X  XXX               X
Observed Data

x →



-3 -2 -1 0 1 2 3

µ ± !

μ

1

Which is more likely: (a) this?
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X          X  XX    X  XXX               X
Observed Data



-3 -2 -1 0 1 2 3

µ ± !

μ

 3   

Which is more likely: (b) or this?
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X          X  XX    X  XXX               X
Observed Data



-3 -2 -1 0 1 2 3

µ ± !

μ

1

Which is more likely:  (c) or this?
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X          X  XX    X  XXX               X
Observed Data



-3 -2 -1 0 1 2 3

µ ± !

μ

Which is more likely:  (d) or this?
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X          X  XX    X  XXX               X
Observed Data



-3 -2 -1 0 1 2 3

µ ± !

μ

Which is more likely:  (d) or this?

28

X          X  XX    X  XXX               X
Observed Data

Looks good by eye, but how do I optimize my estimates of μ & σ ?
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Ex 3: xi ∼ N(µ,σ2), µ,σ2 both unknown
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Sample mean is MLE of 
population mean, again

In general, a problem like this results in 2 equations in 2 unknowns.  
Easy in this case, since θ2 drops out of the ∂/∂θ1 = 0 equation

Likelihood 
surface
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Ex. 3, (cont.)

lnL(x1, x2, . . . , xn|θ1, θ2) =
�

1≤i≤n

−1
2

ln 2πθ2 −
(xi − θ1)2

2θ2

∂
∂θ2

lnL(x1, x2, . . . , xn|θ1, θ2) =
�

1≤i≤n

−1
2

2π

2πθ2
+

(xi − θ1)2

2θ2
2

= 0

θ̂2 =
��

1≤i≤n(xi − θ̂1)2
�

/n = s̄2

Sample variance is MLE of 
population variance



Bias? if Y is sample mean
    Y = (Σ1≤i≤n Xi)/n 
then
    E[Y] = (Σ1≤i≤n E[Xi])/n = n μ/n = μ
so the MLE is an unbiased estimator of population mean

Similarly, (Σ1≤i≤n (Xi-μ)2)/n is an unbiased estimator of σ2.
Unfortunately, if μ is unknown, estimated from the same data, as 
above,                                 is a consistent, but biased estimate 
of population variance.  (An example of overfitting.)   Unbiased 
estimate is:

Moral: MLE is a great idea, but not a magic bullet
31

Ex. 3, (cont.)

I.e., limn→∞ 

= correct



Biased?  Yes.  Why?  As an extreme, think about n = 1.  
Then θ2 = 0; probably an underestimate!

Also, consider n = 2.  Then θ1 is exactly between the 
two sample points, the position that exactly minimizes 
the expression for θ2.   Any other choices for θ1, θ2 
make the likelihood of the observed data slightly lower.  
But it’s actually pretty unlikely that two sample points 
would be chosen exactly equidistant from, and on 
opposite sides of the mean, so the MLE θ2 
systematically underestimates θ2.

(But not by much, & bias shrinks with sample size.)

More on Bias of θ2 

32

ˆ

θ̂1

θ̂2

θ̂2



Summary
MLE is one way to estimate parameters from data
You choose the form of the model (normal, binomial, ...)
Math chooses the value(s) of parameter(s)
Has the intuitively appealing property that the parameters 
maximize the likelihood of the observed data; basically just 
assumes your sample is “representative”

Of course, unusual samples will give bad estimates (estimate normal 
human heights from a sample of NBA stars?) but that is an unlikely event

Often, but not always, MLE has other desirable properties like 
being unbiased, or at least consistent

33
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EM 
The Expectation-Maximization 

Algorithm



-3 -2 -1 0 1 2 3

µ ± !

μ

1

Above: 
How to estimate μ given data

35

X          X  XX    X  XXX               X
Observed Data

For this problem, we got a nice, closed 
form, solution, allowing calculation of the 
μ, σ that maximize the likelihood of the 

observed data.

We’re not always so lucky...



This?

Or this?

(A modeling decision, not a math problem..., 
but if later, what math?)
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More Complex Example



A Real Example:
CpG content of human gene promoters

“A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two 
distinct classes of promoters”  Saxonov, Berg, and Brutlag, PNAS 2006;103:1412-1417

©2006 by National Academy of Sciences
37
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No 
closed-
form
max

Parameters θ

means µ1 µ2

variances σ2
1 σ2

2

mixing parameters τ1 τ2 = 1− τ1

P.D.F. f(x|µ1,σ2
1) f(x|µ2,σ2

2)

Likelihood

L(x1, x2, . . . , xn|µ1, µ2,σ2
1 ,σ2

2 , τ1, τ2)

=
�n

i=1

�2
j=1 τjf(xi|µj ,σ2

j )

Gaussian Mixture Models / Model-based Clustering
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Messy: no closed form solution known for 
finding θ maximizing L

But what if we 
knew the 
hidden data?

A What-If Puzzle
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EM as Egg vs Chicken
IF zij known, could estimate parameters θ

E.g., only points in cluster 2 influence µ2, σ2  
IF parameters θ known, could estimate zij

E.g., if |xi - µ1|/σ1 << |xi - µ2|/σ2, then zi1 >> zi2

But we know neither; (optimistically) iterate:
E: calculate expected zij, given parameters
M: calc “MLE” of parameters, given E(zij)

Overall, a clever “hill-climbing” strategy 
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Simple Version: 
“Classification EM”

If zij < .5, pretend it’s 0;  zij > .5, pretend it’s 1

I.e., classify points as component 0 or 1

Now recalc θ, assuming that partition

Then recalc zij , assuming that θ
Then re-recalc θ, assuming new zij,  etc., etc.  

“Full EM” is a bit more involved, but this is the crux.
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Full EM
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The E-step:  
Find E(Zij), i.e. P(Zij=1)

Assume θ known & fixed
A (B): the event that xi was drawn from f1 (f2)
D: the observed datum xi

Expected value of zi1 is P(A|D)

Repeat 
for 

each 
xi}

E = 0 · P (0) + 1 · P (1)



47

Complete Data 
Likelihood

(Better):
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M-step:
Find θ maximizing E(log(Likelihood))
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2 Component Mixture
σ1 = σ2 = 1;  τ = 0.5

Essentially converged in 2 iterations

(Excel spreadsheet on course web)



Applications
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Clustering is a remarkably successful exploratory data 
analysis tool

Web-search, information retrieval, gene-expression, ...

Model-based approach above is one of the leading ways to do it

Gaussian mixture models widely used
With many components, empirically match arbitrary distribution

Often well-justified, due to “hidden parameters” driving the 
visible data

EM is extremely widely used for “hidden-data” problems
Hidden Markov Models
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EM Summary

Fundamentally a maximum likelihood parameter 
estimation problem

Useful if hidden data, and if analysis is more 
tractable when 0/1 hidden data z known

Iterate: 
E-step: estimate E(z) for each z, given θ
M-step: estimate θ maximizing E(log likelihood) 
given E(z) [where “E(logL)” is wrt random z ~ E(z) = p(z=1)]
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EM Issues
Under mild assumptions (sect 11.6), EM is 
guaranteed to increase likelihood with every 
E-M iteration, hence will converge.

But it may converge to a local, not global, max. 
(Recall the 4-bump surface...)

Issue is intrinsic (probably), since EM is often 
applied to NP-hard problems (including 
clustering, above and motif-discovery, soon)

Nevertheless, widely used, often effective


